Javier Redondo Universidad de Zaragoza (Spain) Max Planck Institute für Physik

MAD MAX

Axions are necessarily dark matter

Measured today $|\theta| < 10^{-10}$ (strong CP problem)

Relic density as function of mass

- Random IC (after a phase transition)
- One Universal IC (inflation smoothens the axion field)

Theta evolution, Averaged SCENARIO I

DM dominated by string radiation

Axion dark matter

Detecting Axions

$$\rho_{\rm aDM} = 0.3 \frac{\rm GeV}{\rm cm^3}$$

$$\rho_{a} = \frac{1}{2}(\dot{a})^{2} + \frac{1}{2}m_{a}^{2}a^{2} = \frac{1}{2}m_{a}^{2}f_{a}^{2}\theta_{0}^{2}$$
$$V_{\theta\theta}$$

$$\theta_0 = 3.6 \times 10^{-19}$$

Axion experiments (target areas)

Axion experiments (target areas)

Axion DM in a B-field

$$\mathcal{L}_I = -C_{a\gamma} \frac{\alpha}{2\pi} \frac{a}{f_a} \mathbf{B} \cdot \mathbf{E}$$

- In a static magnetic field, the oscillating axion field generates EM-fields

$$\mathcal{L}_{I} = -C_{a\gamma} \frac{\alpha}{2\pi} \theta(t) \mathbf{B}_{ext} \cdot \mathbf{E}$$
Source

- Electric fields $\mathbf{E}_a = C_{a\gamma} \frac{\alpha \mathbf{B}_{ext}}{2\pi} \theta_0 \cos(m_a t)$ (amp independent of mass!)

- Oscillating at a frequency $\omega \simeq m_a$

Resonant cavity experiments

- Haloscope (Sikivie 83)

- Noise

"Amplify resonantly the EM field in a resonant cavity"

pre MADMAX (dish antenna)

- Do not give up volume -> Area

Radiation from a dielectric interface ...

Radiation from a magnetised mirror : Power

Many dielectrics : MADMAX at MPP Munich

- Emission has large spatial coherence; adjusting plate separation -> coherence

$$\frac{P}{Area} \sim 2.2 \times 10^{-27} \frac{W}{m^2} \left(C_{a\gamma} \frac{B_{||}}{10T} \right)^2 \left(\times \beta^2(\omega) \text{ boost factor} \right)$$

One dielectric

- Frequency response

transmission coefficient

Close to nu0, many layers

boost factor (N=10,40,80; n=3,nu0=20 GHz)

Close to 2nu0, cavity effects

When dielectrics are non-transparent, mild resonances appear that allow higher boosts

tuning

Distances between layers allow tuning (transfer matrix formalism)

Broadband vs narrowband

central frequency

Potential reach

A = 1 m^2 B-field = 10 T 80disk n=5

- why can it work?

Large volume + (relatively) simple tuning long measurements broadband short measurements narrowband

- What can go wrong?
 - 10T dipole-like Magnet, 1 m² aperture !
 - 1 m² dielectrics (tiling smaller pieces)
 - Tolerances (several micron distances)
 - difraction

Conclusions

- Strong CP problem and dark matter motivate <u>Axions</u>
- Most predictive model (N=1) mass~ 0.1 meV (fa ~ 10^11 GeV)
- Many experimental efforts, solid player missing in that range
- MW emission from interfaces is weak, make layered haloscope
- Munich Axion Dark MAtter eXperiment