Solar WISPs

Light DM Beyond WIMPs Workshop: from Theory to detection

- Sun as a laboratory for fundamental physics
- Light DM particles : axions and HPs
- Solar flux
- Solar constraints
- Helioscopes

Modeling the Sun

Accurate solar models but...

Models of Solar interior 1: numerical evolution of 2: Inversion of oscillation stellar structure until now frequencies agree quite nicely ... 10 10² 10 10 $\rho[g/cm^3]$ -T[eV]10 10^{-2} 10^{-3} 10 10^{-1} 0.2 0.2 0.40.6 0.8 1.0 0.00.4 0.6 0.8 1.0 0.0 r/R_{Sun} r/R_{Sun} 0.015 observed -model '98 highZ **GS98** AGS05 AGSS09 0.010 **'09 lowZ** However, a small discrepancy Sc/c persists: solar abundance problem 0.005 0.000 -0.0050.8 0.0 0.2 0.4 0.6 1.0 R/R,

Sun as a particle lab

- WISPs are emitted by plasma interactions -> New direct Energy loss
- Eloss provided by faster nuclear reactions $4p \rightarrow He + 2\nu + E$

but we still have to observe the same external parameters L, R, He and Z abundances, etc...

but what particles are we interested in?

light DM candidates ... ?

light DM 1 : Axions

 $f_a[\text{GeV}]$ 1014 10^{13} 10^{12} 10^{11} 10^{10} 108 10⁵ 10^{9} 107 106 10⁴ 10^{3} 10^{2} 10¹

- Axion DM scenarios

excluded

ok

ok

?

(tuned)

sub

tuned

excluded

Sunday, 31, May, 2015

tuned (anthropic?)

light DM 1 : Axions

light DM 2 : Hidden Photons $\mathcal{L} \ni -\frac{\chi}{2} F_{\mu\nu} F'^{\mu\nu}$

- HP DM scenarios

Sunday, 31, May, 2015

Axions from the Sun

Hadronic axions

Non hadronic (electron coupling)

typical of non-hadronic meV mass axions

the A from ABC axions

Redondo JCAP12(2013)008

Atomic de-excitation and recombination : cumbersome atomic physics (all Z) in a plasma (E-levels, f-factors, etc...)

Solution!

Sunday, 31, May, 2015

different opacity codes

HPs from the Sun

Redondo 08, An 13, Raffelt 13

HPs are produced in photon-oscillations

Transverse polarization

$$\Gamma_{\gamma_T'}^{\rm Prod} = \Gamma_{\gamma_T}^{\rm Prod} \times \frac{\chi^2 m^4}{(m^2 - {\rm Re}\Pi_{\rm T})^2 + ({\rm Im}\Pi_T)^2}$$

 $\begin{array}{l} \text{Longitudinal polarization} \qquad (\text{Isotropic, NR medium } |M_L|^2 = |M_T|^2 \frac{K^2}{\omega^2} \quad , \ \Pi_L = \Pi_T \frac{K^2}{\omega^2} \end{array}) \\ \Gamma_{\gamma'_L}^{\text{Prod}} = \Gamma_{\gamma_L}^{\text{Prod}} \times \frac{\chi^2 m^4}{(m^2 - \text{Re}\Pi_L)^2 + (\text{Im}\Pi_L)^2} \quad = \Gamma_{\gamma_T}^{\text{Prod}} \times \frac{\chi^2 m^2 \omega^2}{(\omega^2 - \text{Re}\Pi_T)^2 + (\text{Im}\Pi_T)^2} \end{array}$

Redondo 08, An 13, Raffelt 13

We need Π_T inside the Sun to compute the emission

Redondo 08, An 13, Raffelt 13

We need Π_T inside the Sun to compute the emission

Redondo 08, An 13, Raffelt 13

We need Π_T inside the Sun to compute the emission

$\Pi = \mathrm{Re}\Pi + i\mathrm{Im}\Pi$

At low temperatures, densities

Redondo 08, An 13, Raffelt 13

We need Π_T inside the Sun to compute the emission

$\Pi = \mathrm{Re}\Pi + i\mathrm{Im}\Pi$

 $\Pi = \operatorname{Re}\Pi + i\operatorname{Im}\Pi \equiv m_{\gamma}^{2} + i\omega(\Gamma^{A} - \Gamma^{E})$

Redondo 08, An 13, Raffelt 13

We need Π_T inside the Sun to compute the emission

refraction absorption(emission)
Refraction:
$$\operatorname{Re}\Pi = \frac{4\pi\alpha n_e}{m_e} + \sim \frac{4\pi\alpha n_H}{m_e} \sum_r \frac{\omega^2(\omega^2 - \omega_r^2)}{(\omega^2 - \omega_r^2)^2 + (\omega\gamma_r)^2} + \dots$$

free electrons (>0) neutral H Z, KK...
Absorption/E: $\operatorname{Im}\Pi = \Pi^{\operatorname{Bremsstrahlung}} + \Pi^{\operatorname{Compton}} + \Pi^{\operatorname{Atomic},H} + \Pi^{\operatorname{Atomic},Z} + \dots$
standard formulas calculated taken from OP
Completely irrelevant for the Sun-average emission
 $\int dr \frac{\Gamma(r)}{(m^2 - \operatorname{Re}\Pi(r))^2 + (\omega\Gamma(r))^2} \times \dots$ = independent of Γ

