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(32, g) three-dimensional compact Riemannian Manifold without boundary thought

of as a point in the Space of Riemannian structures %
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Ricci Flow as a (weakly—parabolic)
dynamical system on:

Met(X) — Met(X)
(B.9) = (Z.906),
defined by deforming the metric
(3, 9) in the direction of (-) its Ricci

tensor thought of as a (non-trivial)
vector in T, Met(X), t.e.,

559ab(8) = —2Rap (),

9ab(8 =0) = gas,

0< B <6 <Th




Together with the Ricci Flow,
/6 = gab(ﬁ)a 0 < 6 < 6*7

we shall consider also the
backward Ricci flow

Met(X) — Met(X)
(2,9) —  (X,9(n),

obtained upon time-reversal:
n = gab(n = B* = B).
5-9ab(1) = 2Rap (1),

Jav(n = 0) = gap(8¥),

0<n<p*



representing the evolution

Along with the Ricci and of infinitesimal deformations

the backward RlCCl flow it is gc(;;) (B) = gap(B) + t hap(B),
natural to consider the:
Linearized Ricci flow and the g?tb) (n) = g*°(n) +t H®(n),

Conjugate Linearized Ricci flow
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The flows 3+ hy, () and 0" 0 G(H)]
n+— H%(n) are associated

with the weakly-parabolic
initial value problems
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These flows can be made manifestly parabolic:
e.qg. for the forward flow:
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Henceforth, when we speak of the Linearized Ricci flow we shall always mean
the flow solution, for 0 < 3 < Tp, of the parabolic i.v.p. defined on T' Met(X)
by

%gab<6> p— —ZRCLb(B), ga/b<6 — O) — Gab,
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And the Conjugate Linearized Ricci flow can be represented by the flow solution,
for 0 < n < G*, of the parabolic i.v.p. defined on T' Met(X) by

f%gab(”'?) = 2Rap(n), 9ab(n=10) = gar(5),
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The Linearized Ricci flow preserves the subspace Im (5;‘( 8) of T3y Met (X):
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where, along 3 — gus(8), 0 < 8 < T,
B +— v,(0) denotes the flow solution of the
parabolic initial value problem

é%va(ﬁ) = Aq va(B),

Ua(ﬁ = O) — Va,

where v € C°(X, T*Y) is a given
covector field and

ANgva(B) = A v (B) — 722 vy (),




In Particular, if along a given
Ricci flow 8 — gap(8), 0 < B < Ty, Then
B +— ¢(3) denote the heat flow

2 4(8) 0
LHo(B) = A 6(B), 35 Hess ¢, = Ap, Hess ¢

ab




The Linearized Ricci flow does
not preserve the subspace Ker d4(g)

of T3y Met (X): the evolution
G = dg(5) P(B)

55 V¥ by = AV hyy — RY V¥ by + hap Vi R* + 2R V; hyy — 2hi V' Ry

does not admit, in general,
the solution § +— V®hy,(6) = 0,
0<B< Ty, if VPhey,(6=0)=0




The subspace Ker d,g) of 1,3 Met (X)
is preserved by the Conjugate Linearized
Ricci flow since 0+ &4,y H(n) evolves
according to

DV, H® =AV,H?® - RV, HY — RV, H |
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Note that n +— V,V, H*(n) evolves
according to the Conjugate scalar heat
equation

8% V.V H® = AV, V, H* — RV, V, H® |

For a solution § — ¢(5)
of the forward heat equation,
we have the conjugation
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As a further consequence of L?-conjugation, we have:

where VaH(a:,lZ) (n) =0 and V“hg? () = 0.




Prop. If for the given Ricci flow Ker dyg|yp=0 # 0, and H("’ZIZ) € Kerdyg)|n=o
with tr Hipylp=o = 0, [ H("’ZIZ) (1) Rap(n) dprg(n)ln=0 = 0, then any solution
B +— hap(B) of the linearized Ricci flow with | H("’ZIZ) (8) has(B) dpg(sy|p=0 # 0,

provides a non—trivial perturbation of the given Ricci flow 5 — gq5(0).




Averaging Properties of the Conjugate Linearized Ricci Flow:

Prop. Let n— (X.9(n)), n € [0,3%] be a given backward Ricci flow, and let
n — H®(n), n €[0,8*], H*(n =0) = Hgﬂ? denote the corresponding solution
of the Conjugate Linearized Ricci Flow. Then,
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Prop. If for the given Ricci flow Ker d,g)|n=0 # 0, H(ai,ll) € Kerdys|n=o, then
if gup(08) evolves towards a non—trivial Ricci soliton structure

Rab+LUgab - %gab :Oa
then necessarily

/ Hab(ﬁ*) [9ab — 287 Rap] dg =0.
5 B=0
Conversely, if for every ¥ ¢ Ker 0g(8) I 5=0
/ v (Gab — 206" Rap) ditg 7 0.
by p=0

then B +— gup(6), 0 < 8 < B* cannot evolve into a non—trivial (shrinking) Ricci
soliton.
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Heat Kernel for the conjugate linearized Ricci Flow

