New Methods and Structures for Scattering Amplitudes


Dr. Stephan Stieberger 




Venue:


Ludwig-Maximilians Universität, Arnold Sommerfeld Center for Theoretical Physics, 

Lecture: Monday 16:00-18:00 at B139 and

             Friday 12:00-14:00 at B046, Theresienstr. 39;

             Begin: April, 29, 2019  End: July, 26, 2019.


Exercises: Wednesday 14:00-16:00 at H030, Schellingstr. 4

                Begin: May, 8, 2019.



Klausur:  Friday: August 02, 2019; 12:00-14:00 at A449, Theresienstr. 37

Plan: 


1. Scalar, vector and Dirac fields


2. Spinor helicity formalism


3. Amplitude relations, soft and collinear theorems


4. On-shell recursion relations at tree-level


5. Color-kinematics duality and BCJ relations


6. Gravitational amplitudes


7. Double copy structures and KLT relations




Books:


1. H. Elvang and Y. Huang: “Scattering Amplitudes in Gauge Theory and Gravity”, Cambridge University Press 2015.


2. J. Henn and J. Plefka: “Scattering Amplitudes in Gauge Theories”, Springer 2014.


3. M.D. Schwartz: “Quantum Field Theory and the Standard Model”, Cambridge University Press 2014.


Articles:


1. L. Dixon: “Calculating scattering amplitudes efficiently”, hep-ph/9601359.


2. T.R. Taylor: “A Course in Amplitudes”, Phys. Rept. 691 (2017) 1-37.


3. S. Stieberger, and T.R. Taylor: “Subleading terms in the collinear limit of Yang–Mills amplitudes”, Phys. Lett. B 750 (2015) 587-590.


4. R. Britto, F. Cachazo, and B. Feng: “New recursion relations for tree amplitudes of gluons”, Nucl. Phys. B 715 (2005) 499-522.


5. R. Britto, F. Cachazo, B. Feng, and E. Witten: “Direct proof of tree-level recursion relation in Yang-Mills theory”, Phys. Rev. Lett. 94 (2005) 181602.


6. Z. Bern, J.J.M. Carrasco, and H. Johansson: “New Relations for Gauge-Theory Amplitudes”, Phys. Rev. D78 (2008) 085011.


7. P. Benincasa, and F. Cachazo: “Consistency Conditions on the S-Matrix of Massless Particles ”, arXiv:0705.4305 [hep-th].


8. J. Bedford, A. Brandhuber, B. Spence, and G. Travaglini: “A recursion relation for gravity amplitudes”, Nucl. Phys. B 721 (2005) 98-110.


9. H. Elvang, and D.W Freedman:
Note on graviton MHV amplitudes”, 

JHEP 0805 (2008) 096.


10. H. Kawai, D.C. Lewellen, and S.H.H. Tye: “A Relation Between Tree Amplitudes of Closed and Open Strings”, Nucl. Phys. B 269 (1986) 1-23.


11. D. Maitre, and P. Mastrolia: “S@M, a Mathematica Implementation of the Spinor-Helicity Formalism”, Comput. Phys. Commun. 179 (2008) 501-574.


Material:


Worksheet 1: May 15, 2019 


Worksheet 2: May 22, 2019


Worksheet 3: May 29, 2019 


Worksheet 4: June 05, 2019 


Worksheet 5: June 12, 2019 


Worksheet 6: June 26, 2019 


Worksheet 7: July 03, 2019


Worksheet 8: July 10, 2019  


Worksheet 9: July 24, 2019  


Klausur: August 02, 2019

             (for results please contact: Stephan Stieberger) 










August  2019