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Logarithmic Sobolev inequality on Rn

! Joint with Jose Antonio Carrillo.

! Focus on the shrinking case. All results have corresponding
version for expanding solitons.

! Theorem
For any σ > 0 and any function u ≥ 0 with u1/2 ∈ W 1,2(Rn),

write u = e−f

(4πσ)n/2 with
∫
M u = 1, then

∫

Rn

(
σ|∇f |2 + f − n

)
u dx ≥ 0

! Has long history. Goes back to Stam (1950), Gross (1975).

! By scaling, it is enough to show for some σ, say = 1.

! There exists a proof via the heat equation and the entropy
formula.
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Heat equation proof

! On M consider positive solution v to the heat equation

∂v

∂t
−∆v = 0.

Write v = e−ϕ

(4πt)
n
2
.

! For v with
∫
M v dµ = 1, define

W(v , t) :=

∫

M

(
t|∇ϕ|2 + ϕ− n

)
v dµ.

! Theorem
(N, 2004, JGA) Then

dW
dt

= −2t

∫

M

(
|∇i∇jϕ−

1

2t
gij |2 + Rijϕiϕj

)
v dµ.

In particular, if M has nonnegative Ricci curvature, W(v , t) is
monotone decreasing along the heat equation.



Heat equation proof

! On M consider positive solution v to the heat equation

∂v

∂t
−∆v = 0.

Write v = e−ϕ

(4πt)
n
2
.

! For v with
∫
M v dµ = 1, define

W(v , t) :=

∫

M

(
t|∇ϕ|2 + ϕ− n

)
v dµ.

! Theorem
(N, 2004, JGA) Then

dW
dt

= −2t

∫

M

(
|∇i∇jϕ−

1

2t
gij |2 + Rijϕiϕj

)
v dµ.

In particular, if M has nonnegative Ricci curvature, W(v , t) is
monotone decreasing along the heat equation.



Heat equation proof

! On M consider positive solution v to the heat equation

∂v

∂t
−∆v = 0.

Write v = e−ϕ

(4πt)
n
2
.

! For v with
∫
M v dµ = 1, define

W(v , t) :=

∫

M

(
t|∇ϕ|2 + ϕ− n

)
v dµ.

! Theorem
(N, 2004, JGA) Then

dW
dt

= −2t

∫

M

(
|∇i∇jϕ−

1

2t
gij |2 + Rijϕiϕj

)
v dµ.

In particular, if M has nonnegative Ricci curvature, W(v , t) is
monotone decreasing along the heat equation.



Heat equation proof

! On M consider positive solution v to the heat equation

∂v

∂t
−∆v = 0.

Write v = e−ϕ

(4πt)
n
2
.

! For v with
∫
M v dµ = 1, define

W(v , t) :=

∫

M

(
t|∇ϕ|2 + ϕ− n

)
v dµ.

! Theorem
(N, 2004, JGA) Then

dW
dt

= −2t

∫

M

(
|∇i∇jϕ−

1

2t
gij |2 + Rijϕiϕj

)
v dµ.

In particular, if M has nonnegative Ricci curvature, W(v , t) is
monotone decreasing along the heat equation.



Heat equation proof

! On M consider positive solution v to the heat equation

∂v

∂t
−∆v = 0.

Write v = e−ϕ

(4πt)
n
2
.

! For v with
∫
M v dµ = 1, define

W(v , t) :=

∫

M

(
t|∇ϕ|2 + ϕ− n

)
v dµ.

! Theorem
(N, 2004, JGA) Then

dW
dt

= −2t

∫

M

(
|∇i∇jϕ−

1

2t
gij |2 + Rijϕiϕj

)
v dµ.

In particular, if M has nonnegative Ricci curvature, W(v , t) is
monotone decreasing along the heat equation.



Heat equation proof

! On M consider positive solution v to the heat equation

∂v

∂t
−∆v = 0.

Write v = e−ϕ

(4πt)
n
2
.

! For v with
∫
M v dµ = 1, define

W(v , t) :=

∫

M

(
t|∇ϕ|2 + ϕ− n

)
v dµ.

! Theorem
(N, 2004, JGA) Then

dW
dt

= −2t

∫

M

(
|∇i∇jϕ−

1

2t
gij |2 + Rijϕiϕj

)
v dµ.

