Axion Dark matter Experimental review

Javier Redondo (Zaragoza U. & MPP)

The theta angle of the strong interactions

- The value of θ controls matter-antimatter differences in QCD
- In particular neutron (and proton) Electric dipole moment

Measured today $|\theta| < 10^{-10}$ (strong CP problem)

Measured today $|\theta| < 10^{-10}$ (strong CP problem)

Measured today $|\theta| < 10^{-10}$ (strong CP problem)

Dark Matter Axions

Measured today $|\theta| < 10^{-10}$ (strong CP problem)

Axion dark matter scenarios $f_a[GeV]$ 10¹⁴ 10¹² 10¹¹ 10¹⁰ 10⁹ 10⁸ 10⁷ 10⁶ 10⁵ 10⁴ 10³ 10² 10¹ - Axion DM scenarios

tuned (anthropic?) ok tuned

Inflation smooth $\Omega_{\rm aDM} h^2 \simeq \theta_I^2 \left(\frac{80\,\mu {\rm eV}}{m_a}\right)^{1.19}$

Axion dark matter scenarios

- Axion DM scenarios

 10^{-7} 10^{-6} 10^{-5} 10^{-4} 10^{-3} 10^{-2} 10^{-1} 10³ 1 10 10² 105 10⁴ 10^{6} $m_a[eV]$ **Initial conditions set by :** Inflation smooth Phase transition (N=1) Phase transition (N>1) $\Omega_{\rm aDM} h^2 \simeq \theta_I^2 \left(\frac{80\,\mu {\rm eV}}{m_a}\right)^{1.19}$ strings+unstable DW's strings+long-lived DWs

Axion dark matter scenarios

Energy density
$$\theta(t) = \theta_0 \cos(m_a t)$$

 $\rho_{\text{CDM}} = 0.3 \frac{\text{GeV}}{\text{cm}^3} \equiv \frac{1}{2} (\dot{a})^2 + \frac{1}{2} m_a^2 a^2 = \frac{1}{2} m_a^2 f_a^2 \theta_0^2 \longrightarrow \theta_0 \sim 3.6 \times 10^{-19}$

Energy density
$$\theta(t) = \theta_0 \cos(m_a t)$$

 $\rho_{\text{CDM}} = 0.3 \frac{\text{GeV}}{\text{cm}^3} \equiv \frac{1}{2} (\dot{a})^2 + \frac{1}{2} m_a^2 a^2 = \frac{1}{2} m_a^2 f_a^2 \theta_0^2 \longrightarrow \theta_0 \sim 3.6 \times 10^{-19}$

Fourier-transform a(x)

 $\omega \simeq m_a (1 + v^2/2 + \dots)$

Energy density
$$\theta(t) = \theta_0 \cos(m_a t)$$

 $\rho_{\text{CDM}} = 0.3 \frac{\text{GeV}}{\text{cm}^3} \equiv \frac{1}{2} (\dot{a})^2 + \frac{1}{2} m_a^2 a^2 = \frac{1}{2} m_a^2 f_a^2 \theta_0^2 \longrightarrow \theta_0 \sim 3.6 \times 10^{-19}$

Fourier-transform a(x)

 $\omega \simeq m_a (1 + v^2/2 + \dots)$

Energy density
$$\theta(t) = \theta_0 \cos(m_a t)$$

 $\rho_{\text{CDM}} = 0.3 \frac{\text{GeV}}{\text{cm}^3} \equiv \frac{1}{2} (\dot{a})^2 + \frac{1}{2} m_a^2 a^2 = \frac{1}{2} m_a^2 f_a^2 \theta_0^2 \longrightarrow \theta_0 \sim 3.6 \times 10^{-19}$

Fourier-transform a(x) $\omega \simeq m_a(1+v^2/2+...)$

Energy density
$$\theta(t) = \theta_0 \cos(m_a t)$$

 $\rho_{\text{CDM}} = 0.3 \frac{\text{GeV}}{\text{cm}^3} \equiv \frac{1}{2} (\dot{a})^2 + \frac{1}{2} m_a^2 a^2 = \frac{1}{2} m_a^2 f_a^2 \theta_0^2 \longrightarrow \theta_0 \sim 3.6 \times 10^{-19}$

```
Fourier-transform a(x)

\omega \simeq m_a(1+v^2/2+...)
```


Energy density
$$\theta(t) = \theta_0 \cos(m_a t)$$

 $\rho_{\text{CDM}} = 0.3 \frac{\text{GeV}}{\text{cm}^3} \equiv \frac{1}{2} (\dot{a})^2 + \frac{1}{2} m_a^2 a^2 = \frac{1}{2} m_a^2 f_a^2 \theta_0^2 \longrightarrow \theta_0 \sim 3.6 \times 10^{-19}$

```
Fourier-transform a(x)

\omega \simeq m_a(1+v^2/2+...)
```


