

Status of Evidence for Neutrino Oscillations				
System	Atmospheric	Solar	LSND	
Channel	$v_{\mu} \rightarrow v_{\tau}$	$v_e \rightarrow v_{\mu\tau}$	$\overline{v}_{\mu} \rightarrow \overline{v}_{e}$	
$\delta m^2/eV^2$	(1.5-4)×10 ⁻³	LMA (0.2-2)×10 ⁻⁴	0.2-2	
sin ² 20	0.9-1	0.2-0.6	0.001-0.03	
Status	Established	Established	Unconfirmed	
	Mutually inconsistent with 3 mass eigenstates			
Test	Long Baseline	KamLAND 2002?	MiniBooNE 2003/4?	
Simplest interpre- tation	Simplest interpre- tationThree mass eigenstates with $m_1 \ll m_2 \ll m_3 \sim 50 \text{ meV}$ (hierarchical) $m_1 \sim m_2 \sim m_3 \gg 50 \text{ meV}$ (degenerate)Wrong			
What is the absolute neutrino mass scale $m_{ m v}$?				

Brightest Members of Local Group					
	Туре	Lum	D kpc	Neutrino events	SN (all types) per century
Milky Way	S(B)bc	1	8.5	330,000	1-6
LMC	Ir	0.11	50	9,600	0.1 / 0.23 / 0.49
SMC	Ir	0.030	60	6,600	0.065 / 0.12
NGC 6822	Ir	0.011	500	96	0.04
IC 10 (UGC 192)	Ir	0.015	660	55	0.082-0.11
NGC 205	Sph	0.016	760	42	
M32 (NGC 221)	E2	0.017	760	42	
Andromeda (M31)	Sb	1.3	760	42	0.9 / 1.21 / 1.25
Triangulum (M33)	Sc	0.16	790	38	0.28 / 0.35 / 0.68
 Luminosity: Visual in units of the Milky Way Neutrino events in 30 x SK fiducial vol. (8000 events in SK for SN at 10 kpc) Refs. for SN rates in Pavlidou & Fields, Ap. J. 558 (2001) 63. 					

Neutrin	o Limits by Intrinsic Signal	Dispersion	
Time-of-flight of massive neu	t delay $\Delta t = 2.57 s \left(\frac{D}{50 \text{ kpc}}\right) \left(\frac{10 \text{ MeV}}{E_v}\right)$	$\frac{1}{2}\left(\frac{m_v}{10 \text{ eV}}\right)^2$	
	A Manual Science and Annual Sciences (Sciences)		
	$E\approx 20$ MeV, $\Delta t\approx 10$ s, $D\approx 50$ kpc	m _{ve} < 20 eV	
SN 1987A	Detailed maximum-likelihood analysis similar result In 1987 competitive with tritium end-point limits		
	The second s		
Future	$D\approx 50~\text{kpc},~\text{Rise-time}~0.01~\text{s}$		
(Super-K)	Sensitivity approximately	m _{ve} ~3eV	
Future SN	D ≈ 750 kpc, ∆t ≈ 10 s		
(Megatonne)	Sensitivity approximately	m _{ve} ~ 1-2 eV	

Cosmic neutrino "sea": Approximately 112 cm ⁻³ neutrinos + anti $\Omega_{\nu}h^{2} = \sum \frac{m_{\nu}}{94 \text{ eV}} < 0.4 \qquad m_{\nu}$ HEST MASS OF MODILE NEUTRINO AND COSMOLODY S. S. Gerentein and Ya. B. Zel'dovich Subdited + June 1966	neutrinos per < 40 eV A classic pa	r flavor For all stable flavors
$\Omega_{\nu}h^{2} = \sum \frac{m_{\nu}}{94 \text{ eV}} < 0.4 \qquad m_{\nu}$ HEST MASS OF MUNIC NEUTRINO AND COSMOLOGY S. S. Gerehtein and Ya. B. Zel'dovich Submitted 4 June 1966	< 40 eV	For all stable flavors
REST MASS OF MUONIC NEUTRINO AND COSMOLOGY S. S. Gerehtein and Ya. B. Zel'dovich Submitted 4 June 1966	A classic pa	2008
ZhETF Pis'ma $\frac{1}{2}$, No. 5, 174-177, 1 September 1966 Low-accuracy experimental estimates of the rest mass < 200 eV/c ⁰ for the electronic neutrino and s(v ₁) < 2.5 x Cossoligical considerations connected with the hot n possible to strengthen greatly the second inequality. Jus dovich and Ye. A. Smorodinskii [5], let us consider the gr on the dynamics of the expanding Universe. The age of the smaller than 5 x 10 ⁹ years, and Hubble's constant H is not = (13 x 10 ⁹ year) ² . It follows therefore that the densit Universe is at the greatent time ¹	Gershtein d JETP Lett. 10° eV/c° for the s model of the Univers it as in the paper be ravitational effect brown astronomical smaller than 75 km y of all types of m	Aper: & Zeldovich 4 (1966) 120) yield m(v _e) monic neutrino. te [2] make it yy Ya. B. Zel'- of the neutrinos t objects is not v/sec-Myarsec matter in the

