#### Covariant Non-Commutative

### Geometry From String Theory

Jonathan J. Heckman

Institute for Advanced Study

hep-th/1208.???? w/ H. Verlinde

#### Before I Start...

Since today is "string pheno day"

I will mention a prediction from a class of
F-theory models: (Bouchard JJH Seo Vafa '09)

min F-GUT 2009:  $\theta_{13}^{\nu} \sim \theta_C \sim \sqrt{\alpha_{GUT}} \sim 0.2$  (order of magnitude estimate)

Daya Bay Expt. 2012:  $\theta_{13}^{\nu} \sim 0.15$ 

#### Before I Start...

Since today is "string pheno day"

I will mention a prediction from a class of
F-theory models: (Bouchard JJH Seo Vafa '09)

Mechanism involves fluxes / instantons / non-commutativity in internal directions

(c.f. JJH Vafa '08; Bouchard JJH Seo Vafa '09; Cecotti Cheng JJH Vafa '09; Marchesano Martucci '09; ...)

#### Covariant Non-Commutative

### Geometry From String Theory

Jonathan J. Heckman

Institute for Advanced Study

hep-th/1208.???? w/ H. Verlinde

## 4D Non-Commutativity

(Throughout work in Euclidean signature)

An old idea for regulating QFT:

$$[x_{\mu}, x_{\nu}] = i\theta_{\mu\nu}$$

Minimal Resolution:  $\Delta(x_{\mu})\Delta(x_{\nu}) \geq \ell_{\theta}^2$ 

c.f. Heisenberg, Moyal, von Neumann, Snyder, ...

### String Realizations

(see also L. Landau)

#### E.g.: Zero Slope Limit of Strings in a B-field

(c.f. Connes, Douglas, Schwarz; Nekrasov Schwarz;

Seiberg Witten; V. Shomerus,...)

E.g.: OSFT, M(atrix) Theory, ...

#### But...

 $[x, x] \neq 0$  comes at a (steep) price:

Lorentz invariance is lost!

Why? We introduced:  $\langle \theta_{\mu\nu} \rangle \neq 0$ 

### Covariant N.C.

Consider family of  $\theta_{\mu\nu}$ 's in orbit of so(4):

$$[x_{\mu}, x_{\nu}]_{n_j} = i\theta_{\mu\nu}(n_j)$$

Although a given  $\theta_{\mu\nu}$  breaks so(4),

Note:  $\langle \theta_{\mu\nu}(n_i) \rangle_{\text{orbit}} = 0$ 

### Main Example

$$[x_{\mu}, x_{\nu}] = i\ell_{NC}^2 \ n_j \cdot \eta_{\mu\nu}^j$$

Where: 
$$\sum_{j=1}^{3} (n_j)^2 = 1$$
 (i.e. an  $S^2$ )

 $\eta_{\mu\nu}^{j}$  = three 't Hooft matrices (note  $\eta^{j} = *\eta^{j}$ )

## Aims / Goals

• Find a stringy realization of covariant N.-C.

• Study effects of covariant regulators for QFT

An extra reason to study:

appearance of 4D Gravity

#### A Future Goal

Use this to simplify local model building:

- I) "Easy Step" Decouple gravity, build a QFT
- II) "Hard Step" Recouple to 4D gravity



#### A Future Goal

Use this to simplify local model building:

- I) "Easy Step" Decouple gravity, build a QFT
- II) "Hard Step" Recouple to 4D gravity



#### Outline

• Worldsheet Realization

• Holographic Dual & Dilaton Compactification

• Summary & Future Directions

### Worldsheet Realization

### Review: Abelian N.-C.

Throughout hold  $2\pi\alpha'$  fixed

Consider N D3-Branes on  $\mathbb{R}^4$  with  $B_{NS} \neq 0$ Gauge Equiv: Switch on  $U(1)_{D3}$  flux

$$G_{\mu\nu}^{(cl)} \to \epsilon^{1/2}$$
 and  $g_s^{(cl)} \to \epsilon$  and  $G_{\mu\nu}^{(op)} \to \epsilon^{-1/2}$  c.f. Seiberg, Witten '99

Fuzziness: 
$$[x_{\mu}, x_{\nu}] = i \left[\frac{1}{B_{NS}}\right]_{\mu\nu}$$

#### Non-Abelian Generalization

Open string in a non-abelian flux?

