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Axions are necessarily dark matter
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~ One parameter theory

axion mass
✓(t, x) = a(t, x)/fa

ma = 6meV
109 GeV

fa

Measured today |✓| < 10�10 (strong CP problem)

- is it a dynamical field? ✓(t,x)
generated by QCD!

✓(t) = ✓0 cos(mat)



Relic density as function of mass

- Random IC (after a phase transition)
- One Universal IC (inflation smoothens the axion field)
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Theta evolution, Averaged SCENARIO I



DM dominated by string radiation



- Axion DM scenarios

Excluded (too much DM) ok sub

Phase transition (N=1)
strings+unstable DW’s

Axion dark matter

Initial conditions set by : 



Excluded (too much DM) ok sub

Phase transition (N=1)
strings+unstable DW’s

- Axion DM scenarios

oktuned (anthropic?) tuned

Inflation smooth
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Axion dark matter

Initial conditions set by : 



Detecting Axions
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Cavities Mirrors LC-circuit

Spin precession Atomic transitions Optical



Axion experiments (target areas)

osc. EDM

LC

only one running

not DM

test bench

Axion Dark Matter eXperiment (Seattle, Yale...)

Excluded

IAXO?

SCENARIO I

ADMX
ADMX-HF

QU
AX

?

ARIADNE
✓0QCD > 10�14?

CAPP



osc. EDM only one running

baby born
Munich Axion Dark MAtter “eXperience”
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- In a static magnetic field, the oscillating axion field generates EM-fields

B-field

- Electric fields
   
- Oscillating at a frequency

(amp independent of mass!)

Axion DM in a B-field
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- Haloscope (Sikivie 83) 
  “Amplify resonantly the EM field in a resonant cavity”

- Signal (V / m�3
a ) P

out

/ V ma ⇠ 1
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- Noise P
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P ⇠ Q|Ea|2(V ma)G

Resonant cavity experiments

Output EM power

on resonance ⌫res =
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spherical reflecting dish

pre MADMAX (dish antenna)
- Do not give up volume -> Area

D � 1

ma

P ⇠ |Ea|2A



Radiation from a dielectric interface ...

Emitted EM-wave
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Boundary conditions!
E||1 = E||2Emitted EM-wave



Radiation from a magnetised mirror : Power

Emitted EM-wave
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Many dielectrics : MADMAX at MPP Munich

Emitted EM-waves from each interface

+ internal reflections ......

- Emission has large spatial coherence; adjusting plate separation -> coherence
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One dielectric

Axion emission (boost factor) (n=2,3,4)
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- Frequency response



Close to nu0, many layers
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Emitted EM-waves from each interface

+ internal reflections ......

boost factor (N=10,40,80; n=3,nu0=20 GHz)
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Nice boost, excellent bandwidth!



mirror
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When dielectrics are non-transparent, mild resonances appear that allow higher boosts

Close to 2nu0, cavity effects
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tuning

Distances between layers allow tuning (transfer matrix formalism)

JCAP 1701 (2017)

Broadband vs narrowband central frequency



Potential reach 

A = 1 m^2
B-field = 10 T
80disk n=5



whys

- why can it work?

Large volume + (relatively) simple tuning 
long measurements broadband
short measurements narrowband

- What can go wrong?

- 10T dipole-like Magnet, 1 m^2 aperture !
- 1 m^2 dielectrics (tiling smaller pieces)
- Tolerances (several micron distances)
- difraction



Conclusions

- Strong CP problem and dark matter motivate Axions

- Most predictive model (N=1) mass~ 0.1 meV (fa ~ 10^11 GeV)

- Many experimental efforts, solid player missing in that range 

- MW emission from interfaces is weak , make layered haloscope

- Munich Axion Dark MAtter eXperiment


