Logarithmic Sobolev inequality on gradient solitons and Perelman's reduced volume

Lei Ni

University of California, San Diego

November, 2008 Munich

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

- ◆ □ ▶ → 個 ▶ → 注 ▶ → 注 → のへぐ

- ◆ □ ▶ → 個 ▶ → 注 ▶ → 注 → のへぐ

Joint with Jose Antonio Carrillo.

- Joint with Jose Antonio Carrillo.
- Focus on the shrinking case. All results have corresponding version for expanding solitons.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨー の々ぐ

- Joint with Jose Antonio Carrillo.
- Focus on the shrinking case. All results have corresponding version for expanding solitons.

► Theorem

For any $\sigma > 0$ and any function $u \ge 0$ with $u^{1/2} \in W^{1,2}(\mathbb{R}^n)$, write $u = \frac{e^{-f}}{(4\pi\sigma)^{n/2}}$ with $\int_M u = 1$, then

$$\int_{\mathbb{R}^n} \left(\sigma |\nabla f|^2 + f - n \right) u \, dx \ge 0$$

- Joint with Jose Antonio Carrillo.
- Focus on the shrinking case. All results have corresponding version for expanding solitons.

► Theorem

For any $\sigma > 0$ and any function $u \ge 0$ with $u^{1/2} \in W^{1,2}(\mathbb{R}^n)$, write $u = \frac{e^{-f}}{(4\pi\sigma)^{n/2}}$ with $\int_M u = 1$, then $\int_{\mathbb{R}^n} (\sigma |\nabla f|^2 + f - n) u \, dx \ge 0$

Has long history. Goes back to Stam (1950), Gross (1975).

- Joint with Jose Antonio Carrillo.
- Focus on the shrinking case. All results have corresponding version for expanding solitons.

► Theorem

For any $\sigma > 0$ and any function $u \ge 0$ with $u^{1/2} \in W^{1,2}(\mathbb{R}^n)$, write $u = \frac{e^{-f}}{(4\pi\sigma)^{n/2}}$ with $\int_M u = 1$, then $\int_{\mathbb{R}^n} (\sigma |\nabla f|^2 + f - n) u \, dx \ge 0$

- ▶ Has long history. Goes back to Stam (1950), Gross (1975).
- By scaling, it is enough to show for some σ , say = 1.

- Joint with Jose Antonio Carrillo.
- Focus on the shrinking case. All results have corresponding version for expanding solitons.

► Theorem

For any $\sigma > 0$ and any function $u \ge 0$ with $u^{1/2} \in W^{1,2}(\mathbb{R}^n)$, write $u = \frac{e^{-f}}{(4\pi\sigma)^{n/2}}$ with $\int_M u = 1$, then $\int_{\mathbb{R}^n} (\sigma |\nabla f|^2 + f - n) u \, dx \ge 0$

- ▶ Has long history. Goes back to Stam (1950), Gross (1975).
- By scaling, it is enough to show for some σ , say = 1.
- There exists a proof via the heat equation and the entropy formula.

▲□▶ ▲□▶ ▲国▶ ▲国▶ 国 のへで

▲□▶ ▲□▶ ▲国▶ ▲国▶ 国 のへで

• On M consider positive solution v to the heat equation

$$\frac{\partial v}{\partial t} - \Delta v = 0.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• On M consider positive solution v to the heat equation

$$\frac{\partial v}{\partial t} - \Delta v = 0.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Write
$$v = \frac{e^{-\varphi}}{(4\pi t)^{\frac{n}{2}}}$$

• On M consider positive solution v to the heat equation

$$\frac{\partial v}{\partial t} - \Delta v = 0.$$

Write
$$v = \frac{e^{-\varphi}}{(4\pi t)^{\frac{n}{2}}}$$
.
For v with $\int_M v \, d\mu = 1$, define
 $\mathcal{W}(v, t) := \int_M (t |\nabla \varphi|^2 + \varphi - n) \, v \, d\mu$.

• On M consider positive solution v to the heat equation

$$\frac{\partial v}{\partial t} - \Delta v = 0.$$

Write
$$v = \frac{e^{-\varphi}}{(4\pi t)^{\frac{n}{2}}}$$
.
For v with $\int_M v \, d\mu = 1$, define
 $\mathcal{W}(v, t) := \int_M (t |\nabla \varphi|^2 + \varphi - n) \, v \, d\mu$.

$$\frac{d\mathcal{W}}{dt} = -2t \int_{\mathcal{M}} \left(|\nabla_i \nabla_j \varphi - \frac{1}{2t} g_{ij}|^2 + R_{ij} \varphi_i \varphi_j \right) \mathsf{v} \, d\mu.$$

In particular, if M has nonnegative Ricci curvature, W(v, t) is monotone decreasing along the heat equation.

▶ In particular W(t) is monotone non-increasing in t.

- ▶ In particular W(t) is monotone non-increasing in t.
- On the other hand,

$$\lim_{t\to\infty} v(\cdot,t)\to v_\infty\doteqdot \frac{1}{(2\pi)^{n/2}}\exp(-\frac{|x|^2}{2}).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- ▶ In particular W(t) is monotone non-increasing in t.
- On the other hand,

$$\lim_{t\to\infty} v(\cdot,t)\to v_{\infty}\doteqdot \frac{1}{(2\pi)^{n/2}}\exp(-\frac{|x|^2}{2}).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 | のへで

• One can check that $\mathcal{W}(v_{\infty}, 1) = 0$.

