Axions are on fire!

ATLAS SUSY Searches* - 95% CL Lower Limits Status: July 2015

	Model	$\epsilon, \mu, \tau, \gamma$	Jets	E_T^{miss}	∫£ dr[fb	-1) Mass limit
	SUGRAICMSSM	0-3 6. 0/1-2 7	2-10 jets/3 b	Ves	20.3	4.2
	in →ot	0	2-6 jets	Yes	20.3	4
	(compressed)	mono-jet	1-3 jets	Yes	20.3	4 100-440 GeV
	III tr/witt	2 e. µ (off-Z)	2 jets	Yes	20.3	4
	R ⁰	0	2-6 jets	Yes	20.3	2
	$_{4}\tilde{k}_{1}^{3} \rightarrow qqW^{a}\tilde{k}_{1}^{0}$	0-1 e.µ	2-6 jets	Yes	20	2
	$-qq(ll/lv/vr)\tilde{k}_{1}$	$2e,\mu$	0-3 jets	-	20	2
	SB ([?] NLSP)	1-2 r + 0-1 (0-2 jets	Yes	20.3	8
ľ	GM (bino NLSP)	2γ	-	Yes	20.3	2
	GGM (higgsino-bino NLSP)	7	1.6-	Yes	20.3	1
ł	GGM (higgsino-bino NLSP)	7	2 jets	Yes	20.3	2
	GGM (higgsino NLSP)	$2 e, \mu(Z)$	2 jets	Yes	20.3	1
ł	Gravitino LSP	Q	mono-jet	105	20.3	F ^{1/2} scale
	$gg, g \rightarrow b\bar{b}\bar{k}_{1}^{0}$	0	3.6	Yes	20.1	2
1	88. 8→mx1	0	7-10 jets	Yes	20.3	2
l	\$2. g→1121	0-1 e. jr	36	Yes	20.1	2
Ľ	$gg, g \rightarrow b \bar{e} \bar{e}_1$	0-1 e.µ	3.6	Yes	20.1	2
1	$\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{k}_1^0$	0	2.b	Yes	20.1	δ, 100-620 Ge
	$b_1b_1, b_1 \rightarrow t\hat{t}_1^{d}$	2 e, µ (SS)	0.3 b	Yes	20.3	k, 275-440 GeV
	$\tilde{r}_1 \tilde{s}_1, \tilde{s}_1 \rightarrow b \tilde{k}_1^{\dagger}$	1-2 e. µ	1-2 b	Yes 4	4.7/20.3	ž ₁ 110-167 GeV 230-460 GeV
	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow W h \tilde{t}_1^0$ or $\epsilon \tilde{t}_1^0$	0-2 e.µ 0)-2 jets/1-2 /	Yes	20.3	ž ₁ 90-191 GeV 210-70
	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow c \tilde{t}_1^D$	0 11	iono-jeti'c-ta	g Yes	20.3	7, 90-240 GeV
	r ₁ r ₁ (natural GMSB)	$2 e, \mu(Z)$	1.6	Yes	20.3	7, 150-580 GeV
	$\tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + Z$	3 e, µ (Z)	1.6	Yes	20.3	72 290-600 Ge
ľ	$\tilde{\ell}_{LR}\tilde{\ell}_{LR}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_1^0$	$2 e, \mu$	0	Yes	20.3	7 90-325 GeV
	$\hat{X}_{1}^{*}\hat{X}_{1}^{-}, \hat{X}_{1}^{*} \rightarrow \tilde{l}v(l\bar{\nu})$	$2e,\mu$	0	Yes	20.3	λ [*] 140-465 GeV
	$\hat{X}_{1}^{*}\hat{X}_{1}^{-}, \hat{X}_{1}^{*} \rightarrow \tilde{T}r(\tau\tilde{r})$	2 7		Yes	20.3	X ₁ 100-350 GeV
	$\hat{x}_1 \hat{x}_2 \rightarrow \hat{t}_L r \hat{t}_L t(\hat{v}v), t \hat{v} \hat{t}_L t(\hat{v}v)$	$3e, \mu$	0	Yes	20.3	x ₁ ,x ₂ 70
	$\tilde{\chi}_{1}^{*}\tilde{\chi}_{1}^{*} \rightarrow W\tilde{\chi}_{1}^{*}Z\tilde{\chi}_{1}^{*}$	2-3 e. µ	0-2 jets	Yes	20.3	1,1,1,420 GeV
	$X_1X_2 \rightarrow WX_1kX_1, k \rightarrow bb/WW/r$	1/77 e.p.7	0-2 b	Yes	20.3	250 GeV
	$X_2X_3, X_{2,3} \rightarrow \ell_R\ell$	4 e, µ	0	Yes	20.3	1 ₁₀ 620 Ge
	GGM (who NLSP) weak prod.	1 e,μ + γ		162	20.3	W 124-361 GeV
ī	Direct $\hat{x}_1 \hat{x}_1$ prod., long-lived \hat{x}	Disapp. trk	1 jet	Yes	20.3	x ^a 270 GeV
	Direct $\hat{x}_1 \hat{x}_1$ prod., long-lived \hat{x}	dE/dx trk		Yes	18.4	31 482 GeV
	Stable, stopped <u>2</u> R-hadron	0	1-5 jets	Yes	27.9	2
	Stable g H-hadron	DK I D			19.1	
	GMSB, stable $\overline{r}, \overline{x_1} \rightarrow \overline{r}(\overline{c}, \overline{\mu}) + \overline{r}(\overline{c}, \overline{\mu})$	(r, µ) 1-2 µ		No.	19.1	537 GeV
١	GMSB, $\chi_1 \rightarrow \gamma G$, long-lived χ_1	ey den alasia		Tes	20.3	435 GeV
	22.XI-rev/qn/ppr	displ. er/cp/pp	н		20.3	3
	GGM 25. 11→20	wape. For 7 per			60.0	
1	LFV $pp \rightarrow \hat{\tau}_{\tau} + X, \hat{\tau}_{\tau} \rightarrow e\mu/e\tau/\mu\tau$	ep,et,pt		-	20.3	8.
	Bilinear RPV CMSSM	$2 e, \mu$ (88)	0-3 b	Yes	20.3	4.8
	$\mathcal{X}_{[}\mathcal{X}_{[}, \mathcal{X}_{[}] \rightarrow W\mathcal{X}_{[}, \mathcal{X}_{[}] \rightarrow ee\hat{v}_{\mu}, e\mu\hat{v}$, 4e,µ		Yes	20.3	7
	$X_1X_1, X_1 \rightarrow WX_1, X_1 \rightarrow \tau\tau \bar{\nu}_c, e\tau \bar{\nu}_l$, <i>ae.µ+t</i>	di Tinte	105	20.3	450 GeV
	88-8-999	0	6-7 jets		20.3	
	$gg, g \rightarrow qt_1, t_1 \rightarrow qqq$	26.4/661	0.2 4	Max	20.3	
	1.1. 1	6 (100)	2 jatt + 2 h	-	20.3	2. 100-308 GeV
1	$\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow bf$	20.0	24		20.3	i.
	101101-00	p			80.0	
t	Scalar charm, 2→ck1	0	2 c	Yes	20.3	2 490 GeV
						0-1

