Searches for Axions: motivation, status and future

Joint particle & astroparticle seminar KIT Karlsruhe 20/06/2017 Javier Redondo Universidad de Zaragoza (Spain)

- Strong CP problem
- Axions and ALPs
- Dark matter
- Dark matter experiments
- Lab experiments

Parity and Time reversal

P-violation (Wu 56)

T-violation (CPLEAR 90's)

$$\frac{R(\bar{K}^0 \to K^0) - R(K^0 \to \bar{K}^0)}{R(\bar{K}^0 \to K^0) + R(K^0 \to \bar{K}^0)}$$

... but not in the strong interactions

many theories based on SU(3)c (QCD)

 $\theta \in (-\pi, \pi)$ infinitely versions of QCD... all are P,T violating

Neutron EDM

Most important P, T violating observable $d_n \sim \theta \times \mathcal{O}(10^{-15}) \text{e cm}$

The theta angle of the strong interactions

- The value of θ controls P,T violation in QCD

Measured today $|\theta| < 10^{-10}$ (strong CP problem)

Roberto Peccei and Helen Quinn 77

CP Conservation in the Presence of Pseudoparticles*

R. D. Peccei and Helen R. Quinn[†]

Institute of Theoretical Physics, Department of Physics, Stanford University, Stanford, California 94305 (Received 31 March 1977)

We give an explanation of the CP conservation of strong interactions which includes the effects of pseudoparticles. We find it is a natural result for any theory where at least one flavor of fermion acquires its mass through a Yukawa coupling to a scalar field which has nonvanishing vacuum expectation value.

grangian.

If all fermions which counte to the non-Abelian

QCD vacuum energy minimised at theta = 0

-... if $\theta(t, \mathbf{x})$ is dynamical field, relaxes to its minimum

Measured today $|\theta| < 10^{-10}$ (strong CP problem)

ain't you forgetting something?

and a new particle is born ...

and a new particle is born ... the axion

- if $\theta(t, \mathbf{x})$ is dynamical field

and a new scale sets the game, fa

- kinetic term for θ requires a new energy scale, f_a

$$\mathcal{L}_{\theta} = \frac{\alpha_s}{8\pi} G_{\mu\nu a} \widetilde{G}_a^{\mu\nu} \theta + \frac{1}{2} (\partial_{\mu} \theta) (\partial^{\mu} \theta) f_a^2$$

$$\mathcal{L}_{\theta} = \frac{\alpha_s}{8\pi} G_{\mu\nu a} \widetilde{G}_a^{\mu\nu} \frac{a}{f_a} + \frac{1}{2} (\partial_{\mu} a) (\partial^{\mu} a)$$

Axion couplings at low energy

- From θ -term, axion mixes with eta' and the rest of mesons

Axion couplings at low energy

Axion Landscape

Axion-like particles (ALPs)

pseudo Goldstone Bosons

- Global symmetry spontaneously broken

- massless Goldstone Boson @ Low Energy

shift symmetry
$$\theta(x) \to \theta(x) + \alpha$$

 $\mathcal{L}_{kin} = \frac{1}{2} (\partial_{\mu} \theta) (\partial^{\mu} \theta) f^2$

- HE decay constant, $f=\langle \rho \rangle$

stringy axions

- Im parts of moduli fields (control sizes)

- masses from non-perturbative effects

- Couplings, $\propto 1/f$, MASS $\sim \Lambda_{
m breaking}^2/f$, different relation than QCD axions

Axion, ALP parameter space

- Coupling vs Mass, QCD axions in a band
- Important example: photon coupling

$$g_{a\gamma} = c_{\gamma} \frac{\alpha}{2\pi f_a}$$

*KSVZ axion model, couplings come only from eta' mixing, $\,c_\gamma = -1.92\,$

Dark Matters

Axions and dark matter

- axion field relaxes to minimum & oscillates (DARK MATTER!), damping due to expansion of the Universe

Two scenarios

- Consider axion as a Goldstone boson: exists only below spontaneous symmetry breaking (PQ symmetry)

- PQ breaking after inflation

- PQ breaking before inflation

After inflation, PQ phase transition, misaligned patches

PQ Before inflation, one patch stretched to be our Universe

 π

 θ

 π

One misalignment angle singled out

Axion dark matter

- The amount of axion DM produced depends on fa

Momentum distribution

Most important constraints

- PQ breaking after inflation

-> DM inhomogeneous, Axion miniclusters

~ 0.1 comoving pc

Mass ~ $M\sim 10^{-12}M_{\odot}$

Merging to heavier masses? $10^{-7} M_{\odot}$?

Microlensing

- PQ breaking before inflation

* Axion fluctuations during inflation -> CMB isocurvature

- Planck sees no Isocurvature fluctuations, strong limit!

