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» Theorem
For any o > 0 and any function u > 0 with u'/?> ¢ W12(R"),
write u = ﬁ with [,,u =1, then

/ (o|VFP+f—n)udx>0

» Has long history. Goes back to Stam (1950), Gross (1975).
» By scaling, it is enough to show for some o, say = 1.

» There exists a proof via the heat equation and the entropy
formula.
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» On M consider positive solution v to the heat equation

ov
E—AV—O

Write v = 2.
(4rt)2

» For v with [,, vdu =1, define

W(v,t) = / (t|Vel* + ¢ —n) vdpu.
M

» Theorem
(N, 2004, JGA) Then

dw 1 5
e = —21.‘/M <|V,‘ng0 — Eg,ﬂ + R,-J-go,-goj) vdu.

In particular, if M has nonnegative Ricci curvature, W(v, t) is
monotone decreasing along the heat equation.
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» In particular W(t) is monotone non-increasing in t.

» On the other hand,

| ! X2
dim, V(s £) = veo = (5o (=)

» One can check that W(ve, 1) = 0.

» The above can be made rigorous into a proof. To make sense
of the convergence, one has to do a time dependent scaling.

» On the other hand, the proof can be not be made to work on
general manifolds.

» The result fails to hold on a nonflat complete Riemannian
manifold with nonnegative Ricci curvature. (Due to
Bakry-Concordet-Ledoux).
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Gradient shrinking solitons

v

A Riemannian manifold (M, g) together with a smooth
function f is called a gradient shrinking soliton if

1
Rj+fj — 585 =0.

v

Examples: 1) (S, gcan) (after re-scaling) with f = constant is
a gradient shrinking soliton.

v

2) Any Einstein metric.

v

3) (R", g) with f = [x|2.

v

Non trivial examples are constructed by Koiso, Cao,
Feldman-llamenen-Knopf, B. Yang, Dancer-Wang etc.
Besides that it is a self-similar solution to Ricci flow, the
gradient soliton arises in the singularity analysis of Ricci flow.
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generated by the vector field X = %Vf, such that ¢(0) = id
and g(n) = 7(n)¢*(n)g with 7(n) =1 —n, as well as
f(x,n) = ¢*(n)f(x). Namely it gives a self-similar (shrinking)
family of metrics which is a solution to the Ricci flow.

» The metric g(n) satisfies

1
Rj+fj— 5 85 =0,

2 —0
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and

o
Stivip- L=t (7).

T
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» Lemma
Assume that the scalar curvature S > —A for some A > 0. Let
r(x) be the distance function to a fixed point o € M with respect
to g(n) metric. Then there exists 5o = 0o(M, f,T) and positive
constants C,, C3 depending on M, f, 1 such that for any § < dg,

f(x) > dr*(x) (0.1)
for r(x) > G, and
f(x) < Gr(x), IVFl(x) < G(r(x)+1) (0.2)

for r(x) > G,.

» The case |Ric| is bounded is trivial. The case Ric > 0 without
the upper bound requires some effort. The more general case
S > —A was due to Fang-Man-Zhang.
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» Proposition
Let (M, g) be a nonflat gradient shrinking soliton with Ric > 0.
Then V(M) = 0, where V(M) := lim,_oc Y%7

rl‘l
» It implies the result of Perelman on ancient solutions.

» The proof is ‘elementary’ in some sense. Precisely we have the
following

Proposition

Let (M, g) be a nonflat gradient shrinking soliton with Ric > 0.
Then there exists a positive 6 = (M, f) with the property that for
any o € M, there exists a= a(M,f,0) > 1 and C = C(n,?) such
that for any R > Ry > a,

cnd) /R — a3 n—4
V(io,R+1)< V(o,Ry+1)e %o (R a) . (0.3)
0 —
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» Now note that ps(7) is independent of 7.
> If we normalize that [}, ﬁ =1, us is uniquely determined.

Theorem

Assume that (M, g, f) is a gradient shrinking soliton so that the
scalar curvature S > —A for some A > 0. Then there exists a
geometric invariant (under the isometry) jis which depends only on
the value of f and S at the minimum point of f under the
normalization G n/2 fwe Tdr. =1, and is independent of T,
such that for T > 0 and any compact supported smooth function
p= ﬁ with [\, pdT, = 1, where dT', is the volume element
of g7, we have that

| GUVOR+ SCr) +0 =)l =

Moreover, for this geometric constant us the above inequality is
sharp. In the case that |Rjj| is bounded, s > 0.
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The Fokker-Planck equation

» We study the heat equation:

0
a—i —div(pV(logp+f)) =0.

» It is easy to see that the equilibrium is

» It is also easy to see that the total mass fMp if preserved.