- ln particular W(t) is monotone non-increasing in t.
- On the other hand,

$$\lim_{t\to\infty} v(\cdot,t)\to v_\infty\doteq \frac{1}{(2\pi)^{n/2}}\exp(-\frac{|x|^2}{2}).$$

- One can check that $\mathcal{W}(v_{\infty},1)=0.$
- The above can be made rigorous into a proof. To make sense of the convergence, one has to do a time dependent scaling.

- ln particular W(t) is monotone non-increasing in t.
- On the other hand,

$$\lim_{t\to\infty} v(\cdot,t)\to v_\infty\doteq \frac{1}{(2\pi)^{n/2}}\exp(-\frac{|x|^2}{2}).$$

- One can check that $\mathcal{W}(v_{\infty}, 1) = 0$.
- The above can be made rigorous into a proof. To make sense of the convergence, one has to do a time dependent scaling.
- On the other hand, the proof can be not be made to work on general manifolds.

- In particular W(t) is monotone non-increasing in t.
- On the other hand,

$$\lim_{t\to\infty} v(\cdot,t)\to v_\infty\doteq \frac{1}{(2\pi)^{n/2}}\exp(-\frac{|x|^2}{2}).$$

- One can check that $\mathcal{W}(v_{\infty}, 1) = 0$.
- The above can be made rigorous into a proof. To make sense of the convergence, one has to do a time dependent scaling.
- On the other hand, the proof can be not be made to work on general manifolds.
- The result fails to hold on a nonflat complete Riemannian manifold with nonnegative Ricci curvature. (Due to Bakry-Concordet-Ledoux).

- ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ → □ ● − つへぐ

► A Riemannian manifold (M, g) together with a smooth function f is called a gradient shrinking soliton if

$$R_{ij}+f_{ij}-\frac{1}{2}g_{ij}=0.$$

► A Riemannian manifold (M, g) together with a smooth function f is called a gradient shrinking soliton if

$$R_{ij}+f_{ij}-\frac{1}{2}g_{ij}=0.$$

► Examples: 1) (Sⁿ, g_{can}) (after re-scaling) with f = constant is a gradient shrinking soliton.

► A Riemannian manifold (M, g) together with a smooth function f is called a gradient shrinking soliton if

$$R_{ij}+f_{ij}-\frac{1}{2}g_{ij}=0.$$

► Examples: 1) (Sⁿ, g_{can}) (after re-scaling) with f = constant is a gradient shrinking soliton.

> 2) Any Einstein metric.

► A Riemannian manifold (M, g) together with a smooth function f is called a gradient shrinking soliton if

$$R_{ij}+f_{ij}-\frac{1}{2}g_{ij}=0.$$

► Examples: 1) (Sⁿ, g_{can}) (after re-scaling) with f = constant is a gradient shrinking soliton.

- 2) Any Einstein metric.
- ▶ 3) (\mathbb{R}^n, g) with $f = \frac{1}{4} |x|^2$.

► A Riemannian manifold (M, g) together with a smooth function f is called a gradient shrinking soliton if

$$R_{ij}+f_{ij}-\frac{1}{2}g_{ij}=0.$$

- ► Examples: 1) (Sⁿ, g_{can}) (after re-scaling) with f = constant is a gradient shrinking soliton.
- 2) Any Einstein metric.
- 3) (\mathbb{R}^n, g) with $f = \frac{1}{4} |x|^2$.
- Non trivial examples are constructed by Koiso, Cao, Feldman-Ilamenen-Knopf, B. Yang, Dancer-Wang etc. Besides that it is a self-similar solution to Ricci flow, the gradient soliton arises in the singularity analysis of Ricci flow.

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □ ● ● ●

Associated to the metric g and the potential function f, there exists a family of metrics $g(\eta)$, a solution to Ricci flow $\frac{\partial}{\partial \eta}g(\eta) = -2 \operatorname{Ric}(g(\eta))$, with the property that g(0) = g, the original metric, and a family of diffeomorphisms $\phi(\eta)$, which is generated by the vector field $X = \frac{1}{\tau} \nabla f$, such that $\phi(0) = \operatorname{id}$ and $g(\eta) = \tau(\eta)\phi^*(\eta)g$ with $\tau(\eta) = 1 - \eta$, as well as $f(x, \eta) = \phi^*(\eta)f(x)$. Namely it gives a self-similar (shrinking) family of metrics which is a solution to the Ricci flow.

Associated to the metric g and the potential function f, there exists a family of metrics $g(\eta)$, a solution to Ricci flow $\frac{\partial}{\partial \eta}g(\eta) = -2 \operatorname{Ric}(g(\eta))$, with the property that g(0) = g, the original metric, and a family of diffeomorphisms $\phi(\eta)$, which is generated by the vector field $X = \frac{1}{\tau} \nabla f$, such that $\phi(0) = \operatorname{id}$ and $g(\eta) = \tau(\eta)\phi^*(\eta)g$ with $\tau(\eta) = 1 - \eta$, as well as $f(x, \eta) = \phi^*(\eta)f(x)$. Namely it gives a self-similar (shrinking) family of metrics which is a solution to the Ricci flow.