*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are obse

Axions are on fire!

Theory

Experiments

Cosmology

Astrophysics

Theory

- Peccei-Quinn mechanism, solution of strong CP problem -> QCD axion

 $\mathcal{L}_{\theta} = \frac{\alpha_s}{8\pi} G_{\mu\nu a} \widetilde{G}_a^{\mu\nu} \left(\frac{a}{f_a} + \theta\right) + \frac{1}{2} (\partial_{\mu} a) (\partial^{\mu} a) \qquad V_{\text{QCD}} \left(\theta + a/f_a = 0\right) = \text{min.}$

- axion = Goldstone boson (similar to pion)

- New energy scale f_a (axion decay constant)
- Axions appear BSM,
- compatible with GUT, SUSY, String theory
- String theory predicts many <u>axion-like particles</u> = axiverse
- SMASH model
- relation with neutrino mass

Cosmology

The big bang						
	10 ⁻³⁶ second Probable era of inflation	10 ⁻⁵ second Formation of protons and neutrons from guarks		300,000 years First atoms form		10 to 15 billion years Modern galaxies appear
10 ⁻⁴³ se Quantur gravity e	cond n ira	10 ⁻¹¹ second Strong, weak, electromagnetic, and gravitational forces appear	3 minutes Synthesis and helium	of hydrogen n nuclei	100 million years First stars, galaxies, and quasars appear	

Dark matter

- $\theta(t,\mathbf{x})$ relaxes to its minimum, overshoots and oscillates

Theta evolution, Averaged SCENARIO I

Dark matter density, inhomogeneous at comoving mpc scales

Strings

SCENARIO I, N=1

SCENARIO I, N>1, Domain Walls stable-> cosmological disaster

SCENARIO I, N=1

SCENARIO I, N>1, break slightly degeneracy (quantum gravity?)

