Summer Semester 2019

Exercise for Scattering Amplitude (F, T6)

Problem set 4, due to 5 June, 2019

1) For the helicity choice $1^-, 2^-, 3^+$ and 4^+ we have:

$$A_4(1^-, 2^-, 3^+, 4^+) = g_{YM}^2 \frac{\langle 12 \rangle^4}{\langle 12 \rangle \langle 23 \rangle \langle 34 \rangle \langle 41 \rangle}.$$

- a) After using cyclic invariance there are six four–gluon MHV amplitudes. What are the the other five amplitudes starting with 1⁻ and give their explicit form in terms of spinor helicity brackets.
- b) Write down all photon decoupling relations for $A_4(1^-, 2^-, 3^+, 4^+)$ and express all six amplitudes in terms of $A_4(1^-, 2^-, 3^+, 4^+)$ and $A_4(1^-, 3^+, 2^-, 4^+)$.
- c) In addition we have the BCJ relation:

$$s_{12} A_4(2^-, 1^-, 3^+, 4^+) = s_{14} A_4(2^-, 3^+, 1^-, 4^+)$$
 (*).

Check this relation by inserting the explicit expressions for the corresponding fourgluon amplitudes. Use reflection symmetry to bring (*) into canonical form and use the latter to express all six amplitudes in terms of $A_4(1^-, 2^-, 3^+, 4^+)$ only.

2) Consider the five-gluon MHV amplitude

$$A_5(1^-, 2^-, 3^+, 4^+, 5^+) = g_{YM}^3 \frac{\langle 12 \rangle^4}{\langle 12 \rangle \langle 23 \rangle \langle 34 \rangle \langle 45 \rangle \langle 51 \rangle}$$

Take the soft-limit for gluon 4^+ and show directly (without using the general formula of the lecture):

$$A_5(1^-, 2^-, 3^+, 4^+, 5^+) \xrightarrow{p_4 \to 0} g_{YM} \frac{\langle 35 \rangle}{\langle 34 \rangle \langle 45 \rangle} A_4(1^-, 2^-, 3^+, 5^+)$$
.

3) Consider the six-gluon NMHV amplitude

$$A_{6}(1^{+}, 2^{+}, 3^{+}, 4^{-}, 5^{-}, 6^{-}) = g_{YM}^{4} \left\{ \frac{\langle 6|p_{1} + p_{2}|3]^{3}}{\langle 61\rangle\langle 12\rangle[34][45][5|p_{1} + p_{6}|2\rangle} \frac{1}{(p_{6} + p_{1} + p_{2})^{2}} + \frac{\langle 4|p_{5} + p_{6}|1]^{3}}{\langle 23\rangle\langle 34\rangle[16][65][5|p_{1} + p_{6}|2\rangle} \frac{1}{(p_{5} + p_{6} + p_{1})^{2}} \right\},$$

1

with $\langle a|p_b + p_c|d \rangle = \langle ab \rangle [bd] + \langle ac \rangle [cd]$.

Dr. Stephan Stieberger

Summer Semester 2019

Take the soft-limit for gluon 4⁻ and show directly (without using the general formula of the lecture):

$$A_6(1^+, 2^+, 3^+, 4^-, 5^-, 6^-) \xrightarrow{p_4 \to 0} g_{YM} \xrightarrow{[35]} A_5(1^+, 2^+, 3^+, 5^-, 6^-)$$
.

4) Consider the five-gluon MHV amplitude

$$A_5(1^-, 2^-, 3^+, 4^+, 5^+) = g_{YM}^3 \frac{\langle 12 \rangle^4}{\langle 12 \rangle \langle 23 \rangle \langle 34 \rangle \langle 45 \rangle \langle 51 \rangle}$$
.

Take the collinear-limit for gluons 4^+ and 5^+ , i.e. $p_4 = xP$ and $p_5 = (1-x)P$ and show directly (without using the general formula of the lecture):

$$A_5(1^-, 2^-, 3^+, 4^+, 5^+) \xrightarrow{p_4 \parallel p_5} g_{YM} \frac{1}{\langle 45 \rangle} \frac{1}{\sqrt{x(1-x)}} A_4(1^-, 2^-, 3^+, P^+)$$
.

2