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The role of modular invariance in string perturbation theory was
discovered initially by J. Shapiro about forty years ago, after C.
Lovelace had shown the special role of 26 dimensions.

Although it
took time for this to be fully appreciated, modular invariance
eliminates the ultraviolet region from string and superstring
perturbation theory, and consequently there is no issue of
ultraviolet divergences. I will have nothing new to say about this
today.
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However, the literature from the 1980’s has left some small
unclarity about the infrared behavior of superstring perturbation
theory, and this is what I want to revisit.

First of all, the general
statement one wants to establish is simply that the infrared
behavior of superstring perturbation theory is the same as that of a
field theory with the same massless particles and low energy
interactions. However, there are some details of this that could be
clarified.
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I want to give a couple of examples of what I mean in saying that
the infrared behavior of string theory is the same as that of a
corresponding field theory. Let us consider a Feynman diagram. A
very simple question of infrared behavior is to consider what
happens when a single propagator goes on shell.

First I’ll consider
a propagator whose “cutting” does not separate a diagram in two.



I want to give a couple of examples of what I mean in saying that
the infrared behavior of string theory is the same as that of a
corresponding field theory. Let us consider a Feynman diagram. A
very simple question of infrared behavior is to consider what
happens when a single propagator goes on shell. First I’ll consider
a propagator whose “cutting” does not separate a diagram in two.





Let us assume our particles are massless so the propagator is 1/k2.
In D noncompact dimensions, the infrared behavior when the
momentum in a single generic propagator goes to zero is∫

dDk
1

k2

and this converges if D > 2.

(For an exceptional internal line, such
as the one labeled 2 in the diagram, the infrared behavior when a
single momentum goes to zero is worse, because this forces other
propagators to go on shell. In the case shown in the sketch, the
condition to avoid a divergence is actually D > 4.)
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All this has a close analog in string theory. First of all, a
nonseparating line that goes to zero momentum is analogous to a
nonseparating degeneration of a Riemann surface.



A degeneration of a Riemann surface – separating or not – can be
described by an equation

xy = q,

where x is a local parameter on one side, y is one on the other,
and q measures the narrowness of the neck – or, by a conformal
transformation, the length of the tube separating the two sides.



The contribution of a massless string state propagating through
the neck is∫

dDk

∫
|d2q|qL0−1qL0−1 =

∫
dDk

∫
|d2q||qq|k2/2−1

where I use L0 = L0 = k2/2.

Instead of doing the integral, let us
introduce the analog of the Schwinger parameter by
q = exp(−(t + is)) where s is an angle and t plays the same role
as the Schwinger parameter of field theory. The integral over s just
gives a factor of 2π, giving

2π

∫
dDk

∫ ∞
dt exp(−tk2).

(Note that I indicated the upper limit of the t integral but not the
lower limit, which is affected by modular invariance.)
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This agrees perfectly with field theory even before doing the k or t
integral, bearing in mind that the Schwinger representation of the
Feynman propagator is

1

k2
=

∫ ∞
0

dt exp(−tk2).



Just as in field theory, we could also consider a situation in which
one momentum going to zero puts other lines on-shell.

This gives
an infrared divergence if D ≤ 4, whether in field theory or string
theory.
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There are many other questions that match simply between string
theory and field theory.

For something where the match is less
straightforward, let us consider a separating line. Here are two
cases in field theory.

The difference is
that in the second case the external lines are all on one side.
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We don’t integrate over the momentum that passes through the
separating line; it is determined by momentum conservation.

On
the left, this momentum is generically nonzero so for typical
external momenta, we don’t sit on the 1/k2 singularity; when we
vary the external momenta, the 1/k2 gives a pole in the S-matrix
(at least in this approximation). This is physically sensible and we
do not try to get rid of it. On the right, it is different. The
momentum passing through the indicated line is 0 and hence we
will get 1/0 unless the matrix element on the right vanishes.
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So a field theory with a massless scalar has a sensible perturbation
expansion only if the “tadpole” or one point function of the scalar
vanishes:

We have to impose this condition for all massless scalars. However,
it is non-trivial only for the ones that are invariant under all (local
or global) symmetries.
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All this is relevant to perturbative string theory, since whenever we
do have a perturbative string theory, there is always at least one
massless neutral scalar field that might have a tadpole, namely the
dilaton. So perturbative string theory will only make sense if the
dilaton tadpole vanishes (along with other tadpoles, if there are
more massless scalars).

In either field theory or string theory, the
usual way to show vanishing of the tadpole of a massless scalar
(neutral under all symmetries) is to use supersymmetry. Indeed,
without supersymmetry, it is unnatural to have a massless neutral
scalar.
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As one should anticipate from what I have said, it is the one on
the right that causes trouble.