Theta evolution, inflated SCENARIO I

 π

 θ

 π

One misalignment angle singled out

Theta evolution, inflated SCENARIO I

Axion DM, isocurvature issue and BICEP2

- Axion fluctuates during inflation (entropy perturbations)

Generalisation for ALPs coupled to photons

Arias et al 2012

Generalisation for ALPs coupled to photons

Arias et al 2012

More on Cosmology

- cosmic string contribution still uncertain (WIP)

- hot dark matter / dark radiation (Neff)
- Ultralight axions affect large scale structure formation
- Axion-like inflation

More on Cosmology

- race to improve $\chi(T)$

arXiv:1606.07494

- cosmic string contribution still uncertain (WIP)

- hot dark matter / dark radiation (Neff)
- Ultralight axions affect large scale structure formation
- Axion-like inflation

SMASH

model of particle physics and cosmology based on axions

Bounds and hints from astrophysics

Stellar evolution and axions

- Stellar evolution (speed limited by energy loss)

- Axions emitted from stars accelerate stellar evolution

He

Н

...

hints from stellar evolution

- Some systems improve with additional axion cooling!

Tip of the Red Giant branch (M5)

White dwarf luminosity function

HB stars in globular clusters

Neutron Star CAS A

Globular clusters

-Different phases affected differently

-Recent study of 39 GCs (Ayala '14)

$$g_{a\gamma} < 0.66 \times 10^{-10} \text{GeV}^{-1}$$

Globular clusters

Globular clusters : Ayala et al

-Degeneracy between initial Helium abundance (Y) and axion energy loss

Globular clusters : Ayala et al (new analysis)

-New: Sinthetic CM diagrams, nuclear rates $g_{a\gamma} = (0.29 \pm 0.18) \times 10^{-10} \text{GeV}$ $g_{a\gamma} < 0.65 \times 10^{-10} \text{GeV}(95\% C.L.)$

Model prescriptions and error budget

Measured parameters

Parameter	uncertainty	Reference
R	1.39±0.03	Ayala et al. 2014
Y	0.255±0.002	Izotov et al. 2015, Aver et al. 2014

Model Parameters: Nuclear reaction rates

Reaction	uncertainty	Reference
⁴ N(p,γ) ¹⁵ O	7%	SF II , Adelberger et al. 2011 (LUNA 2005)
⁴ He(2α,γ) ¹² C	10%	Angulo et al. 1999 (NACRE), Fymbo 2005
¹² C(α,γ) ¹⁶ O	20%	Kunz et al. 2001, Shurman et al. 2013

Treatment of convection (HB):

Induced overshoot (He -> C,O) + Semiconvection (see Straniero et al 2003, ApJ 583, 878)

Plasma neutrinos (RGB):

Esposito et al. 2003, Nucl. Phys. B 658, 217 Haft et al. 1994 ApJ. 425, 222 Itoh et al. 1996, ApJ 470, 1015.

5 PARAMETERS

$$g_{\alpha\gamma} = a \mathcal{G}^{2} + b \mathcal{G}$$

$$\mathcal{G} = R_{g=0} - R = cY + f(r1, r2, r3) + d - R$$

$$a = 5.2706 \quad b = 4.675$$

$$c = 7.3306 \quad d = -0.409$$

Globular clusters : Ayala et al (new analysis)

*m*_a [eV]

Globular clusters with axion-electron

Globular clusters with axion-photon+axion-electron

Axion-electron

Tip of the Red Giant branch (M5)

Sriathnes

Globular ClusterM5

Axion emission cools down core, delays ignition

Tip of the Red Giant error budget (M5)

Theory

Observation

Table 4. Error budget in theoretically predicted $M_{I,TRGB}^{the}$

Input quantity	Adopted Range	$\Delta M_{I,\text{TRGB}}$ [0.01 mag]
Mass (M_{\odot})	0.820 ± 0.025	±0.2
Y	0.245 ± 0.015	±1.0
Z	0.00136 ± 0.00035	+0.7/-0
$[\alpha/\text{Fe}]$	0.3 ± 0.1	∓0.4
$lpha_{ m MLT}$	$\alpha_{MLT}^{calibrated} \pm 0.2$	±5.6
Atomic diffusion	See text	+0/-0.6
Boundary conditions	$(1 \pm 0.05) T(\tau)$	∓0.7
K _{rad}	±10%	∓0.02
κ _c	±10%	±1.6
Nuclear Rates	See Table 3	±1.9
Nuclear Screening	±20%	±1.1
Neutrino emission	±5%	
EOS	8 cases	+2.4/-0.5
Mass loss (M_{\odot})	0.12-0.28	+2.2/ + 3.5

Bol-correction *o*

 $\sigma_{\rm BC} = (0.08 + 0.013 \,\mu_{12}) \,\,{\rm mag}$

$$M_{I,\text{TRGB}}^{\text{obs}} = -4.17 \pm 0.13 \text{ mag},$$

Distance	$\sigma_{m-M} = 0.11$
Tip-brightest	$\sigma_{\Delta_{\rm tip}}=0.058.$

Omega-Centauri (neutrino moment)

Core collapse SN

Iron Core collapse when electron degeneracy pressure cannot support its grav. pull

 $\mathcal{M}_{\rm core} \sim 1.4 \mathcal{M}_{\odot}$

. . .