> Let v =logp+ f + 5 log(4nT), called the pointwise relative
entropy.
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> v satisfies the equation:
2—A v ={(Vv,Vlogp)
» Define the Nash entropy, (or Boltzmann relative entropy)

Np,f(t)#/Mde:u'

—N,¢(t) = /vp—i—vp du

dt pf() y t t

— [ B+ (90,9 + V(T )
M

= —/M|Vv|2pdu. (0.4)
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A Bochner formula

» There is a Bochner type formula

d
<8t - A) |Vv|? = —2v,-J2-+2<V(<Vv,V log p)), Vv)—2Rjv;v;.
(0.5)
> More importantly, define F, ¢(t) = [,,[Vv[?p.
>

d
an’f(t) = /M (—2VU2- — QRUV,'VJ') pd,u

+/ (V|VV[,VF)p —2(V(VF,Vv),Vv)pdu
M

- /M (=2vj = 2(Ry + fj)vivy) p . (0.6)
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The dynamics

» Use the soliton equation (not essentially since one just needs
an inequality here)

d, 1
O For(t) = _2/M Gpdu—Fit).  (07)

> It then implies F, ¢(t) < F,¢(0)e™~.

» Also 4 4
aNp’f(t) Z Tanf(t).
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The proof

> Integrating on [0, c0), assuming that lim;_.. N, s — 0 yields

» Using the soliton equation and its consequences, in terms of
JR—E

(47r7')g

the initial function p(x,0) = , the equivalent inequality

/M(T(\W|2+5)+w—n)pduz—NS. (0.8)

» The Fokker-Planck equation/dynamics was studied by many
people including Arnold-Markowich-Toscani-Unterreiter,
Carrillo-Toscani, Del Pino-Dolbeault, Otto-Villani, Sturm etc.
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» Recall Perelman’s entropy functional

W(g", u,7) = /M (T(IV[> +S) + ¢ —n)udl,

is defined for u = z&0 with [, udl; = 1.

» Theorem implies that for (M, g"), W(g",u,7) > —pus.
Namely Perelman’s p-invariant

p(g".T) = fim‘ IW(gT, u,T)

Jm U=
is bounded from below by —pus.
» From soliton equation and its consequence it is easy to see

that
T(2AF — |[VF2+S)+f —n= —ps.

—f . e . ’
-7z is the minimizer for Perelman’s 1(g, 7)

_ e
Hence u = )72
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» Corollary
Let (M, g, f) be a gradient shrinking soliton with S > —A. Then

n(g,1) = —ps.

» In RG-flow, there is a result asserting (with some conditions)
that there exists a invariant c(t) which is non-increasing along
the flow and non-negative.

» Motivated by this we show the following result we have the
following result.

Theorem
Let (M, g) be a gradient shrinking soliton with bounded curvature.

Let f be the normalized potential function as above. Then ps > 0.
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» The first is the Li-Yau-Hamilton type estimate for the
fundamental solution to the conjugate heat equation of
Perelman.
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The use of the linear entropy formula

> First uo(g,1) > n(g, 1) — B. Here g is the inf of W.

L e S
> Let up(x) = no)7? be a smooth function with compact
support such that [y, up = 1. Similarly let u(x, t) = ﬁ

be the solution to the heat equation with u(x,0) = up(x).
Here 7(t) = o + t. We shall use the entropy formula for the
linear heat equation.

Wo(t) = /M (rIVel* + ¢ —n)u

> Let F(t) = [, IVelu.
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d
—Wo(t) < —27'/ ‘V,ngp —gij| u+27AF(t)
dt M T
2T 2
< L _
< = M( o ) u+ 27AF(t)

IA
|

for 7 < 1.
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A rigidity result

» For expanding solitons with Ric > 0 we proved similar sharp
LSI and that pe > 0. Moreover we shows that p. = 0 if and
only if the soliton is the Euclidean space.

» We conjectured (in the paper with Carrillo) that the same
holds for the shrinking solitons.

» Namely ps = 0 implies that (M, f, g) is the Guassian soliton

» It has been confirmed by Yokota recently. The key is a
connection between LS| inequality/entropy and the reduced
volume of Perelman.
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The reduced distance and volume

» Motivated by the space-time consideration and approximation
via infinite dimension (originated by Ben Chow and Chu)
Perelman defined the reduced distance

U (X, T) 1= ir;f 2\1ﬁ /OT VT (|’Y/(T)|2 + R) dr (0.10)
for all v(7) with v(0) = xp, ¥(7) = x.
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» Motivated by the space-time consideration and approximation
via infinite dimension (originated by Ben Chow and Chu)
Perelman defined the reduced distance
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for all v(7) with v(0) = xp, ¥(7) = x.

» Note that here 7 = Ty — t for some Ty < T, the maximum
existence time of the solution to Ricci flow.

» And the reduced volume:

~ 1
Vi, 7o(7) = /Mwm_)gexp(—ﬁ(xm)) du(T) (0.11)

» Most importantly Vi, 7,(7) is monotone nonincreasing in 7.
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Two lemmas

» Define the asymptotic reduced volume by

V71, = lim Vg 7.(7).

T—00

» First it is independent of the choice of the base point xp.
Moreover, for a gradient shrinking soliton

1
= [ ——— —f — us) dp.
Yo /I\/I (4m)"/2 Pl ts) dp

> A gap theorem: there exists a ¢(n) such that if
V1, > 1 —¢€(n), M is Euclidean space.

» The gap theorem corresponds to a local regularity theorem |
proved before (Asian Journal, 2007), after the derivation of
the local monotonicity formulae joint with Ecker, Knopf and
Topping (Crelle 2008).