There are two reasons that this
problem is harder to deal with than in field theory:

1) Technically, it is harder to understand spacetime supersymmetry
in string theory than in field theory, and to use it to show that the
integrated massless tadpoles vanish.

2) In field theory, the tadpoles are the contributions of certain
diagrams and if they vanish, one just throws those diagrams away.
String theory is more subtle because it is more unified; the tadpole
is part of a diagram that also has nonzero contributions. Vanishing
tadpoles makes the diagrams of string perturbation theory infrared
convergent but only conditionally so and so there is still some work
to do to define them properly. (This is a point where I believe I’ve
improved what was said in the 80’s, but I won’t explain it today.)
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Since we can only hope for the tadpoles to vanish in the
supersymmetric case, we have to do supersymmetric string theory.

This means that our Riemann surfaces are really super Riemann
surfaces. A super Riemann surface is a rather subtle sort of thing.
It takes practice to get any intuition about them, and I can’t really
describe this topic today.
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All I will say is that a super Riemann surface (with N = 1 SUSY)
is a supermanifold Σ of dimension (1|1), with some special
structure – a superconformal structure.

An NS vertex operator
Φ(z̃ ; z |θ) is inserted at a generic point on Σ (my notation for
worldsheet coordinates is adapted to the heterotic string), while a
Ramond vertex operator is inserted at a point on Σ at which the
superconformal structure of Σ has a certain kind of singularity.
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Friedan, Martinec, and Shenker in 1985 explained what kind of
vertex operators are inserted at such superconformal singularities –
they are often called spin fields – and how to compute their
operator product expansions.

In particular, the operators that
generate spacetime supersymmetry are of this kind, so their work
made it possible to see spacetime supersymmetry in a covariant
way in superstring theory. As regards practical calculations, their
work also made it possible to compute in a covariant way arbitrary
tree amplitudes with bosons and fermions, and many loop
amplitudes of low order. Moreover, in the intense period of effort
in the 1980’s, the main ingredients of a systematic, all-orders
algorithm were assembled. My reconsideration of the problem has
aimed at simplifying and extending the understanding of a few
details.
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It turns out that this problem requires greater sophistication in
understanding supermanifolds and how to integrate over them than
is needed in any other problem that I know of in supersymmetry
and supergravity.

That is probably the main reason for any
unclarity that surrounds it.
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Some low order cases are deceptively simple and really don’t give a
good idea of a general algorithm for superstring perturbation
theory.

For example, in genus g = 1, the dilaton tadpole vanishes
in R10 by summing over spin structures, but the fact that this
makes sense depends upon the fact that in g = 1 (with no
punctures) there are no fermionic moduli. As soon as there are odd
moduli, there is no meaningful notion of two super Riemann
surfaces being the same but with different spin structures. In
particular, in genus g > 1, there is no meaningful operation of
summing over spin structures without integrating over
supermoduli. In genus g = 2, E. D’Hoker and D. Phong found an
effective and very beautiful way to integrate over fermionic moduli
first (after which the sum over spin structures makes sense and
could be used to show the vanishing of the dilaton tadpole) and
then integrate over bosonic moduli. This calculation is currently
the gold standard, but it is more or less clear that for generic g
their procedure has no analog and the only natural operation is the
combined integral over all bosonic and fermionic moduli.
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Instead of talking more about what doesn’t work in general, let us
discuss what does work.

First of all, there is a natural measure on
supermoduli space, which I will call M̃g ,n. This was constructed in
the 1980’s via conformal field theory (in varied approaches by G.
Moore, P. C. Nelson, and J. Polchinski; E. & H. Verlinde; L.
Alvarez-Gaumé, C. Gomez, P. C. Nelson, G. Sierra, and C. Vafa;
and D’Hoker and Phong) by adapting the analogous formulas for
the bosonic string. Also, though less well known, there is for the
important case of strings in R10 a slightly abstract but very elegant
– and mathematically completely rigorous – construction of the
measure by A. Rosly, A. Schwarz and A. Voronov (1988) via
algebraic geometry.
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Another key point is that integration of a bounded measure on a
compact supermanifold is a well-defined operation just as on an
ordinary manifold.

We will say a little about integration later.
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Supermoduli space is not compact – or if we take its
Deligne-Mumford compactification, then the function we want to
integrate has singularities – precisely because of the infrared effects
that we have been talking about.



Although supermoduli space is very subtle, if one asks precisely the
questions whose answers one needs, those particular questions tend
to have simple answers.

For instance, although a sum over spin
structures (independent of the integration over supermoduli) does
not make sense in general, a very small piece of it makes sense
when a node develops

and this leads to the
GSO projection on the physical states that propagate through the
node.
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For another example, the description of the moduli space near a
node is just as simple as for a bosonic Riemann surface.