Si

Fe

The gravitational energy of the core is mainly to be radiated away in neutrinos $E = 3 \times 10^{53}$ erg

n,p

Neutrino burst

n,p

-Neutrinos TRAPPED -Emitted from neutrino-sphere T~MeV - ~10 sec to cool it down

Axions (more weakly interacting)
Emitted from the bulk T~tens MeV
can cool much faster!

Reduction of nu burst $N + N \rightarrow N + N + a$

$$p, n$$
 π p, n

first approx. (pi pole too hard...)

 $g = 10^{-10} \text{ GeV}^{-1}$

Reduction of nu burst $N + N \rightarrow N + N + a$

axion emission is suppressed due to high density effects !

SN1987A

- Cooling ~ 10 s - Exotics, Eloss/mass and time $\epsilon \lesssim 10^{19} {\rm erg/gs}$
 - Axion emission ...

$$\epsilon_a \sim g_{ap}^2 1.6 \times 10^{37} \mathrm{erg/gs} \left(\frac{T}{30 \mathrm{Me}} \right)$$

- Constraint ...

 $g_{ap} \lesssim 0.8 \times 10^{-9}$

- Axions saturating the bound take ~50% Ecore

Diffuse Supernova Axion Background

White dwarf luminosity function

- White dwarfs are death stars (sustain no fusion)

- final phase of intermediate mass stars which cannot fuse C and O (Sun...)
 - Cool by 1) neutrino emission and 2) by photon surface emission

White dwarf luminosity function

White dwarf luminosity function

Pulsating WDs

- DAV, DBVs period decrease (traces energy loss) faster than theory models

R548

G117-B15A

PG 1351+489

arXiv:1211.3389

arxiv:1205.6180

Battich, priv. com.

 $g_{ae} = 0.28 \times 10^{-13} m_a [\text{meV}] \cos^2 \beta$

- Values of axion-couplings suggested by DAV's LARGER then WDLF and DBV
- Is the pulsating mode well identified?

arXiv:1406.7712

disfavoured by the study of the WDLF. It is worth noting that the high mass of the axion derived in those works is a direct consequence of the identification of the 215 s (213 s) mode of G117-B15A (R548) as a mode trapped in the envelope. Consequently, our result can also be viewed as a strong argument that those modes are not trapped modes. This is true

Cassiopeia A: neutron star cooling

- Cooling measured by Chandra, ~4% in ten years!

- Evidence of $\bar{\nu}\nu$ emission in n Cooper pair formation 3P_2

- Factor of ~2 extra cooling required, axions?

Hints, constraints and models ... any preference?

Hb/RG Globular clusters

Tip of the Red Giant branch (M5)

White dwarf luminosity function

Giannotti et al (arXiv:1512.08108)

	α_{26}	references
G117 - B15A	1.87 ± 0.53	[4]
R548	1.82 ± 1.03	[<mark>6</mark>]
PG 1351+489	0.52 ± 0.67	[7]
WDLF	0.156 ± 0.068	[8]
RG	0.26 ± 0.28	[12]
HB	0.38 ± 0.3	this work

Transparency of the Universe

Excess persists at

 $2-4\sigma$

Transparency of the Universe ... due to axion-like particles?

Very High energy gamma rays CAN arrive to Earth converted into axions

-The effect requires couplings $g_{a\gamma} \sim 10^{-11} {
m GeV}^{-1}$ and mass $m \sim 10^{-9} {
m eV}$

It cannot be the QCD axion, but it can be an axion-like particle ...
how can we test it?

Experiments

maxion(eV)

0.01

0.1

Force Bange in cm

10⁻¹⁰ 10⁻⁸ 10⁻⁶ 10⁻⁴ m[eV]

0.01

maxion(eV)

0.01

0.1

Force Bange in cm

10⁻¹⁰ 10⁻⁸ 10⁻⁶ 10⁻⁴ m[eV]

0.01

maxion(eV)

0.01

0.1

Force Bange in cm

10⁻¹⁰ 10⁻⁸ 10⁻⁶ 10⁻⁴ m[eV]

0.01

Dark matter axion experiments

Haloscopes

Resonant cavity (ADMX, Yale, CAPP Korea, RADES)

Dielectric haloscope (MADMAX)

A developing picture

- Axions and axion-like particles

offer new theoretical perspectives dark matter candidates solutions to astrophysical conundrums

... and are experimentally testable

dark matter experiments haloscopes & CASPER solar axions at the meV frontier (dark matter & astro hints) 5th forces

however ... many topics not covered!