The metric g(η) satisfies

$$R_{ij}+f_{ij}-\frac{1}{2\tau}g_{ij}=0,$$

Associated to the metric g and the potential function f, there exists a family of metrics $g(\eta)$, a solution to Ricci flow $\frac{\partial}{\partial \eta}g(\eta) = -2 \operatorname{Ric}(g(\eta))$, with the property that g(0) = g, the original metric, and a family of diffeomorphisms $\phi(\eta)$, which is generated by the vector field $X = \frac{1}{\tau} \nabla f$, such that $\phi(0) = \operatorname{id}$ and $g(\eta) = \tau(\eta)\phi^*(\eta)g$ with $\tau(\eta) = 1 - \eta$, as well as $f(x, \eta) = \phi^*(\eta)f(x)$. Namely it gives a self-similar (shrinking) family of metrics which is a solution to the Ricci flow.

• The metric $g(\eta)$ satisfies

$$R_{ij}+f_{ij}-rac{1}{2 au}g_{ij}=0,$$

 $S+\Delta f-rac{n}{2 au}=0$

Associated to the metric g and the potential function f, there exists a family of metrics $g(\eta)$, a solution to Ricci flow $\frac{\partial}{\partial \eta}g(\eta) = -2 \operatorname{Ric}(g(\eta))$, with the property that g(0) = g, the original metric, and a family of diffeomorphisms $\phi(\eta)$, which is generated by the vector field $X = \frac{1}{\tau} \nabla f$, such that $\phi(0) = \operatorname{id}$ and $g(\eta) = \tau(\eta)\phi^*(\eta)g$ with $\tau(\eta) = 1 - \eta$, as well as $f(x, \eta) = \phi^*(\eta)f(x)$. Namely it gives a self-similar (shrinking) family of metrics which is a solution to the Ricci flow.

• The metric $g(\eta)$ satisfies

$$egin{aligned} R_{ij}+f_{ij}-rac{1}{2 au}g_{ij}&=0,\ S+\Delta f-rac{n}{2 au}&=0\ S+|
abla f|^2-rac{f}{ au}&=rac{\mu_s(au)}{ au}. \end{aligned}$$

and

▲ロ▶ ▲圖▶ ▲臣▶ ★臣▶ 臣 めへぐ

Lemma

Assume that the scalar curvature $S \ge -A$ for some A > 0. Let r(x) be the distance function to a fixed point $o \in M$ with respect to $g(\eta)$ metric. Then there exists $\delta_0 = \delta_0(M, f, \tau)$ and positive constants C_2 , C_3 depending on M, f, τ such that for any $\delta \le \delta_0$,

$$f(x) \ge \delta r^2(x) \tag{0.1}$$

for $r(x) \ge C_2$ and $f(x) \le C_3 r^2(x), \qquad |\nabla f|(x) \le C_3 (r(x) + 1) \qquad (0.2)$ for $r(x) \ge C_2.$

Lemma

Assume that the scalar curvature $S \ge -A$ for some A > 0. Let r(x) be the distance function to a fixed point $o \in M$ with respect to $g(\eta)$ metric. Then there exists $\delta_0 = \delta_0(M, f, \tau)$ and positive constants C_2 , C_3 depending on M, f, τ such that for any $\delta \le \delta_0$,

$$f(x) \ge \delta r^2(x) \tag{0.1}$$

for $r(x) \ge C_2$ and

 $f(x) \le C_3 r^2(x), \qquad |\nabla f|(x) \le C_3 (r(x) + 1)$ (0.2)

for $r(x) \geq C_2$.

 The case | Ric | is bounded is trivial. The case Ric ≥ 0 without the upper bound requires some effort. The more general case
 S ≥ -A was due to Fang-Man-Zhang.

Volume estimate

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへで

Let (M, g) be a nonflat gradient shrinking soliton with Ric ≥ 0 . Then $\mathcal{V}(M) = 0$, where $\mathcal{V}(M) := \lim_{r \to \infty} \frac{\mathcal{V}(o, r)}{r^n}$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Let (M, g) be a nonflat gradient shrinking soliton with Ric ≥ 0 . Then $\mathcal{V}(M) = 0$, where $\mathcal{V}(M) := \lim_{r \to \infty} \frac{V(o, r)}{r^n}$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

It implies the result of Perelman on ancient solutions.

Let (M, g) be a nonflat gradient shrinking soliton with Ric ≥ 0 . Then $\mathcal{V}(M) = 0$, where $\mathcal{V}(M) := \lim_{r \to \infty} \frac{V(o, r)}{r^n}$.

- It implies the result of Perelman on ancient solutions.
- The proof is 'elementary' in some sense. Precisely we have the following

Let (M, g) be a nonflat gradient shrinking soliton with Ric ≥ 0 . Then $\mathcal{V}(M) = 0$, where $\mathcal{V}(M) := \lim_{r \to \infty} \frac{V(o, r)}{r^n}$.

