Dr. Stephan Stieberger

Exercise for Scattering Amplitude (F, T6) Problem set 8, due to 10 July, 2019

1) Consider the four–gluon MHV amplitude and the following BCJ representation for the three subamplitudes

with the three numerators n_s, n_u and n_t fulfilling the numerator equation $n_u + n_t = n_s$. The full amplitude A_4 reads

$$\mathcal{A}_4 = rac{c_s n_s}{s} + rac{c_u n_u}{u} + rac{c_t n_t}{t} \; ,$$

with kinematic factors fulfilling the Jacobi relation $c_u + c_t = c_s$. The same equations are supposed to hold for an other set of numerators \tilde{n}_s, \tilde{n}_u and \tilde{n}_t .

a) We may choose the following numerators:

$$n_s = \frac{\langle 12 \rangle^4 [21]}{\langle 23 \rangle \langle 34 \rangle \langle 41 \rangle}, \ n_u = 0, \ n_t = \frac{\langle 12 \rangle^4 [21]}{\langle 23 \rangle \langle 34 \rangle \langle 41 \rangle}$$

As a consequence

$$A_4(1^-, 2^-, 3^+, 4^+) = ig_{YM}^2 \frac{n_s}{s}$$

i.e. it appears that for this subamplitude there are no contributions from contact terms nor terms accounting for the *u*-channel. To which amplitude computation does this choice correspond to ? Verify all relations (*) by using the explicit amplitude expressions for the three MHV four-gluon subamplitudes A_4 .

b) We may cast $A_4(1^-, 2^-, 3^+, 4^+)$ into the following form:

$$A_4(1^-, 2^-, 3^+, 4^+) = -i g_{YM}^2 \frac{\langle 12 \rangle^2 [34]^2}{su} \quad (**) .$$

Prove this relation (**). Determine a set of numerators \tilde{n}_s and \tilde{n}_u (subject to $\tilde{n}_u + \tilde{n}_t = \tilde{n}_s$), which appears naturally after partial fractioning the expression (**). With these numerators verify all relations (*) by using the explicit amplitude expressions for the three MHV four–gluon subamplitudes A_4 .

c) Compute the full amplitude \mathcal{A}_4 for both sets of numerators n_i and \tilde{n}_i and verify that both expressions are the same.