- If H_I is measured by next generation CMB Polarisation axion DM is excluded (avoided in some models)

Detecting Axion Dark matter

Local Dark Matter density

$$\rho_{\rm aDM} = 0.3 \frac{\rm GeV}{\rm cm^3}$$

$$\theta_0 = 3.6 \times 10^{-19}$$

Detecting Dark Matter

Imperfect Vacuum realignment $\theta(t) = \theta_0 \cos(m_a t)$

$$\rho_{\rm CDM} = 0.3 \frac{\rm GeV}{\rm cm^3} \equiv \frac{1}{2} (\dot{a})^2 + \frac{1}{2} m_a^2 a^2 = \frac{1}{2} m_a^2 f_a^2 \theta_0^2$$

$$\underbrace{\text{OCD axion}}_{m_A^2 f_A^2 = \chi_{\text{QCD}}} \theta_0 \sim 3.6 \times 10^{-19}$$

Non-zero velocity in galaxy -> finite width

$$\omega \simeq m_a (1 + v^2/2 + ...)$$
~10^-6

coherence time

$$\delta t \sim \frac{1}{\delta \omega} \sim 0.13 \mathrm{ms} \left(\frac{10^{-5} \mathrm{eV}}{m_a} \right)$$

CASPER: Cosmic Axion Spin Precession exPERiment

Graham 2012

Spin precesion

 $\omega = \mu |\vec{B}_{\rm ext}|$

CASPER : Spin precession

Static EDM, effects cancel in a period

- EDM + Large E-fields in PbTiO3
- Scan over frequencies, with Bext
- Mainz (D. Budker's group) & Berkeley
- Phase I starts in 2016, Phase II physics results
- Mass range limited by B-field strength

Future sensitivity

Mainz, Berkeley

DM Axion Photon conversion

- Axion DM, $\theta = \theta_0 \cos(m_a t)$, in a B-field is a source in Maxwell's eq.

Radiation from a magnetised mirror

Radiation from a magnetised mirror

Radiation from a magnetised mirror : Power

$$u = \frac{1}{2} \left(\epsilon |\mathbf{E}_{\gamma}|^{2} + \frac{1}{\mu} |\mathbf{B}_{\gamma}|^{2} \right) \qquad \frac{P}{Area} \sim 2 \times 10^{-27} \frac{W}{m^{2}} \left(\frac{c_{\gamma}}{2} \frac{B_{||}}{5T} \right)^{2} \frac{1}{\epsilon}$$

$$(1)$$

$$(1)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2$$

Dish antenna experiment?

Cavity experiments

ADMX-HF

ADMX-Fermilab

CARRACK (discontinued)

CAST-CAPP

CULTASK - CAPP -Korea

Cavity experiments

Signal power in cavity experiments (haloscopes)

Combine MW equations into an oscillator

$$\ddot{\mathbf{E}} - \nabla^2 \mathbf{E} = -\frac{c_{\gamma}\alpha}{2\pi} \mathbf{B}_{\text{ext}} \ddot{\theta}$$

Expand in eigenmodes of the cavity satisfy (with appropriate boundary conditions)

$$\mathbf{E}(t, \mathbf{x}) = \sum_{i} E_i(t) \mathbf{e}_i.$$

Equation for the amplitude of one mode

$$\ddot{E}_i + \omega_i^2 E_i + \Gamma \dot{E}_i = -c_\alpha B C_i \ddot{\theta}.$$

damping (energy loss by walls and pick up signal)

$-\nabla^2 \mathbf{e}_i = \omega_i^2 \mathbf{e}_i.$

geometric factor ...

$$C_i = \frac{1}{VB} \int dV \mathbf{e}_i \cdot \mathbf{B}_{\text{ext}}.$$

damping (energy loss by walls and pick up signal)

Forced oscillator solution

$$E_{i} = -\frac{c_{\alpha}Bm_{a}^{2}C_{i}}{(m_{a}^{2} - \omega_{i}^{2})^{2} + (m_{a}\Gamma)^{2}} \left(\theta(t)(m_{a}^{2} - \omega_{i}^{2}) + \dot{\theta}(t)\Gamma\right),$$

Resonance quality factor $Q=\omega_i/\Gamma$

 $\begin{array}{c} \text{Off-resonance} \\ m_a \gg \omega_i \end{array}$

$$E_i \sim c_{\alpha} B C_i \theta(t) \sim |\mathbf{E}_a|$$

On resonance $m_a = \omega_i$

$$E_i \sim |\mathbf{E}_a| Q$$

 $c_{\alpha} = \frac{c_{\gamma}\alpha}{2\pi}$

but needs tuning!