Main Focus: Flux = Yang monopole bkgnd:



On  $S^4$  looks like a homog. instanton of SU(2) YM

## Endpoint Dynamics

Embed  $SU(2)_{Yang} \to U(N)_{Chan-Paton}$  via:

$$J_z^{SU(2)} = \text{diag}(+\frac{N-1}{2}, ..., -\frac{N-1}{2})$$

 $\Rightarrow$  Operator Insertion:

 $\operatorname{Tr}_N P \exp i \int_{\partial \Sigma} A_{flux}$ 



## Or Equivalently,

Introduce a triplet of endpoint modes  $n_i(t)$ :

$$S = \frac{1}{4\pi\alpha'} \int_{\Sigma} G^{(cl)}_{\mu\nu} \partial^a X^{\mu} \partial_a X_{\nu}$$

$$-\frac{i}{2} \int_{\partial \Sigma} \left( n_i B^i_{\mu\nu} X^{\mu} \partial_t X^{\nu} + (N-1) \frac{\epsilon_{3ij} n_i \partial_t n_j}{1 + n_3} \right)$$

This Term Enforces su(2) algebra ......

### Seiberg-Witten Limit?

This is the same as in the abelian flux case

But now we have endpoint modes  $n_i$ 

## Commutator Algebra

c.f. 4D Quant. Hall Effect Hu, Zhang '01; Bernevig et al. '02, Fabinger '02

$$[n_i, n_j] = \frac{2}{N-1} \epsilon_{ijk} n_k$$
 (i.e.  $su(2)$ , rescale n's)

$$[x_{\mu}, n_i] = f_{ik}(n_j)\eta_{\mu\nu}^k x^{\nu}$$
 (i.e. a Lor. transfrm)

$$[x_{\mu}, x_{\nu}] = i\ell_{NC}^2 \ n_i \eta_{\mu\nu}^i + \text{subleading}$$

## Geometry: $4 + 2_{top}$

As  $N \to \infty$ , open string sees space of unit norm ASD 2-forms over  $S^4$ :

## SO(4) "Breaking"

For each point  $n_i \in S^2$ , have a cplx structure on tangent space  $T_x S^4 \simeq \mathbb{R}^4 \simeq \mathbb{C}^2$ 

SO(4) "broken" to U(2)

coset space =  $SO(4)/U(2) \simeq \mathbb{CP}^1_{top}$ 

## What Happened to SO(4)?

Extend  $Y_I = X_{\mu} \oplus n_i$  into bulk this is accomplished via Poisson  $\sigma$ -model (c.f. Cattaneo Felder '99)

Parameterize as: 
$$Z^{\alpha} = (iX^{\dot{a}a}\pi_a, \pi_a)$$

$$\mathbb{CP}^{3} \text{ coord} \dots \mathbb{CP}^{1}_{top} \text{ coord}$$

BRST cohomology:  $f(X) = \oint_{\gamma} f(Z^{\alpha}) \pi^{a} d\pi_{a}$ 

### What Happened to SUSY?

This has also been preserved:

Parameterize as: 
$$(Z^{\alpha}, \psi^{i}) = (iX^{\dot{a}a}\pi_{a}, \pi_{a}, \theta^{ia}\pi_{a})$$

$$\mathbb{CP}^{3|4} \text{ coord...}$$

$$\mathbb{CP}^{1}_{top} \text{ coord}$$

## What Happened to $P_{\mu}$ ?

This has also been preserved:

Contraction:  $so(5) \rightarrow so(4) \times translations$ 



#### Chan-Paton Twistors

Most of these steps well-known from twistors c.f. Penrose '67

 $\mathbb{CP}^3$  = twistor space

The map  $f(Z^{\alpha}) \to f(X)$  is the

c.f. CAT scans

"Penrose-Radon transform"

## Fuzzy Gauge Theory

Chan-Paton Indices:  $N \to N \otimes N_c$ 

Flux in U(N) factor as before

Looks like a triplet of B-fields to  $U(N_c)$  factor

#### Adiabatic Limit

Each  $n_i \in \mathbb{CP}^1_{top}$  specifies a N.C. Gauge Theory:

Gauge Field:  $\widehat{A}(x, n_i)$ 

Field Strength:  $\widehat{F} = d\widehat{A} + \widehat{A} *_n \widehat{A}$ 

$$S[n^i] = -\frac{1}{2g_{YM}^2} \int d^4x \operatorname{Tr} \widehat{F}_{\mu\nu} *_n \widehat{F}^{\mu\nu}$$

### Recap So Far

Summarizing, we have open string realization of:

 $\mathcal{N} = 4 \text{ SYM} + \text{covariant non-commutativity}$ 

# Holographic Dual

&

Dilaton Compactification

#### 't Hooft Limit?

$$U(N_c) \mathcal{N} = 4 \text{ SYM} + \theta_{\mu\nu}(n_i) \text{ looks sensible}$$

⇒ Should expect closed string dual description

## General Strategy

$$IR \xrightarrow{\text{Energy Scale} \equiv u} UV$$

Build up dual from IR to UV, i.e. "Bottom Up"

## General Strategy

$$IR \xrightarrow{\text{Energy Scale} \equiv u} UV$$

Build up dual from IR to UV, i.e. "Bottom Up"

In Deep IR, we have  $\mathcal{N} = 4$  SYM with instanton and instanton chem potls.