In particular, if M has nonnegative Ricci curvature, W(v , t) is
monotone decreasing along the heat equation.



Continued

! In particular W(t) is monotone non-increasing in t.

! On the other hand,

lim
t→∞

v(·, t) → v∞ ! 1

(2π)n/2
exp(− |x |2

2
).

! One can check that W(v∞, 1) = 0.

! The above can be made rigorous into a proof. To make sense
of the convergence, one has to do a time dependent scaling.

! On the other hand, the proof can be not be made to work on
general manifolds.

! The result fails to hold on a nonflat complete Riemannian
manifold with nonnegative Ricci curvature. (Due to
Bakry-Concordet-Ledoux).
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Gradient shrinking solitons

! A Riemannian manifold (M, g) together with a smooth
function f is called a gradient shrinking soliton if

Rij + fij −
1

2
gij = 0.

! Examples: 1) (Sn, gcan) (after re-scaling) with f = constant is
a gradient shrinking soliton.

! 2) Any Einstein metric.

! 3) (Rn, g) with f = 1
4 |x |

2.

! Non trivial examples are constructed by Koiso, Cao,
Feldman-Ilamenen-Knopf, B. Yang, Dancer-Wang etc.
Besides that it is a self-similar solution to Ricci flow, the
gradient soliton arises in the singularity analysis of Ricci flow.
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Basic facts and identities

! Associated to the metric g and the potential function f , there
exists a family of metrics g(η), a solution to Ricci flow
∂
∂ηg(η) = −2 Ric(g(η)), with the property that g(0) = g , the
original metric, and a family of diffeomorphisms φ(η), which is
generated by the vector field X = 1

τ∇f , such that φ(0) = id
and g(η) = τ(η)φ∗(η)g with τ(η) = 1− η, as well as
f (x , η) = φ∗(η)f (x). Namely it gives a self-similar (shrinking)
family of metrics which is a solution to the Ricci flow.

! The metric g(η) satisfies

Rij + fij −
1

2τ
gij = 0,

S + ∆f − n

2τ
= 0

and

S + |∇f |2 − f

τ
=

µs(τ)

τ
.
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Estimates on f and volume

! Lemma
Assume that the scalar curvature S ≥ −A for some A > 0. Let
r(x) be the distance function to a fixed point o ∈ M with respect
to g(η) metric. Then there exists δ0 = δ0(M, f , τ) and positive
constants C2,C3 depending on M, f , τ such that for any δ ≤ δ0,

f (x) ≥ δr2(x) (0.1)

for r(x) ≥ C2 and

f (x) ≤ C3r
2(x), |∇f |(x) ≤ C3(r(x) + 1) (0.2)

for r(x) ≥ C2.

! The case |Ric | is bounded is trivial. The case Ric ≥ 0 without
the upper bound requires some effort. The more general case
S ≥ −A was due to Fang-Man-Zhang.
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Volume estimate

! Proposition
Let (M, g) be a nonflat gradient shrinking soliton with Ric ≥ 0.

Then V(M) = 0, where V(M) := limr→∞
V (o,r)

rn .

! It implies the result of Perelman on ancient solutions.
! The proof is ‘elementary’ in some sense. Precisely we have the

following

Proposition
Let (M, g) be a nonflat gradient shrinking soliton with Ric ≥ 0.
Then there exists a positive δ = δ(M, f ) with the property that for
any o ∈ M, there exists a = a(M, f , o) > 1 and C = C (n, δ) such
that for any R ≥ R0 ≥ a,

V (o,R + 1) ≤ V (o,R0 + 1)e
C(n,δ)

R0

(
R − a

R0 − a

)n−δ

. (0.3)
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The LSI on solitons

! Now note that µs(τ) is independent of τ .
! If we normalize that

∫
M

e−f

(4π)n/2 = 1, µs is uniquely determined.

Theorem
Assume that (M, g , f ) is a gradient shrinking soliton so that the
scalar curvature S ≥ −A for some A > 0. Then there exists a
geometric invariant (under the isometry) µs which depends only on
the value of f and S at the minimum point of f under the
normalization 1

(4πτ)n/2

∫
M e−f dΓτ = 1, and is independent of τ ,

such that for τ > 0 and any compact supported smooth function
ρ = e−ψ

(4πτ)n/2 with
∫
M ρ dΓτ = 1, where dΓτ is the volume element

of g τ , we have that
∫

M

(
τ(|∇ψ|2τ + S(·, τ)) + ψ − n

)
ρ dΓτ ≥ −µs .