Power extracted from cavity on resonance

$$P \sim \frac{\Gamma}{m_a} E^2 \sim Q |\mathbf{E}_a|^2$$

But we do not know axion mass ... need to tune cavity and do different experiments

Scanning over frequencies moving metalic rods (ADMX)

Cavity experiments

Problem at high mass

- Haloscope

 $P \sim Q |\mathbf{E}_a|^2 (V m_a) \mathcal{G} \kappa$ (on resonance)

- Naive ADMX scaling (e.g. an ADMX every octave)

-Signal $(V \propto m_a^{-3})$ $P_{\rm out} \propto V m_a \sim \frac{1}{m_a^2}$

- <u>Noise</u> P_{noise}

$$_{\rm oise} = T_{\rm sys} \Delta \nu_a \propto m_a^2$$

- Signal/noise in $\Delta
u_a$ of time, t,

$$\frac{S}{N} = \frac{P_{\text{out}}}{P_{\text{noise}}} \sqrt{\Delta \nu_a t}$$

- Scanning rate

$$\frac{1}{m_a} \frac{d\Delta m_a}{dt} \propto \frac{C_{A\gamma}^4}{m_a^7}$$

Large freq ... Area vs volume

 $P \sim |\mathbf{E}_a|^2 A$ comparable if $Q \sim 10^4 \sim Am_a^2$ $P \sim Q |\mathbf{E}_a|^2 (V m_a) \mathcal{G} \kappa$

Mixed scheme?

If we could add the power emitted by many mirrors...

Radiation from a dielectric interface ...

Radiation from a dielectric interface ...

Many dielectrics : MADMAX at MPP Munich

- Emission has large spatial coherence; adjusting plate separation -> coherence

$$\frac{P}{Area} \sim 2 \times 10^{-27} \frac{\mathrm{W}}{\mathrm{m}^2} \left(\frac{c_{\gamma}}{2} \frac{B_{||}}{5\mathrm{T}}\right)^2 \frac{1}{\epsilon} \left(\times \beta(\omega) \quad \text{boost factor}\right)$$

- Work in progress at Max Planck Institute fur Physik (Conceptual design)

MADMAX (2022?)

MADMAX current setup

MADMAX receiver system

Bounds and hints from astrophysics

Axions emitted from stellar cores accelerate stellar evolution
Too much cooling is strongly excluded (obs. vs. simulations)
Some systems improve with additional axion cooling!

Tip of the Red Giant branch (M5)

White dwarf luminosity function

HB stars in globular clusters

Neutron Star CAS A

Axion Landscape

Detecting Solar Axions : Helioscopes

Flux of Solar axions/ALPs well understood

From axion 2-Photon coupling

From axion-Electron coupling

- couplings safe below exclusion bounds
- values typical of meV-mass axions

Detection with Helioscopes

CAST Helioscope

CAST (LHC dipole 9.3 m, 9T)

- 1~2 h tracking/day (sunset,dawn)
- 3 Detectors (2 bores) CCD, Micromegas
- X-ray optics

The future : International Axion observatory (IAXO)

Large toroidal 8-coil magnet L = ~20 m Keystone Box Large AREA : 8 bores x 600 mm diameter 8 x-ray optics + 8 detection systems Coil Keystone Plate Casing **Rotating platform with services** Coil Cryostat Inclination Syst Thermal Shield Support Feet Support Fra Vessel Telescopes Flexible Lines Transverse B-field (peak 5T, average 2.5T) Rotating Disk Services 8 1 Rotation System -NGAG paper JCAP 1106:013,2011 -Conceptual design report IAXO 2014 JINST 9 T05002

-LOI submitted to CERN, TDR in preparation

-Possibility of Direct Axion DM experiments (cavities)

Physics reach (preliminary)

Photon coupling

Electron and Photon coupling

the ANY-Light-Particle-Search

Light shining through walls

Resonant regeneration in the receiving cavity (see later)

Exp.	Photon flux (1/ s)	Photon E (eV)	в (Т)	L (m)	B∙L (Tm)	PB reg.cav.	Sens. (rel.)
ALPS I	3.5.1021	2.3	5.0	4.4	22	1	0.0003
ALPS II	1.1024	1.2	5.3	106	468	40,000	1
"ALPS III"	3·10 ²⁵	1.2	13	400	5200	100,000	27

Axion/ALP Landscape

Long-range forces

Long-range forces between macroscopic bodies

p-p forces are spin-spin ... very hard to measure!

In some case a tiny s-coupling can lead to a larger effect

s-p forces are number-spin ... much easier

ARIADNE, University of Nevada in Reno

ARIADNE reach

Arvanitaki, Geraci 14

Axion DM : A developing picture

