Dr. Stephan Stieberger

Summer Semester 2019

Exercise for Scattering Amplitude (F, T6)

Problem set 7, due to 3 July, 2019

- 1) Consider the six–gluon alternating–helicity NMHV amplitude $A_6(1^+,2^-,3^+,4^-,5^+,6^-)$
- a) How many diagrams contribute to the recursion relation following from the $[2,3\rangle$ shifts, i.e.: $\hat{\lambda}_2 = \tilde{\lambda}_2 + z\tilde{\lambda}_3$ and $\hat{\lambda}_3 = \lambda_3 z\lambda_2$?
- b) Is the [2,3) shift allowed, i.e. what can be said about behaviour of the amplitude for large z?
- c) Compute the contributions of the non-vanishing diagrams and show:

$$A_6(1^+, 2^-, 3^+, 4^-, 5^+, 6^-) = g_{YM}^4 \left\{ R_2 + R_4 + R_6 \right\}, \quad (*)$$

with:

$$R_i = \frac{1}{t_i} \; \frac{\langle i, i+2 \rangle^4 \; [i+3, i-1]^4}{\langle i|p_{i+1}+p_{i+2}|i+3] \; \langle i+2|p_i+p_{i+1}|i-1] \; \langle i, i+1 \rangle \; \langle i+1, i+2 \rangle \; [i+3, i-2] \; [i-2, i-1]} \; ,$$

with $\langle a|p_b+p_c|d]=\langle ab\rangle[bd]+\langle ac\rangle[cd]$ and $t_i=(p_i+p_{i+1}+p_{i+2})^2$. Note, that in R_i all entries are assumed to be defined mod 6, i.e. e.g. $\langle 10\rangle=\langle 16\rangle, \langle 78\rangle=\langle 12\rangle, [94]=[34],$ etc.

d) What is the behaviour of (*) for large z?