Moreover, for this geometric constant µs the above inequality is
sharp. In the case that |Rijkl | is bounded, µs ≥ 0.
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The Fokker-Planck equation

! We study the heat equation:

∂ρ

∂t
− div (ρ∇(log ρ + f )) = 0.

! It is easy to see that the equilibrium is

log ρ∞ + f = C .

! It is also easy to see that the total mass
∫
M ρ if preserved.

! Let v = log ρ + f + n
2 log(4πτ), called the pointwise relative

entropy.
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Relative entropy

! v satisfies the equation:
(

∂

∂t
−∆

)
v = 〈∇v ,∇ log ρ〉.

! Define the Nash entropy, (or Boltzmann relative entropy)

Nρ,f (t) !
∫

M
ρv dµ.

!

d

dt
Nρ,f (t) =

∫

M
vtρ + vρt dµ

=

∫

M
(∆v)ρ + 〈∇v ,∇ρ〉+ v div(ρ∇v)

= −
∫

M
|∇v |2ρ dµ. (0.4)
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A Bochner formula

! There is a Bochner type formula
(

∂

∂t
−∆

)
|∇v |2 = −2v2

ij +2〈∇(〈∇v ,∇ log ρ〉),∇v〉−2Rijvivj .

(0.5)

! More importantly, define Fρ,f (t) !
∫
M |∇v |2ρ.

!

d

dt
Fρ,f (t) =

∫

M

(
−2v2

ij − 2Rijvivj
)
ρ dµ

+

∫

M
〈∇|∇v |2,∇f 〉ρ− 2〈∇〈∇f ,∇v〉,∇v〉ρ dµ

=

∫

M

(
−2v2

ij − 2(Rij + fij)vivj
)
ρ dµ. (0.6)
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The dynamics

! Use the soliton equation (not essentially since one just needs
an inequality here)

d

dt
Fρ,f (t) = −2

∫

M
v2
ij ρ dµ− 1

τ
Fρ,f (t). (0.7)

! It then implies Fρ,f (t) ≤ Fρ,f (0)e−
t
τ .

! Also
d

dt
Nρ,f (t) ≥ τ

d

dt
Fρ,f (t).
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The proof

! Integrating on [0,∞), assuming that limt→∞Nρ,f → 0 yields

−Nρ,f (0) ≥ −τFρ,f (0).

! Using the soliton equation and its consequences, in terms of

the initial function ρ(x , 0) = e−ψ(x)

(4πτ)
n
2
, the equivalent inequality

∫

M

(
τ(|∇ψ|2 + S) + ψ − n

)
ρ dµ ≥ −µs . (0.8)

! The Fokker-Planck equation/dynamics was studied by many
people including Arnold-Markowich-Toscani-Unterreiter,
Carrillo-Toscani, Del Pino-Dolbeault, Otto-Villani, Sturm etc.
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The sharpness

! Recall Perelman’s entropy functional

W(g τ , u, τ) !
∫

M

(
τ(|∇ψ|2 + S) + ψ − n

)
u dΓτ

is defined for u = e−ψ

(4πτ)n/2 with
∫
M u dΓτ = 1.

! Theorem implies that for (M, g τ ), W (g τ , u, τ) ≥ −µs .
Namely Perelman’s µ-invariant

µ(g τ , τ) ! inf∫
M u=1

W(g τ , u, τ)

is bounded from below by −µs .
! From soliton equation and its consequence it is easy to see

that
τ(2∆f − |∇f |2 + S) + f − n = −µs .

Hence u = e−f

(4πτ)n/2 is the minimizer for Perelman’s µ(g , τ)
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c-theorem

! Corollary
Let (M, g , f ) be a gradient shrinking soliton with S ≥ −A. Then

µ(g , 1) = −µs .

! In RG-flow, there is a result asserting (with some conditions)
that there exists a invariant c(t) which is non-increasing along
the flow and non-negative.

! Motivated by this we show the following result we have the
following result.