Detection channels, Axion Couplings

	2 photon	proton	neutron	electron
$\frac{\alpha_s}{8\pi} \theta G_{\mu\nu} \widetilde{G}^{\mu\nu} + \text{m.d.} \rightarrow$	$\frac{\alpha C_{a\gamma}}{2\pi} \frac{a}{f_a} \frac{F_{\mu\nu} \widetilde{F}^{\mu\nu}}{4} +$	$-C_{ap}m_prac{a}{f_a}[i\bar{p}\gamma_5 p] +$	$-C_{an}m_nrac{a}{f_a}[i\bar{n}\gamma_5n]$ -	$-C_{ae}m_erac{a}{f_a}[i\bar{e}\gamma_5 e] -$
	م ۳ ۳	$a \dots p p$		

Pions, etc...

CP conserved at $\theta = 0$, but otherwise, **CP** violation $\propto \theta$

Axion DM in a B-field

$$\mathcal{L}_I = -C_{a\gamma} \frac{\alpha}{2\pi} \frac{a}{f_a} \mathbf{B} \cdot \mathbf{E}$$

- In a static magnetic field, the oscillating axion field generates EM-fields

$$\mathcal{L}_{I} = -C_{a\gamma} \frac{\alpha}{2\pi} \theta(t) \mathbf{B}_{ext} \cdot \mathbf{E}$$
Source

- Electric fields $\mathbf{E}_a = C_{a\gamma} \frac{\alpha \mathbf{B}_{ext}}{2\pi} \theta_0 \cos(m_a t)$ (amp independent of mass!)

- Oscillating at a frequency $\omega \simeq m_a$

-B-fields $\propto \nabla \theta$ $|\mathbf{B}_a| \sim \langle v \rangle |\mathbf{E}_a|$

Dish antenna experiment?

- Haloscope (Sikivie 83) "Amplify resonantly the EM field in a cavity" \downarrow $P \sim Q |\mathbf{E}_a|^2 (Vm_a) \mathcal{G}\kappa$ (on resonance)

(integrate the power in a coherent time)

Past experiments Florida U., RBF, ADMX, CARRACK
 Future endeavors: ADMX, ADMX-HF, YMCE, CAPP

Sikivie 2013

- Haloscope (Sikivie 83) "Amplify resonantly the EM field in a cavity" \downarrow $P \sim Q |\mathbf{E}_a|^2 (Vm_a) \mathcal{G}\kappa$ (on resonance)

(integrate the power in a coherent time)

- Past experiments Florida U., RBF, ADMX, CARRACK
- Future endeavors: ADMX, ADMX-HF, YMCE, CAPP
- Parameters unexplored at low and high masses: WHY?

- Haloscope (Sikivie 83) "Amplify resonantly the EM field in a cavity" \downarrow $P \sim Q |\mathbf{E}_a|^2 (Vm_a) \mathcal{G}\kappa$ (on resonance)

(integrate the power in a coherent time)

- Past experiments Florida U., RBF, ADMX, CARRACK
- Future endeavors: ADMX, ADMX-HF, YMCE, CAPP

- Parameters unexplored at low and high masses: WHY?

Cylindrical cavity (h/r=b) like ADMX but scaled

- Haloscope (Sikivie 83) "Amplify resonantly the EM field in a cavity" \downarrow $P \sim Q |\mathbf{E}_a|^2 (Vm_a) \mathcal{G}\kappa$ (on resonance)

(integrate the power in a coherent time)

Past experiments Florida U., RBF, ADMX, CARRACK
 Future endeavors: ADMX, ADMX-HF, YMCE, CAPP

- Parameters unexplored at low and high masses: WHY?

Cylindrical cavity (h/r=b) like ADMX but scaled

-Signal
$$(V \propto m_a^{-3})$$
 $P_{\rm out} \propto V m_a \sim \frac{1}{m_a^2}$

- Haloscope (Sikivie 83) "Amplify resonantly the EM field in a cavity" \downarrow $P \sim Q |\mathbf{E}_a|^2 (Vm_a) \mathcal{G}\kappa$ (on resonance)

(integrate the power in a coherent time)

Past experiments Florida U., RBF, ADMX, CARRACK
 Future endeavors: ADMX, ADMX-HF, YMCE, CAPP

- Parameters unexplored at low and high masses: WHY?