- It implies the result of Perelman on ancient solutions.
- The proof is 'elementary' in some sense. Precisely we have the following

Proposition

Let (M,g) be a nonflat gradient shrinking soliton with $\text{Ric} \ge 0$. Then there exists a positive $\delta = \delta(M, f)$ with the property that for any $o \in M$, there exists a = a(M, f, o) > 1 and $C = C(n, \delta)$ such that for any $R \ge R_0 \ge a$,

$$V(o, R+1) \leq V(o, R_0+1)e^{\frac{C(n,\delta)}{R_0}} \left(\frac{R-a}{R_0-a}\right)^{n-\delta}.$$
 (0.3)

Now note that $\mu_s(\tau)$ is independent of τ .

- Now note that $\mu_s(\tau)$ is independent of τ .
- If we normalize that $\int_M \frac{e^{-f}}{(4\pi)^{n/2}} = 1$, μ_s is uniquely determined.

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

- Now note that $\mu_s(\tau)$ is independent of τ .
- If we normalize that $\int_M \frac{e^{-f}}{(4\pi)^{n/2}} = 1$, μ_s is uniquely determined.

Theorem

Assume that (M, g, f) is a gradient shrinking soliton so that the scalar curvature $S \ge -A$ for some A > 0. Then there exists a geometric invariant (under the isometry) μ_s which depends only on the value of f and S at the minimum point of f under the normalization $\frac{1}{(4\pi\tau)^{n/2}} \int_M e^{-f} d\Gamma_{\tau} = 1$, and is independent of τ , such that for $\tau > 0$ and any compact supported smooth function $\rho = \frac{e^{-\psi}}{(4\pi\tau)^{n/2}}$ with $\int_M \rho \, d\Gamma_{\tau} = 1$, where $d\Gamma_{\tau}$ is the volume element of g^{τ} , we have that

$$\int_{\mathcal{M}} \left(\tau(|\nabla \psi|_{\tau}^2 + S(\cdot, \tau)) + \psi - n \right) \rho \, d\Gamma_{\tau} \geq -\mu_s.$$

Moreover, for this geometric constant μ_s the above inequality is sharp. In the case that $|R_{ijkl}|$ is bounded, $\mu_s \ge 0$.

▶ We study the heat equation:

$$rac{\partial
ho}{\partial t} - {
m div} \left(
ho
abla (\log
ho + f)
ight) = 0.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

We study the heat equation:

$$rac{\partial
ho}{\partial t} - {
m div} \left(
ho
abla (\log
ho + f)
ight) = 0.$$

It is easy to see that the equilibrium is

$$\log \rho_{\infty} + f = C.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 | のへで

We study the heat equation:

$$rac{\partial
ho}{\partial t} - {
m div} \left(
ho
abla (\log
ho + f)
ight) = 0.$$

It is easy to see that the equilibrium is

$$\log \rho_{\infty} + f = C.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 少へ⊙

▶ It is also easy to see that the total mass $\int_M \rho$ if preserved.

We study the heat equation:

$$rac{\partial
ho}{\partial t} - {
m div} \left(
ho
abla (\log
ho + f)
ight) = 0.$$

It is easy to see that the equilibrium is

$$\log \rho_{\infty} + f = C.$$

▶ It is also easy to see that the total mass $\int_M \rho$ if preserved.

• Let $v = \log \rho + f + \frac{n}{2} \log(4\pi\tau)$, called the pointwise relative entropy.

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへで

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへで

v satisfies the equation:

$$\left(\frac{\partial}{\partial t} - \Delta\right) \mathbf{v} = \langle \nabla \mathbf{v}, \nabla \log \rho \rangle.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

v satisfies the equation:

$$\left(\frac{\partial}{\partial t} - \Delta\right) \mathbf{v} = \langle \nabla \mathbf{v}, \nabla \log \rho \rangle.$$

Define the Nash entropy, (or Boltzmann relative entropy)

$$N_{
ho,f}(t) \doteqdot \int_M
ho v \, d\mu.$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ● ● ● ●

v satisfies the equation:

$$\left(\frac{\partial}{\partial t} - \Delta\right) \mathbf{v} = \langle \nabla \mathbf{v}, \nabla \log \rho \rangle.$$

Define the Nash entropy, (or Boltzmann relative entropy)

$$N_{
ho,f}(t) \doteqdot \int_M
ho v \, d\mu.$$

$$\frac{d}{dt}N_{\rho,f}(t) = \int_{M} v_{t}\rho + v\rho_{t} d\mu$$

$$= \int_{M} (\Delta v)\rho + \langle \nabla v, \nabla \rho \rangle + v \operatorname{div}(\rho \nabla v)$$

$$= -\int_{M} |\nabla v|^{2}\rho d\mu. \qquad (0.4)$$

► There is a Bochner type formula

$$\left(\frac{\partial}{\partial t} - \Delta\right) |\nabla v|^2 = -2v_{ij}^2 + 2\langle \nabla(\langle \nabla v, \nabla \log \rho \rangle), \nabla v \rangle - 2R_{ij}v_iv_j.$$
(0.5)

There is a Bochner type formula

$$\left(\frac{\partial}{\partial t} - \Delta\right) |\nabla v|^2 = -2v_{ij}^2 + 2\langle \nabla(\langle \nabla v, \nabla \log \rho \rangle), \nabla v \rangle - 2R_{ij}v_iv_j.$$
(0.5)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 | のへで

• More importantly, define $F_{\rho,f}(t) \doteq \int_{\mathcal{M}} |\nabla v|^2 \rho$.