Theorem
Let (M, g) be a gradient shrinking soliton with bounded curvature.
Let f be the normalized potential function as above. Then µs ≥ 0.
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The proof

! Two key components:
! The first is the Li-Yau-Hamilton type estimate for the

fundamental solution to the conjugate heat equation of
Perelman.

! Let H(y , t; x , t0) (with t < t0 < 0) be the (minimal) positive
fundamental solution to the conjugate heat equation:

(
− ∂

∂t
−∆y + S(y , t)

)
H(y , t; x , t0) = 0

being the δx(y) at t = t0. By a result of Perelman, see also
Chau-Tam-Yu and a paper by myself (CAG, 2006), we know
that

vH(y , t) ! (t0 − t)
(
2∆ϕ− |∇ϕ|2 + S

)
+ ϕ− n ≤ 0

with H(y , t; x , t0) = e−ϕ(y,t)

(4π(t0−t))
n
2
.
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The uniform estimate of µ-invariant on smaller scales

! The uniform estimate of µ(g , σ) for 0 < σ < 1.

Proposition
Assume that on a complete Riemannian manifold (M, g),
µ(g , 1) > ∞ and Ric ≥ −A and S ≤ B for some positive numbers
A and B. Then for any 0 < σ < 1,

µ(g , σ) ≥ µ(g , 1)− nA− B −
(

A2n

2
+ An

)
(1− σ). (0.9)
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The use of the linear entropy formula

! First µ0(g , 1) ≥ µ(g , 1)− B. Here µ0 is the inf of W0.

! Let u0(x) = e−ψ̃

(4πσ)n/2 be a smooth function with compact

support such that
∫
M u0 = 1. Similarly let u(x , t) = e−ϕ

(4πτ)n/2

be the solution to the heat equation with u(x , 0) = u0(x).
Here τ(t) = σ + t. We shall use the entropy formula for the
linear heat equation.

!

W0(t) !
∫

M

(
τ |∇ϕ|2 + ϕ− n

)
u

! Let F (t) =
∫
M |∇ϕ|2u.
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The estimate

!

d

dt
W0(t) ≤ −2τ
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2τ
gij
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n
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M
(∆ϕ− n

2τ
)u
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+ 2τAF (t)

= −2τ
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(
F (t)− n

2τ

)2
+ 2τAF (t).
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d

dt
W0(t) ≤

A2n
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+ nA

for τ ≤ 1.
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A rigidity result

! For expanding solitons with Ric ≥ 0 we proved similar sharp
LSI and that µe ≥ 0. Moreover we shows that µe = 0 if and
only if the soliton is the Euclidean space.

! We conjectured (in the paper with Carrillo) that the same
holds for the shrinking solitons.

! Namely µs = 0 implies that (M, f , g) is the Guassian soliton

! It has been confirmed by Yokota recently. The key is a
connection between LSI inequality/entropy and the reduced
volume of Perelman.
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The reduced distance and volume

! Motivated by the space-time consideration and approximation
via infinite dimension (originated by Ben Chow and Chu)
Perelman defined the reduced distance

+x0(x , τ̄) := inf
γ

1

2
√

τ

∫ τ̄

0

√
τ

(
|γ′(τ)|2 + R

)
dτ (0.10)

for all γ(τ) with γ(0) = x0, γ(τ̄) = x .

! Note that here τ = T0 − t for some T0 < T , the maximum
existence time of the solution to Ricci flow.

! And the reduced volume:

Ṽx0,T0(τ) :=

∫

M

1

(4πτ)
n
2

exp (−+(x , τ)) dµ(τ) (0.11)

! Most importantly Ṽx0,T0(τ) is monotone nonincreasing in τ .
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Two lemmas

! Define the asymptotic reduced volume by

VT0 := lim
τ→∞

Ṽx0,T0(τ).

! First it is independent of the choice of the base point x0.
Moreover, for a gradient shrinking soliton

V0 =

∫

M

1

(4π)n/2
exp(−f − µs) dµ.

! A gap theorem: there exists a ε(n) such that if
VT0 ≥ 1− ε(n), M is Euclidean space.

! The gap theorem corresponds to a local regularity theorem I
proved before (Asian Journal, 2007), after the derivation of
the local monotonicity formulae joint with Ecker, Knopf and
Topping (Crelle 2008).
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