Atlas of solar HP emission: T-modes

Redondo arXiv:1501.07292

Sunday, 31, May, 2015

Atlas of solar HP emission: L-modes

Redondo arXiv:1501.07292

Atlas of solar HP emission: L-modes

Redondo arXiv:1501.07292

Constraining Solar Axions

... An 13, Raffelt 13, Vinyoles arXiv:1501.01639

Solar models with Axion (hadronic, L-HP emission)

Constraining Solar Axions

... An 13, Raffelt 13, Vinyoles arXiv:1501.01639

Solar models with Axion (hadronic, L-HP emission)

Constraining Solar HPs

... An 13, Raffelt 13, Vinyoles arXiv:1501.01639

Solar models with Axion (hadronic, L-HP emission)

Constraining Solar HPs

caveat ... solar abundance issue

Constraining Solar HPs

... An 13, Raffelt 13, Vinyoles <u>arXiv:1501.01639</u>

Constraining HPs from HB and RG

... An 13, Raffelt 13, Vinyoles <u>arXiv:1501.01639</u>

Helioscopes

Detect solar WISPs with Earth-bound Experiments

Axion Helioscopes

Detect solar Axions in a strong B-field (coherent along the length)

ma [eV]

CAST (LHC dipole 9.3 m, 9T)

Axion Helioscopes

Detect solar Axions in a strong B-field (coherent along the length)

CAST (LHC dipole 9.3 m, 9T)

Next generation (proposed) IAXO

Boost parameters to the maximum

Conceptual design report IAXO 2014 JINST 9 T05002 LOI submitted to CERN, TDR in preparation

Possibility of Direct Axion DM experiments (cavities)

Parameter	Unit	CAST-I	NGAH 1	NGAH 2	NGAH 3	NGAH 4
В	т	9	3	3	4	5
L	m	9.26	12	15	15	20
A	m^2	2×0.0015	1.7	2.6	2.6	4.0
f_M^*		1	100	260	450	1900
ь	$\frac{10^{-5} \text{ c}}{\text{keV cm}^2 \text{ s}}$	~ 4	$3 imes 10^{-2}$	10^{-2}	$3 imes 10^{-3}$	10^{-3}
ϵ_d		0.5 - 0.9	0.7	0.7	0.7	0.7
ϵ_o		0.3	0.3	0.3	0.6	0.6
a	cm^2	0.15	3	2	1	1
f_{DO}^*		1	6	14	40	40
ϵ_t		0.12	0.3	0.3	0.5	0.5
t	year	~ 1	3	3	3	3
f_T^*		1	2.7	2.7	3.5	3.5
f*		1	1.6×10^3	9.8×10^3	6.3×10^4	2.7×10^5

hadronic axions

Next generation (proposed) IAXO

Boost parameters to the maximum

Conceptual design report IAXO 2014 JINST 9 T05002 LOI submitted to CERN, TDR in preparation

Possibility of Direct Axion DM experiments (cavities)

Parameter	Unit	CAST-I	NGAH 1	NGAH 2	NGAH 3	NGAH 4
В	т	9	3	3	4	5
L	m	9.26	12	15	15	20
A	m^2	2×0.0015	1.7	2.6	2.6	4.0
f_M^*		1	100	260	450	1900
ь	$\frac{10^{-5} \text{ c}}{\text{keV cm}^2 \text{ s}}$	~ 4	$3 imes 10^{-2}$	10^{-2}	$3 imes 10^{-3}$	10^{-3}
ϵ_d		0.5 - 0.9	0.7	0.7	0.7	0.7
ϵ_o		0.3	0.3	0.3	0.6	0.6
a	cm^2	0.15	3	2	1	1
f_{DO}^*		1	6	14	40	40
ϵ_t		0.12	0.3	0.3	0.5	0.5
t	year	~ 1	3	3	3	3
f_T^*		1	2.7	2.7	3.5	3.5
f*		1	1.6×10^3	9.8×10^3	6.3×10^4	2.7×10^5

non-hadronic axions

HP Helioscopes

Detect solar HPs in vacuum vessel (only T-modes)

CAST Redondo '08 SUMICO (visible) Inoue '13

SHIPS (dedicated visible)

Schwartz '15

HP Helioscopes

Detect solar HPs in with DM detectors

An '13

Very conservative analysis low-energy ionisation events (XENON10)

Conclusions

- Sun as a laboratory can help us finding light DM candidates

- Nice complementarity but we need more DD experiments! Many things are happening... ask me!