There is a Bochner type formula

$$\left(\frac{\partial}{\partial t} - \Delta\right) |\nabla v|^2 = -2v_{ij}^2 + 2\langle \nabla(\langle \nabla v, \nabla \log \rho \rangle), \nabla v \rangle - 2R_{ij}v_iv_j.$$
(0.5)

• More importantly, define $F_{\rho,f}(t) \doteq \int_M |\nabla v|^2 \rho$.

$$\frac{d}{dt}F_{\rho,f}(t) = \int_{M} \left(-2v_{ij}^{2} - 2R_{ij}v_{i}v_{j}\right)\rho d\mu
+ \int_{M} \langle \nabla |\nabla v|^{2}, \nabla f \rangle \rho - 2 \langle \nabla \langle \nabla f, \nabla v \rangle, \nabla v \rangle \rho d\mu
= \int_{M} \left(-2v_{ij}^{2} - 2(R_{ij} + f_{ij})v_{i}v_{j}\right)\rho d\mu.$$
(0.6)

◆□▶ ◆□▶ ◆目▶ ◆目▶ ● ● ● ●

The dynamics

◆□ > ◆□ > ◆臣 > ◆臣 > 臣 - のへぐ

 Use the soliton equation (not essentially since one just needs an inequality here)

$$\frac{d}{dt}F_{\rho,f}(t) = -2\int_{M} v_{ij}^{2}\rho \,d\mu - \frac{1}{\tau}F_{\rho,f}(t). \tag{0.7}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 | のへで

 Use the soliton equation (not essentially since one just needs an inequality here)

$$\frac{d}{dt}F_{\rho,f}(t) = -2\int_{M} v_{ij}^{2}\rho \,d\mu - \frac{1}{\tau}F_{\rho,f}(t). \tag{0.7}$$

(日) (日) (日) (日) (日) (日) (日) (日)

• It then implies $F_{\rho,f}(t) \leq F_{\rho,f}(0)e^{-\frac{t}{\tau}}$.

 Use the soliton equation (not essentially since one just needs an inequality here)

$$\frac{d}{dt}F_{\rho,f}(t) = -2\int_{M} v_{ij}^{2}\rho \,d\mu - \frac{1}{\tau}F_{\rho,f}(t). \tag{0.7}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 | のへで

• It then implies
$$F_{
ho,f}(t) \leq F_{
ho,f}(0)e^{-rac{t}{ au}}$$

Also

$$rac{d}{dt}N_{
ho,f}(t)\geq aurac{d}{dt}F_{
ho,f}(t).$$

The proof

The proof

▶ Integrating on $[0,\infty)$, assuming that $\lim_{t\to\infty} N_{\rho,f} \to 0$ yields

$$-N_{\rho,f}(0)\geq -\tau F_{\rho,f}(0).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The proof

▶ Integrating on $[0,\infty)$, assuming that $\lim_{t\to\infty} N_{\rho,f} \to 0$ yields

$$-N_{\rho,f}(0)\geq -\tau F_{\rho,f}(0).$$

▶ Using the soliton equation and its consequences, in terms of the initial function $\rho(x, 0) = \frac{e^{-\psi(x)}}{(4\pi\tau)^{\frac{n}{2}}}$, the equivalent inequality

$$\int_{\mathcal{M}} \left(\tau(|\nabla \psi|^2 + S) + \psi - \mathbf{n} \right) \rho \, d\mu \ge -\mu_s. \tag{0.8}$$

▶ Integrating on $[0,\infty)$, assuming that $\lim_{t\to\infty} N_{\rho,f} \to 0$ yields

$$-N_{\rho,f}(0)\geq -\tau F_{\rho,f}(0).$$

▶ Using the soliton equation and its consequences, in terms of the initial function $\rho(x, 0) = \frac{e^{-\psi(x)}}{(4\pi\tau)^{\frac{n}{2}}}$, the equivalent inequality

$$\int_{\mathcal{M}} \left(\tau(|\nabla \psi|^2 + S) + \psi - \mathbf{n} \right) \rho \, d\mu \ge -\mu_s. \tag{0.8}$$

 The Fokker-Planck equation/dynamics was studied by many people including Arnold-Markowich-Toscani-Unterreiter, Carrillo-Toscani, Del Pino-Dolbeault, Otto-Villani, Sturm etc.

Recall Perelman's entropy functional

$$\mathcal{W}(g^{\tau}, u, \tau) \doteqdot \int_{\mathcal{M}} \left(\tau(|\nabla \psi|^2 + S) + \psi - n \right) u \, d\Gamma_{\tau}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 | のへで

is defined for $u = rac{e^{-\psi}}{(4\pi\tau)^{n/2}}$ with $\int_{\mathcal{M}} u \, d\Gamma_{\tau} = 1$.

Recall Perelman's entropy functional

$$\mathcal{W}(\boldsymbol{g}^{\tau},\boldsymbol{u},\tau)\doteqdot\int_{M}\left(au(|\nabla\psi|^{2}+\boldsymbol{S})+\psi-\boldsymbol{n}
ight)\boldsymbol{u}\,d\Gamma_{ au}$$

is defined for $u = \frac{e^{-\psi}}{(4\pi\tau)^{n/2}}$ with $\int_{\mathcal{M}} u \, d\Gamma_{\tau} = 1$.