So, for small u, we have  $AdS_5 \times S^5$ 

### IR Region

In this regime, a family of IIB SUGRA solutions

Each one is specified by  $n_i \in S^2$ 

i.e. a choice of self-dual (on  $\mathbb{R}^4$ )  $B_{NS}$  and  $B_{RR}$ 

"Averaging" reflected in  $\nabla^2 e^{\phi} = \rho_{inst} = -|H_{NS}|^2$ 

#### SUGRA Solutions

c.f. Hashimoto, Itzhaki '99; Maldacena, Russo '99; Das, Rama, Trivedi '99 JJH Verlinde '12

$$ds_{str}^2 = e^{\phi/2} L_{AdS}^2 \left[ \sqrt{\frac{u^4}{1 + a^4 u^4}} ds_{\mathbb{R}^4}^2 + \sqrt{\frac{1 + a^4 u^4}{u^4}} (du^2 + u^2 d\Omega_{(5)}^2) \right]$$

$$e^{\phi} = g_{IR} \left( \frac{1 - b^4 u^4}{1 + a^4 u^4} \right) + RR \text{ and NS Fluxes}$$

IR:  $u \ll a^{-1}$ , looks like  $AdS_5$ 

UV: 
$$u \simeq b^{-1} = a^{-1} \left( \frac{2\tau_+}{\tau_- - \tau_+} \right)^{1/4}$$

IR chemical potentials

 $\tau_{+}$  for instantons

 $\tau_{-}$  for  $\overline{\text{instantons}}$ 

### Dilaton Compactification

Note: String frame metric  $\rightarrow 0$  at  $u \leq \infty$ :



Boundary exists provided  $\tau_+ - \tau_- \leq 0$ 

#### Phase Boundary

Note: 
$$ds_{str}^2 = e^{\phi/2} ds_{Ein}^2 \to 0 \text{ as } u \to b^{-1}$$
:

$$\tau_+ - \tau_- < 0$$

$$\tau_{+} - \tau_{-} = 0$$
  $\tau_{+} - \tau_{-} > 0$ 

$$\tau_{+} - \tau_{-} > 0$$

"compactified"

$$0 < b < \infty$$

UV completion necessary

 $\mathbb{R}^{10}$  "boundary"

$$b = 0$$

c.f. Hashimoto, Itzhaki '99;

Maldacena, Russo '99;

Das, Rama Trivedi '99

no boundary b imaginary



#### The Wall

instantons repelled from UV region  $(\tau_{-} \to \infty)$ :



Agrees with no small instanton in gauge thry.

#### Dilaton Compactification

Note: String frame metric  $\rightarrow 0$  at  $u \leq \infty$ :



Boundary exists provided  $\tau_+ - \tau_- < 0$ 

#### Einstein Frame?

But: Einstein frame metric remains non-zero:

 $\Rightarrow$  working with a finite "cutoff"  $\Rightarrow$  gravity on bdry



Boundary exists provided  $\tau_+ - \tau_- < 0$ 

### UV Region?

As  $e^{\phi} \to 0$ , F1 string tension  $\to 0$ 

Adiabatic approximation not valid here: all  $\mathbb{CP}^3$  directions "equally physical"

 $\Rightarrow$  Need Strings with  $sl(4|4) \rightarrow isom(S^{4|8})$ 

### Towards UV Completion

 $\Rightarrow$  Need Strings with  $sl(4|4) \rightarrow isom(S^{4|8})$ 

• Twistor String Theory c.f. Witten '03, Berkovits '04

symmetries: sl(4|4)

• Twistor Matrix Model c.f. JJH Verlinde '11

symmetries:  $isom(S^{4|8})$ 

#### Twistor Matrix Model

Low energy limit of: Self-Dual Yang-Mills in Yang monopole bkgnd

• Symmetries:  $isom(S^{4|8})$ 

• Correlators compute tree level (so far) gluon and Einstein gravity amplitudes

### Recap: String Frame

Large  $N_c \mathcal{N} = 4 \text{ SYM} + \theta_{\mu\nu}(n_j)$  dual to:



# Summary

&

Future Directions

### Summary

•  $[x_{\mu}, x_{\nu}]_n = \theta_{\mu\nu}(n^i) \to 0$  over orbit

• Lorentz Invariance & Emergent Twistors

• 4D Gravity and a covariant cutoff

# Future Directions 1 / 3

Dimensions:  $10 + 2_{top}$ 

This is reminiscient of F-theory...

But it involves a  $\mathbb{CP}^1_{top}$ , not a  $T^2$ ...

# Future Directions 2 / 3

Conjecture: (we just gave an example...)

 $4D QFT + Covariant Cutoff \Rightarrow 4D Gravity$ 

Fine print:  $\mathbb{R}^{3,1}$  vs  $\mathbb{R}^4$  vs unitarity?

# Future Directions 3 / 3

Big simplification of local model building?

- I) "Easy Step" Decouple gravity, build a QFT
- II) "Hard Step" Recouple to 4D gravity

