Axion dark matter scenarios, parameters, uncertainties...

Javier Redondo Ramón y Cajal fellow Universidad de Zaragoza (Spain)

Dark matter

- $\theta(t,\mathbf{x})$ relaxes to its minimum, overshoots and oscillates

Dark matter

- $\theta(t,\mathbf{x})$ relaxes to its minimum, overshoots and oscillates

- Non thermal DM production mechanism
- DM abundance depends on initial conditions

when were axions born?

- Non thermal DM production mechanism
- DM abundance depends on initial conditions

- Two basic scenarios
- **scenario A**: inflation happens AFTER PQ phase transition
- **scenario B**: inflation happens BEFORE PQ phase transition

DM in SCENARIO A

One misalignment angle singled out

 $\cdot\pi$

 π

DM in SCENARIO A

- Homogeneous initial condition $\theta(t_0, x) = \theta_I$
- Equations of motion

Universe Expansion rate

 $m_a^2 f_a^2 = \chi$

QCD

DM in SCENARIO A

- Homogeneous initial condition

$$\theta(t_0, x) = \theta_I$$

- Equations of motion

 $\ddot{\theta} + 3H\dot{\theta} + \chi(T)\sin\theta = 0$

DM in SCENARIO A

- Homogeneous initial condition
- Equations of motion

 $\ddot{\theta} + 3H\dot{\theta} + \chi(T)\sin\theta = 0$

 $\theta(t_0, x) = \theta_I$

DM in SCENARIO A $\Omega_{DM}h^2 = \Omega_a h^2 = 0.12$

- Absolute uncertainty, any mass has an $\Omega_a h^2 = 0.12 \,\theta_I^2 \left(\frac{6.4 \mu \text{eV}}{m}\right)^{1.1}$

SCENARIO B

- Inflation
- PQ transition
- θ inhomogeneous
- strings
 - •••
- relaxation
- -
- -T~QCD $\theta \to 0$
- domain walls
- axion DM

 θ

 $-\pi$

SCENARIO B

- Inflation
- PQ transition
- *θ* inhomogeneous- strings
 - •••
- relaxation
- •••
- -T~QCD $\theta \to 0$
- domain walls
- axion DM

Strings

SCENARIO A $\Omega_{DM}h^2 = \Omega_a h^2 = 0.12$

- Random initial conditions, no θ_I uncertainty
- Uncertainty here is the axion radiation from strings/walls
- Split... $\Omega_c h^2 = \left\langle \Omega_c h^2 \right\rangle_{\theta_I} + \Omega_{a,st} h^2$

$$\langle \Omega_c h^2 \rangle_{\theta_I} = 0.12 \left(\frac{28(2)\mu \text{eV}}{m_a} \right)^{1.165}$$

Energy in string network $\rho_s \simeq \zeta \frac{\pi f_a^2 \log(f_a t)}{t^2}$ -> axions $\zeta = 1 \pm 0.5$ $\Omega_{a,st} h^2 \propto N_a = \int dt R^3(t) \int d\omega \frac{1}{\omega} \frac{d\rho_{st}}{dt d\omega}$

radiated axion spectrum

- Spectrum is red

Hiramatsu et al, PRD85 (2012)

SCENARIO A $\Omega_{DM}h^2 = \Omega_a h^2 = 0.12$

$$\Omega_a h^2 = \langle \rangle + \int dt d\omega \frac{1}{\omega} \zeta \dots$$

 $50 \,\mu \mathrm{eV} \lesssim m_A \lesssim 200 \,\mu \mathrm{eV}$,

- ζ and ω measured from fluffy strings $f_{a,sim} \sim 10^{-30} f_a$ - no hom. patches in the simulation
- assume strings do not interact after being radiated ...
- alternatively one can compute $\Omega_a h^2$ directly from simulations Moore et al get $m_a \sim 18 \,\mu {
 m eV}$

tuned (anthropic?) ok tuned

Inflation smooth $\Omega_{aDM}h^2 \simeq \theta_I^2 \left(\frac{80\,\mu eV}{m_a}\right)^{1.19}$

Axion dark matter scenarios

- Axion DM scenarios

Axion dark matter scenarios

- Axion DM scenarios

11111 1 1 1 1 1 1 1 1 1 10^{-7} 10^{-6} 10^{-5} 10^{-4} 10^{-3} 10^{-2} 10^{-1} 10³ 10 10² 105 1 10⁴ 10^{6} $m_a[eV]$ **Initial conditions set by :** Inflation smooth Phase transition (N=1) Phase transition (N>1) $\Omega_{\rm aDM} h^2 \simeq \theta_I^2 \left(\frac{80\,\mu {\rm eV}}{m_a}\right)^{1.19}$ strings+unstable DW's strings+long-lived DWs

Dark matter density, inhomogeneous at comoving mpc scales

but homogeneous at large scales

SCENARIO A, N=1

SCENARIO A, N>1, Domain Walls stable-> cosmological disaster

SCENARIO A, N=1

SCENARIO A, N>1, break slightly degeneracy (quantum gravity?)

tuned (anthropic?) ok tuned

Inflation smooth $\Omega_{aDM}h^2 \simeq \theta_I^2 \left(\frac{80\,\mu eV}{m_a}\right)^{1.19}$

Axion dark matter scenarios

- Axion DM scenarios

Axion dark matter scenarios

- Axion DM scenarios

11111 1 1 1 1 1 1 1 1 1 10^{-7} 10^{-6} 10^{-5} 10^{-4} 10^{-3} 10^{-2} 10^{-1} 10³ 10 10² 105 1 10⁴ 10^{6} $m_a[eV]$ **Initial conditions set by :** Inflation smooth Phase transition (N=1) Phase transition (N>1) $\Omega_{\rm aDM} h^2 \simeq \theta_I^2 \left(\frac{80\,\mu {\rm eV}}{m_a}\right)^{1.19}$ strings+unstable DW's strings+long-lived DWs

Comparison with experimental target areas

Thank you!!!