► Theorem implies that for (M, g^τ), W(g^τ, u, τ) ≥ −μ_s. Namely Perelman's μ-invariant

$$\mu(g^{\tau}, \tau) \doteqdot \inf_{\int_{M} u = 1} \mathcal{W}(g^{\tau}, u, \tau)$$

is bounded from below by $-\mu_s$.

Recall Perelman's entropy functional

$$\mathcal{W}(\boldsymbol{g}^{ au},\boldsymbol{u}, au) \doteqdot \int_{\boldsymbol{M}} \left(au(|
abla\psi|^2+\boldsymbol{S}) + \psi - \boldsymbol{n}
ight) \boldsymbol{u} \, d\Gamma_{ au}$$

is defined for $u = \frac{e^{-\psi}}{(4\pi\tau)^{n/2}}$ with $\int_M u \, d\Gamma_\tau = 1$.

► Theorem implies that for (M, g^τ), W(g^τ, u, τ) ≥ −μ_s. Namely Perelman's μ-invariant

$$\mu(g^{ au}, au) \doteq \inf_{\int_M u=1} \mathcal{W}(g^{ au},u, au)$$

is bounded from below by $-\mu_s$.

 From soliton equation and its consequence it is easy to see that

$$\tau(2\Delta f - |\nabla f|^2 + S) + f - n = -\mu_s.$$

Hence $u = \frac{e^{-f}}{(4\pi\tau)^{n/2}}$ is the minimizer for Perelman's $\mu(g,\tau)$

c-theorem

c-theorem

► Corollary

Let (M, g, f) be a gradient shrinking soliton with $S \ge -A$. Then

$$\mu(g,1)=-\mu_s.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへで

Corollary

Let (M, g, f) be a gradient shrinking soliton with $S \ge -A$. Then

$$\mu(g,1)=-\mu_s.$$

In RG-flow, there is a result asserting (with some conditions) that there exists a invariant c(t) which is non-increasing along the flow and non-negative.

Corollary

Let (M, g, f) be a gradient shrinking soliton with $S \ge -A$. Then

$$\mu(g,1)=-\mu_s.$$

- In RG-flow, there is a result asserting (with some conditions) that there exists a invariant c(t) which is non-increasing along the flow and non-negative.
- Motivated by this we show the following result we have the following result.

Theorem

Let (M, g) be a gradient shrinking soliton with bounded curvature. Let f be the normalized potential function as above. Then $\mu_s \ge 0$.

► Two key components:

wi

- Two key components:
- The first is the Li-Yau-Hamilton type estimate for the fundamental solution to the conjugate heat equation of Perelman.
- Let H(y, t; x, t₀) (with t < t₀ < 0) be the (minimal) positive fundamental solution to the conjugate heat equation:

$$\left(-\frac{\partial}{\partial t}-\Delta_y+S(y,t)\right)H(y,t;x,t_0)=0$$

being the $\delta_x(y)$ at $t = t_0$. By a result of Perelman, see also Chau-Tam-Yu and a paper by myself (CAG, 2006), we know that

$$\begin{aligned} \mathsf{v}_{\mathsf{H}}(y,t) &\doteq (t_0 - t) \left(2\Delta \varphi - |\nabla \varphi|^2 + S \right) + \varphi - n \leq 0 \\ \text{th } \mathsf{H}(y,t;x,t_0) &= \frac{e^{-\varphi(y,t)}}{\left(4\pi(t_0 - t)\right)^{\frac{n}{2}}}. \end{aligned}$$

wi

- Two key components:
- The first is the Li-Yau-Hamilton type estimate for the fundamental solution to the conjugate heat equation of Perelman.
- Let H(y, t; x, t₀) (with t < t₀ < 0) be the (minimal) positive fundamental solution to the conjugate heat equation:

$$\left(-\frac{\partial}{\partial t}-\Delta_y+S(y,t)\right)H(y,t;x,t_0)=0$$

being the $\delta_x(y)$ at $t = t_0$. By a result of Perelman, see also Chau-Tam-Yu and a paper by myself (CAG, 2006), we know that

$$\begin{aligned} \mathsf{v}_{\mathsf{H}}(y,t) &\doteq (t_0 - t) \left(2\Delta \varphi - |\nabla \varphi|^2 + S \right) + \varphi - n \leq 0 \\ \text{th } \mathsf{H}(y,t;x,t_0) &= \frac{e^{-\varphi(y,t)}}{\left(4\pi(t_0 - t)\right)^{\frac{n}{2}}}. \end{aligned}$$

The uniform estimate of $\mu\text{-invariant}$ on smaller scales

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 - のへぐ

• The uniform estimate of $\mu(g, \sigma)$ for $0 < \sigma < 1$.

Proposition

Assume that on a complete Riemannian manifold (M, g), $\mu(g, 1) > \infty$ and Ric $\geq -A$ and $S \leq B$ for some positive numbers A and B. Then for any $0 < \sigma < 1$,

$$\mu(g,\sigma) \ge \mu(g,1) - nA - B - \left(\frac{A^2n}{2} + An\right)(1-\sigma).$$
(0.9)

• The uniform estimate of $\mu(g, \sigma)$ for $0 < \sigma < 1$.