If (3, gap(n)) is a smooth solution to the backward Ricci flow on ¥, x [0, 3*]
with bounded curvature, then we can consider the g(n)-dependent fundamental
solution K ﬁ%,(y, x;m) of the conjugate linearized Ricci flow, i.e.,

2Ky, ) = AV Kb (g, oim) — R(n, ) Kb, (y,23m)

lim n\,0+ Kﬁ%,(y, €Ly 77) — 5?’2;’ (y7 :Ij) ’

where (y, ;1) € (X x X\ Diag(X x X)) x [0, 3*], n = * — 3, A(L"’m) denotes the
g(n)—dependent Lichnerowicz—DeRham laplacian with respect to the variable z.

K&, (y,z;n)




The heat kernel K2%,(y,z;7n) can be naturally normalized along the expanding
soliton on S? : Let Gup the round metric on the unit 3-sphere S°, and, for
n € [0.8%], let n — 4 (Ty — B* +n) gap be the expanding Ricci soliton on S with
initial radius r(n = 0) = 2/Ty — B* and final radius r(n = 8*) = 2/Ty. Then

MO 6 ) K ) sl diy) = 1.

where dfig(, . is the volume element on (52, gas).

Moreover, if (32, gap(n)) is a smooth solution to a backward Ricci flow of bounded
geometry on X, X [0, 3*] with non-—negative curvature operator, then K%, (y, x;n),
0<n<pB%isa p081tlve integral kernel.




Similarly, along the Ricci flow on ¥ 3% |0, 8*] we can consider the g(3)-dependent
fundamental solution L%, (x,y; 3) of the linearized Ricci flow, i.e.,

2L (2, 8) = AP Lh (2,03 8)

lim BN\0F L,?/l;c/ (513, Y, ﬁ) — 5?/%/ (ZE, y) )




Along the given Ricci Flow,

B gan(B), 0 < B < 5% < T,
the L?—-duality between the

linearized and the conjugate
linearized flow implies K%}g, (y’ x;n — /8*) — L;L/(;d(x’ y;ﬂ — /8*)




By applying Anderson and Chow’s
pinching estimate for the linearized flow

it follows that if along the given Ricci Flow,
we let p € [0, 00) be such that

Rypin (8 =10)+ p > 0, then there

exists a constant C' = C(go, p, To)

such that
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for all 0 < n < B*.




Moreover, if n — gu(n), 1n = * — 3, is a backward Ricci flow of bounded
geometry on X, X [0, 5*] with R(n) > 0, n = 5* — 3, then.
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Finally, by applying Chow—Hamilton’s linear Harnack inequality for the lin-
earized flow, if 0 — g.(0), is a Ricci flow of bounded geometry with non—
negative curvature operator on X, x [0, 5*], then, for n = 3%, we get by duality

K5 (y 3m) [9“‘5(5?”) + Rav(z, )} + Vo Vi Ki (y, 23m)+

+2 Vo K5 (y, wsm) Vi + K3 (y, 23m) Va Vi . 20,

for any 1-form V.




K&%, (y,z;m) is the Heat Kernel for the Ricci Flow

Let n — gap(n) be a backward Ricci flow with bounded geometry on X, X
[0, 8*], and let K88, (y,z;n) be the (backward) heat kernel of the corresponding
conjugate linearized Ricci flow, then

Rik (y,m=0) = ./EKZQ/%/(% r;n) Rav(,n) Aitg(zm) 5

for all 0 < n < B*. In particular
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and we have the following integral representation of the backward Ricci flow on
Z77 X (07 6*]
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for all 0 < n < 3*.

or equivalently
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From which we also get
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implying the point based (y) monotonicity result
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reminiscent of Perelman’s
reduced volume monotonicity.




These integral representations are related with the Harnack estimate for the
conjugate linearized flow, however with no a priori curvature restrictions. This
suggests that for the heat kernel K&, (y,z;n) may be possible to provide a
Harnack inequality without positive curvature assumptions and construct an
associated entropy functional.




Heat Kernel Asymptotics

As n N\, 07, and for all (y,z) € ¥ such that do(y,x) < inj (X%, g(O)), there

exists a sequence of smooth sections ®[h] % o0 (Y, x3m) with ®[0] % e (Y, m) =
7%, (y,x;7m), (the parallel transport operator), such that
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As n\, 0T, we have the uniform asymptotic expansion
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(Conclusions

Nice properties of the Heat Kernel of the conjugate linearized Ricci flow

It provides an integral representation of both the evolution of the Ricci tensor
and of the metric itself

It provides non—trivial conserved quantities and relevant asymptotics useful also
in physical applications of Ricci flow theory.

It also calls for a deeper analysis of its properties. They can be relevant in the
study of singularities formation in Ricci flow theory.