In the
bosonic case, the gluing of a surface with local parameter x to one
with local parameter y is by

xy = q.

For the super case, the gluing of local parameters x , θ to y , ψ is by
an almost equally simple formula

xy = ε2, yθ = εψ, xψ = εθ.

Importantly, the gluing depends in both cases on only one bosonic
parameter ε or q. In the super case, there are no odd moduli for
the gluing.
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What I have just explained is the fundamental reason that there is
no integration ambiguity in superstring theory. There is a good
parameter at infinity.

If one replaces x and y by other local
parameters, one transforms ε by ε→ eφε but not by ε→ ε+ αβ,
which could have led to an integration ambiguity, as was explained
in the literature of the 1980’s.
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Now let us discuss integration by parts on supermoduli space. We
need this to prove the decoupling of pure gauge degrees of freedom
and also to prove spacetime supersymmetry and vanishing of
tadpoles.

This is actually one place where what was done in the
1980’s can be improved (but again, see Belopolsky). Traditonally,
arguments involving integration by parts have been made by first
integrating over odd moduli and then using the bosonic version of
Stokes’s theorem to integrate by parts on a purely bosonic
manifold. However, this introduces many technicalities and
complications. There is a perfectly good super-analog of Stokes’s
theorem and it is best to use this.
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You probably all know the basic idea of fermionic integration by
parts, which is that for an odd variable α and any function f (α),
one has ∫

dα
d

dα
f = 0.

Indeed the Berezin integral∫
dα · 1 = 0,

∫
dα · α = 1

is defined to make this true.
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There is a supermanifold version of Stokes’s theorem (attributed to
Bernstein and Leites, 1979, also with roots in the supergravity
literature). Roughly it combines the ordinary Stokes’s theorem with
what I just explained.

To understand it, one has to develop the
theory of “integral forms,” which are the supermanifold analog of
differential forms. They are similar to differential forms, except that
there is one inescapable new concept, which is “picture number.”
Unfortunately there is not time to explain these things today.
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Once has has the right definitions, the supermanifold version of
Stokes’s theorem says just what one would expect:∫

X
dΛ =

∫
∂X

Λ.

Here dΛ is the analog of a “volume form” and Λ is the analog of a
“form of codimension 1.”



Now a scattering amplitude 〈V1V2 . . .Vn〉 is associated with a
“volume form” Υ that must be integrated over, roughly speaking,
supermoduli space.

Just as for the bosonic string, if, say,
V1 = {Q,W } for some W (and the other Vi are all Q-invariant),
then the volume form Υ is dΛ for some Λ. Then in checking
decoupling of {Q,W }, we get

〈{Q,W }V2 . . .Vn〉 =

∫
Γ

Υ =

∫
∂Γ

Λ.

If Λ vanishes along ∂Γ, then the right hand side vanishes and so
therefore does the left hand side. For vanishing of

∫
∂Γ Λ, one needs

to know (i) vanishing of tadpoles, otherwise none of the integrals
converge and (ii) a certain condition about mass renormalization
that I have been suppressing though we will incorporate it shortly.
(This condition has a field theory analog: the condition on which
modes are supposed to decouple can depend on the particle masses
so it can be affected by mass renormalization.)
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This argument is much simpler than any argument using the
bosonic version of Stokes’s theorem.

It has an important corollary.
If one knows that the massless tadpoles vanish, then spacetime
supersymmetry is a special case of the decoupling of pure gauge
modes. This may be deduced from the following standard
argument (Weinberg, 1965; Grisaru and Pendleton, 1977).
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We consider a scattering amplitude involving a soft gravitino. We
take its wavefunction to be ΨIα = exp(ik · x)ηIα where I is a
vector index and α is a spinor index. A matrix element for emission
of a soft gravitino has singular terms where the gravitino is
attached to an external leg:



I’ve drawn this as a field theory picture, but I hope you all
understand that there is an analogous string theory picture.

The
line that emits the gravitino is just slightly off shell, with
momentum P − k. If P2 = M2 and k2 = 0, then
(P − k)2 = M2 − 2P · k , so the propagator of this line is
1/((P − k)2 −M2) = −1/2P · k (or something similar if the line
represents a particle with spin). This is singular at k → 0. The
amplitude also comes with a numerator which is a matrix element
of the supercurrent S , via which the gravitino couples, between the
two states 〈(P − k)′|S |P〉 (the prime in 〈(P − k)′| is meant to
remind us that S has acted on the particle spin). In all, this soft
emission amplitude is essentially 〈(P − k)′|S |P〉/(−2P · k) times
an amplitude with the external gravitino and particle |P〉 replaced
by an external state |(P − k)′〉.
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Now if we set the gravitino polarization vector-spinor ηIα to be
kI ζα (for some spinor ζα), then the whole amplitude must vanish.
This is a special case of the decoupling of states {Q,W } for any
W .