Proposition

Assume that on a complete Riemannian manifold (M, g), $\mu(g, 1) > \infty$ and Ric $\geq -A$ and $S \leq B$ for some positive numbers A and B. Then for any $0 < \sigma < 1$,

$$\mu(g,\sigma) \ge \mu(g,1) - nA - B - \left(\frac{A^2n}{2} + An\right)(1-\sigma).$$
(0.9)

► Let $u_0(x) = \frac{e^{-\tilde{\psi}}}{(4\pi\sigma)^{n/2}}$ be a smooth function with compact support such that $\int_M u_0 = 1$. Similarly let $u(x, t) = \frac{e^{-\varphi}}{(4\pi\tau)^{n/2}}$ be the solution to the heat equation with $u(x, 0) = u_0(x)$. Here $\tau(t) = \sigma + t$. We shall use the entropy formula for the linear heat equation.

► Let $u_0(x) = \frac{e^{-\tilde{\psi}}}{(4\pi\sigma)^{n/2}}$ be a smooth function with compact support such that $\int_M u_0 = 1$. Similarly let $u(x, t) = \frac{e^{-\varphi}}{(4\pi\tau)^{n/2}}$ be the solution to the heat equation with $u(x, 0) = u_0(x)$. Here $\tau(t) = \sigma + t$. We shall use the entropy formula for the linear heat equation.

$$\mathcal{W}_0(t) \doteqdot \int_M \left(\tau |\nabla \varphi|^2 + \varphi - n \right) u$$

► Let $u_0(x) = \frac{e^{-\tilde{\psi}}}{(4\pi\sigma)^{n/2}}$ be a smooth function with compact support such that $\int_M u_0 = 1$. Similarly let $u(x, t) = \frac{e^{-\varphi}}{(4\pi\tau)^{n/2}}$ be the solution to the heat equation with $u(x, 0) = u_0(x)$. Here $\tau(t) = \sigma + t$. We shall use the entropy formula for the linear heat equation.

$$\mathcal{W}_0(t) \doteqdot \int_M \left(\tau |\nabla \varphi|^2 + \varphi - n \right) u$$

• Let $F(t) = \int_M |\nabla \varphi|^2 u$.

The estimate

The estimate

 $\begin{aligned} \frac{d}{dt}\mathcal{W}_{0}(t) &\leq -2\tau\int_{M}\left|\nabla_{i}\nabla_{j}\varphi - \frac{1}{2\tau}g_{ij}\right|^{2}u + 2\tau AF(t) \\ &\leq -\frac{2\tau}{n}\int_{M}\left(\Delta\varphi - \frac{n}{2\tau}\right)^{2}u + 2\tau AF(t) \\ &\leq -\frac{2\tau}{n}\left(\int_{M}(\Delta\varphi - \frac{n}{2\tau})u\right)^{2} + 2\tau AF(t) \\ &= -\frac{2\tau}{n}\left(F(t) - \frac{n}{2\tau}\right)^{2} + 2\tau AF(t). \end{aligned}$

The estimate

 $egin{aligned} &rac{d}{dt}\mathcal{W}_0(t) &\leq -2 au \int_M \left|
abla_i
abla_j arphi - rac{1}{2 au} g_{ij}
ight|^2 u + 2 au AF(t) \ &\leq -rac{2 au}{n} \int_M \left(\Delta arphi - rac{n}{2 au}
ight)^2 u + 2 au AF(t) \ &\leq -rac{2 au}{n} \left(\int_M (\Delta arphi - rac{n}{2 au}) u
ight)^2 + 2 au AF(t) \ &= -rac{2 au}{n} \left(F(t) - rac{n}{2 au}
ight)^2 + 2 au AF(t). \end{aligned}$

 $\frac{d}{dt}\mathcal{W}_0(t) \leq \frac{A^2n}{2} + nA$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

for $\tau \leq 1$.

A rigidity result

For expanding solitons with Ric ≥ 0 we proved similar sharp LSI and that µ_e ≥ 0. Moreover we shows that µ_e = 0 if and only if the soliton is the Euclidean space.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- ▶ For expanding solitons with Ric ≥ 0 we proved similar sharp LSI and that $\mu_e \geq 0$. Moreover we shows that $\mu_e = 0$ if and only if the soliton is the Euclidean space.
- We conjectured (in the paper with Carrillo) that the same holds for the shrinking solitons.

- ▶ For expanding solitons with Ric ≥ 0 we proved similar sharp LSI and that $\mu_e \geq 0$. Moreover we shows that $\mu_e = 0$ if and only if the soliton is the Euclidean space.
- We conjectured (in the paper with Carrillo) that the same holds for the shrinking solitons.
- ▶ Namely $\mu_s = 0$ implies that (M, f, g) is the Guassian soliton

- For expanding solitons with Ric ≥ 0 we proved similar sharp LSI and that µ_e ≥ 0. Moreover we shows that µ_e = 0 if and only if the soliton is the Euclidean space.
- We conjectured (in the paper with Carrillo) that the same holds for the shrinking solitons.
- ▶ Namely $\mu_s = 0$ implies that (M, f, g) is the Guassian soliton
- It has been confirmed by Yokota recently. The key is a connection between LSI inequality/entropy and the reduced volume of Perelman.

- ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ → □ ● − つへぐ

 Motivated by the space-time consideration and approximation via infinite dimension (originated by Ben Chow and Chu) Perelman defined the reduced distance

$$\ell_{x_0}(x,\bar{\tau}) := \inf_{\gamma} \frac{1}{2\sqrt{\tau}} \int_0^{\bar{\tau}} \sqrt{\tau} \left(|\gamma'(\tau)|^2 + R \right) d\tau \qquad (0.10)$$

for all $\gamma(\tau)$ with $\gamma(0) = x_0, \ \gamma(\overline{\tau}) = x$.

 Motivated by the space-time consideration and approximation via infinite dimension (originated by Ben Chow and Chu) Perelman defined the reduced distance

$$\ell_{x_0}(x,\bar{\tau}) := \inf_{\gamma} \frac{1}{2\sqrt{\tau}} \int_0^{\bar{\tau}} \sqrt{\tau} \left(|\gamma'(\tau)|^2 + R \right) d\tau \qquad (0.10)$$

for all $\gamma(\tau)$ with $\gamma(0) = x_0, \ \gamma(\overline{\tau}) = x$.

Note that here τ = T₀ − t for some T₀ < T, the maximum existence time of the solution to Ricci flow.</p>

 Motivated by the space-time consideration and approximation via infinite dimension (originated by Ben Chow and Chu) Perelman defined the reduced distance

$$\ell_{x_0}(x,\bar{\tau}) := \inf_{\gamma} \frac{1}{2\sqrt{\tau}} \int_0^{\bar{\tau}} \sqrt{\tau} \left(|\gamma'(\tau)|^2 + R \right) d\tau \qquad (0.10)$$

for all $\gamma(\tau)$ with $\gamma(0) = x_0, \ \gamma(\overline{\tau}) = x$.

- Note that here τ = T₀ − t for some T₀ < T, the maximum existence time of the solution to Ricci flow.</p>
- And the reduced volume:

$$\tilde{V}_{x_0,\tau_0}(\tau) := \int_M \frac{1}{(4\pi\tau)^{\frac{n}{2}}} \exp\left(-\ell(x,\tau)\right) \, d\mu(\tau) \qquad (0.11)$$

 Motivated by the space-time consideration and approximation via infinite dimension (originated by Ben Chow and Chu) Perelman defined the reduced distance

$$\ell_{x_0}(x,\bar{\tau}) := \inf_{\gamma} \frac{1}{2\sqrt{\tau}} \int_0^{\bar{\tau}} \sqrt{\tau} \left(|\gamma'(\tau)|^2 + R \right) d\tau \qquad (0.10)$$

for all $\gamma(\tau)$ with $\gamma(0) = x_0, \ \gamma(\overline{\tau}) = x$.

- Note that here τ = T₀ − t for some T₀ < T, the maximum existence time of the solution to Ricci flow.</p>
- And the reduced volume:

$$\tilde{V}_{x_0, \tau_0}(\tau) := \int_M \frac{1}{(4\pi\tau)^{\frac{n}{2}}} \exp\left(-\ell(x, \tau)\right) \, d\mu(\tau) \qquad (0.11)$$

• Most importantly $\tilde{V}_{x_0, T_0}(\tau)$ is monotone nonincreasing in τ .

Define the asymptotic reduced volume by

$$\mathcal{V}_{\mathcal{T}_0} := \lim_{\tau \to \infty} \tilde{V}_{x_0, \mathcal{T}_0}(\tau).$$

Define the asymptotic reduced volume by

$${\mathcal V}_{{\mathcal T}_0}:=\lim_{ au
ightarrow\infty} ilde{V}_{{\mathsf x}_0,{\mathcal T}_0}(au).$$

First it is independent of the choice of the base point x₀.
 Moreover, for a gradient shrinking soliton

$$\mathcal{V}_0 = \int_M \frac{1}{(4\pi)^{n/2}} \exp(-f - \mu_s) \, d\mu.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Define the asymptotic reduced volume by

$${\mathcal V}_{{\mathcal T}_0}:=\lim_{ au
ightarrow\infty} ilde{V}_{{\mathsf x}_0,{\mathcal T}_0}(au).$$

First it is independent of the choice of the base point x₀. Moreover, for a gradient shrinking soliton

$$\mathcal{V}_0 = \int_{\mathcal{M}} rac{1}{(4\pi)^{n/2}} \exp(-f - \mu_s) \, d\mu.$$

A gap theorem: there exists a e(n) such that if 𝒱_{𝒯0} ≥ 1 − e(n), M is Euclidean space.

Define the asymptotic reduced volume by

$${\mathcal V}_{{\mathcal T}_0}:=\lim_{ au
ightarrow\infty} ilde{V}_{{\mathsf x}_0,{\mathcal T}_0}(au).$$

First it is independent of the choice of the base point x₀. Moreover, for a gradient shrinking soliton

$$\mathcal{V}_0 = \int_{\mathcal{M}} rac{1}{(4\pi)^{n/2}} \exp(-f - \mu_s) \, d\mu.$$

- A gap theorem: there exists a ε(n) such that if V_{T₀} ≥ 1 − ε(n), M is Euclidean space.
- The gap theorem corresponds to a local regularity theorem I proved before (Asian Journal, 2007), after the derivation of the local monotonicity formulae joint with Ecker, Knopf and Topping (Crelle 2008).