Dynamical range $\Delta T = 3.353$ mK Dipole temperature distribution from Doppler effect due to our motion relative to the cosmic frame

Neutrino Mass Lim	its from Cosmic Structure		
 Global fits to CMBR and LSS data, 3 flavors of equal-mass neutrinos 			
m _v < 2.8 eV at 95% CL	Novosyadlyj, Durrer & Apunevych, astro-ph/0011055		
m _v < 1.4 eV at 95% CL	Wang, Tegmark & Zaldarriaga, astro-ph/0105091		
m _v < 0.8 eV at 95% CL	Elgaroy et al., astro-ph/0204152 Hannestad, astro-ph/0205223		
For similar older limits see • Croft, Hu & Davé, PRL 83 (1999) 1092 • Fukugita, Liu & Sugiyama, PRL 84 (2000) 1082 • Gawiser, astro-ph/0005475			

Tritium and point	Mainz/Troitsk	2.5 eV
Trittam enapoint	KATRIN	0.3 eV
	SN 1987A	20 eV
Supernova Neutrinos Time-of-flight	Super-Kamiokande	3 eV
	with black hole	2 eV
	with gravity waves	1 eV
a	2DF Redshift Survey	m _v < 0.8 eV
Cosmic structure	Sloan Digital Sky Survey	m _v < 0.3 eV

How Many Relic Neutrinos?		
Standard thermal population in one f	lavor: $n_{v\overline{v}} = \frac{3}{11}n_{\gamma} \approx 112 \text{ cm}^{-3}$	
Additional active neutrinos beyond st	randard population of ν_e,ν_μ,ν_τ	
Additional families	Excluded by Z^0 width: $N_v = 3$	
Chemical potentials for ν_e,ν_μ,ν_τ	o.k.	
Sterile (right-handed) states, populated by $v_L\!\!\rightarrow v_R$		
Dirac mass	Too small in eV range	
Electromagnetic dipole moments	Excluded by energy loss of globular cluster stars	
Right-handed currents	Excluded by energy loss of SN 87A	
Oscillations/collisions	o.k., hot/warm DM possible	

Flo	avor Equilibrium Before N/P Freeze-Out ?
yes	Atmospheric neutrinos: Maximally mixed $\nu_{\mu} \to \nu_{\tau}$ oscillations Solar neutrinos by LMA solution
maybe	Solar LOW solution (Quasi-equilibrium depends on unknown third mixing angle 13)
no	Solar SMA solution
Our kno the solo	wledge of the cosmic neutrino density depends on the solution of ar neutrino problem: KamLAND most relevant current experiment
• Lunare • Dolgov	dini & Smirnov, hep-ph/0012056 , Hansen, Pastor, Petcov, Raffelt & Semikoz, hep-ph/0201287
 Abaza Wong, 	ijian, Beacom & Bell, astro-ph/0203442 , hep-ph/0203180