Cylindrical cavity (h/r=b) like ADMX but scaled

- Signal $(V \propto m_a^{-3})$ $P_{\text{out}} \propto V m_a \sim \frac{1}{m_a^2}$ - Noise $P_{\text{noise}} = T_{\text{sys}} \Delta \nu_a \propto m_a^2$

- Haloscope (Sikivie 83) "Amplify resonantly the EM field in a cavity" \downarrow $P \sim Q |\mathbf{E}_a|^2 (Vm_a) \mathcal{G}\kappa$ (on resonance)

(integrate the power in a coherent time)

Past experiments Florida U., RBF, ADMX, CARRACK
 Future endeavors: ADMX, ADMX-HF, YMCE, CAPP

- Parameters unexplored at low and high masses: WHY?

Cylindrical cavity (h/r=b) like ADMX but scaled

- Signal $(V \propto m_a^{-3})$ $P_{\text{out}} \propto V m_a \sim \frac{1}{m_a^2}$ - Noise $P_{\text{noise}} = T_{\text{sys}} \Delta \nu_a \propto m_a^2$

- Signal/noise in $\Delta
u_a$ of time, t,

$$\frac{S}{N} = \frac{P_{\rm out}}{P_{\rm noise}} \sqrt{\Delta \nu_a t}$$

- Haloscope (Sikivie 83) "Amplify resonantly the EM field in a cavity" \downarrow $P \sim Q |\mathbf{E}_a|^2 (Vm_a) \mathcal{G}\kappa$ (on resonance)

(integrate the power in a coherent time)

Past experiments Florida U., RBF, ADMX, CARRACK
 Future endeavors: ADMX, ADMX-HF, YMCE, CAPP

- Parameters unexplored at low and high masses: WHY?

Cylindrical cavity (h/r=b) like ADMX but scaled

- Signal
$$(V \propto m_a^{-3})$$
 $P_{\text{out}} \propto V m_a \sim \frac{1}{m_a^2}$
- Noise $P_{\text{noise}} = T_{\text{sys}} \Delta \nu_a \propto m_a^2$

- Signal/noise in $\Delta \nu_a$ of time, t, $\frac{S}{N} = \frac{P_{\text{out}}}{P_{\text{noise}}} \sqrt{\Delta \nu_a t}$

- Scanning rate
$$\frac{1}{m_a} \frac{d\Delta m_a}{dt} \propto \frac{C_{a\gamma}^4}{m_a^9}$$

Sikivie 2013

ADMX-HF

ADMX-Fermilab

CARRACK (discontinued)

CAST-CAPP

CULTASK - CAPP -Korea

Cavity experiments

ADMX

Insert + Magnet Schematic

Insert extraction from magnet

Scanning over frequencies

ADMX 2015

Yale, L

- Test bench for higher frequencies
- Hybrid Superconducting cavities
- Josephson parametric amps
- Single photon detectors at > 10 GHz

Set up running at f ~ 5.6 GHz, 25 mK temperatures, 9T

CAPP

Daejeon, Korea

- Korean IBS Center for Axion and Precision Physics
- + proton EDM experiment (with Fermilab)
- + Axion DM experiments
 - * CULTASK at ~ 6-10 GHz?
- * Lots of R+D
- High Tc superconducting magnets (25,35 T !)
- hybrid resonant cavities, toroidal?
- SQUIDS at HF
- Add up cavity outputs

CAPP plans

ADMX goals and CAPP plan

Dielectric multi-mirror

Emitted EM-waves from each interface + internal reflections ...

 $P \sim |\mathbf{E}_a|^2 \operatorname{Area} \times \mathcal{O}(N^2)$

Max-Planck-Institut für Physik (Nense Heisenberg Institut)

Simulated

Jaeckel, JR 2013

Dielectric multi-mirror

Max-Planck-Institut für Physik

Emitted EM-waves from each interface + internal reflections ...

Jaeckel, JR 2013

Dielectric multi-mirror

LC- circuit

- Detect low-frequency B-field with a tunable LC
- First moves in Florida U.

Graham 2012

Spin precesion

 $\omega = \mu |\vec{B}_{\rm ext}|$

Static EDM, effects cancel in a period

Static EDM, effects cancel in a period

Mainz, Berkeley

- Electron coupling in the non-relativistic limit, Electron spin - axion "wind"

Effective Magnetic field

- Use Electron Spin Resonance (similar to NMR but with electrons) $\omega = \mu_B \vec{B}_{ext} = m_a$
- Bohr magneton much larger, smaller B-fields required for large axion mass
- Short coherence times, radiation damping (R+D)
- HF detection ? Use non-linearity and search for LF oscillations $\omega \sim \mu_B |\vec{B}_{ext}| m_a$

Axion DM : A developing picture