It is hard to evaluate this condition exactly, but its leading
behavior as k → 0 can be evaluated, and is the sum of terms of
the form 〈(P − k)′|k · S |P〉/(−2P · k) times an amplitude with one
of the external particles |P〉 replaced by |(P − k)′〉. The sum of all
these terms must vanish and this is the Ward identity of spacetime
supersymmetry.
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This type of argument may be familiar from field theory. It works
the same way in string theory, except that we have to know that
the massless tadpoles vanish (or none of the amplitudes are
defined).

However, in either field theory or string theory, I have left
something out so far. Potentially, the supersymmetric Ward
identity can contain another term if the coupling of a soft gravitino
has a singular contribution like this:
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This happens if loops generate a term in the effective action that is
of the form ΨIΓ

Iλ, with some previously massless fermion λ, or a
term ΨIΓ

IJΨJ .

In the first case, supersymmetry is spontaneously
broken, with λ as a Goldstone fermion; in the second case, we land
in AdS space with unbroken supersymmetry. (An example of the
first type was described by Dine, Ichinose, Seiberg and by Atick,
Dixon, Sen in the 1980’s. No example of the second type seems to
be known in any dimension, and I wonder if there is a general no
go theorem.)
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In many classes of string vacua, it is straightforward to prove that
ΨIΓ

Iλ and ΨIΓ
IJΨJ terms are not generated by loops.

For example
in all of the ten-dimensional superstring theories except Type IIA,
this follows from considerations of spacetime chirality which make
it impossible to write the interactions in question. For Type IIA,
the result follows if one also uses the fact that perturbation theory
has (−1)FL as a symmetry. (This excludes the Romans mass term.)
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So all we need in order to land in a happy place is an extension of
this type of reasoning to show that the massless tadpoles vanish.

Though this is expected to follow from spacetime supersymmetry, I
believe that the type of argument I have given is not quite
powerful enough to prove it.
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Given the experience from the old literature (see for example E.
Martinec (1986), Atick, Moore and Sen (1988)), one expects that
what one should do is to make a similar argument but with k set
to 0 at the beginning.

We used the fact that the vertex operator
VΨ,k for a gravitino of polarization ηIα = kI ζα is {Q,Wk} for
some Wk . If we set k = 0, then VΨ,k = 0 and the relation
becomes 0 = {Q,S} where S , which is the limit of Wk for k = 0,
is the fundamental spin field. S has ghost number 1 (while a
vertex operator for particle emission such as V has ghost number
2) so by analogy with more simple cases, the condition {Q,S} = 0
should mean that S generates a symmetry in spacetime.
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For practice, let us look at a correlation function 〈SV1 . . .Vn〉.

This can’t be integrated over the usual integration cycle Γ, since
the ghost number is too small by 1. But it can be integrated over
the codimension 1 cycle ∂Γ. Schematically, we have

0 =

∫
Γ
〈{Q,S}V1 . . .Vn〉 =

∫
∂Γ
〈SV1 . . .Vn〉.

This vanishing relation can be written as a sum of contributions
from the many components of ∂Γ. Many of them don’t contribute
because the momentum flowing through the node is off-shell.
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The following contributions do have on-shell momentum flowing
through the node and definitely can contribute:

If these are
the only nonzero boundary contributions, then again we get the
supersymmetric Ward identity, much as before.



The following contributions do have on-shell momentum flowing
through the node and definitely can contribute:

If these are
the only nonzero boundary contributions, then again we get the
supersymmetric Ward identity, much as before.



The other contributions that might appear (because they involve
on-shell momentum flowing through the node) correspond to
supersymmetry breaking (or a cosmological constant) or a massless
tadpole. We’ll draw them in a moment, in a slightly simpler
situation.



To finally address the question of whether there is a massless
tadpole, let us replace the product V1 · · ·Vn with a single vertex
operator Vλ of a massless fermion that is a superpartner of a scalar
φ whose tadpole we want to understand. The relation

0 =

∫
∂Γ
〈SVλ〉

is now simple because ∂Γ has only two types of components.



The relation is explicitly then

The first term is
the dilaton tadpole, and the second may appear precisely when
supersymmetry is spontaneously broken (or a cosmological
constant is being generated).
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When one can show that the gravitino cannot gain a mass in
perturbation theory – for instance in R10 – this relation should
(when combined with what was discovered in the 80’s and a few
details that we haven’t had time for today) – remove the very slight
unclarity that has surrounded superstring perturbation theory.