Synchronized Oscillations by Self-Interactions
Equation of motion in early universe with neutrino background
$\partial_{\uparrow} P_{p} = + \left(\frac{\delta m^{2}}{2p} B - \frac{8\sqrt{2}G_{F}p}{3m_{W}^{2}} \rho_{e} z \right) \times P_{p} + \sqrt{2}G_{F} (P - \overline{P}) \times P_{p} \text{neutrinos}$
$\partial_{\dagger} \overline{P}_{p} = -\left(\frac{\delta m^{2}}{2p} \mathbf{B} - \frac{8\sqrt{2}G_{F}p}{3m_{W}^{2}} \rho_{e} \mathbf{z}\right) \times \overline{P}_{p} + \sqrt{2}G_{F} (\mathbf{P} - \overline{\mathbf{P}}) \times \overline{P}_{p} \text{anti-neutrinos}$
with the integrated neutrino polarization vectors
$\mathbf{P} = \int \frac{d^3 \mathbf{p}}{(2\pi)^3} \mathbf{P}_{\mathbf{p}} \text{and} \overline{\mathbf{P}} = \int \frac{d^3 \mathbf{p}}{(2\pi)^3} \overline{\mathbf{P}}_{\mathbf{p}}$
"Magnetic field" caused by neutrinos themselves much larger than
vacuum or medium terms. Couples "magnetic moments" to one large dipole which precesses with a single frequency.
Pastar Daffelt & Semikaz PDD 65 (2002) 053011

Baryogenesis in the Early Universe
Sakharov conditions for creating the Baryon Asymmetry of the Universe (BAU) • C and CP violation • Baryon number violation • Deviation from thermal equilibrium
Particle-physics standard model • Violates B and L by electroweak instanton effects • Conserves B - L
In cosmological evolution • Pre-existing B+L erased at EW phase transition • Creation of BAU at phase transition not possible, except for special parameters in SUSY models

Connection to Neutrino Mass		
$\Gamma_{\text{Decay}} = g_{\text{v}}^2 \frac{M}{8\pi}$	Decay rate of heavy Majorana neutrino	
H≈√geff T ² mpi	Cosmic expansion rate	
T _{Decay} < H _{T=M}	Requirement for strong deviation from equilibrium	
$g_{\nu}^{2} \frac{M}{8\pi} < \sqrt{g_{eff}} \frac{M^{2}}{m_{Pl}}$		
$\frac{g_{\nu}^2}{M} < \frac{8\pi \sqrt{g_{eff}}}{m_{\text{Pl}}}$		
$\boxed{m_{v} = \frac{g_{v}^{2} \langle \phi \rangle^{2}}{M} < \frac{8 \pi \sqrt{g_{eff}}}{m_{Pl}} \langle \phi \rangle^{2} \sim 10^{-3} eV}$	translates into a limit on the observable neutrino mass	

Conclusions	
Future galactic SN signal is • Sensitive to ~ 1-3 eV mass • But not sub-eV range	
Large-scale galaxy redshift surveys: • Best limit of m _y < 0.8 eV, • Future sensitivity ~ 0.3 eV	
If solar LMA solution applies, cosmic neutrino number density precisely determined by BBN	
If highest-E cosmic-ray neutrinos are found, Z-bursts provide handle on m _v	
Majorana neutrino masses in the favored range may indicate a leptogenesis scenario for generating cosmic baryon asymmetry	

Leptogenesis – A Popular Research Topic
Fukugita & Yanagida PLB 174 (1986) 45Langacker, Peccei & Yanagida Mod. Phys. Lett. A 1 (1986) 541Campbell, Davidson & Olive NPB 399 (1993) 111
Gherghetta & Jungmann Muryama & Yanagida Worah Jeannerot PRD 48 (1993) 1546 PLB 322 (1994) 349 PRD 53 (1996) 3902 PRL 77 (1996) 3292
Dine, Randall & Thomas NPB 458 (1996) 291 Buchmüller & Plümacher PLB 389 (1996) 73 PRD 56 (1997) 1324
Ma & Sarkar PRL 80 (1998) 5716 NPB 530 (1998) 207 PRD 58 (1998) 113009 PRD 58 (1998) 071702
Akhmedov, Rubakov & Smirnov PRL 81 (1998) 1562 Carlier, Frére & Ling PRD 60 (1999) 096003 JHEP 9908 (1999) 014
Berger & Brahmachari PRD 60 (1999) 073009 PLB 452 (1999) 87 NPB 575 (2000) 61
Frére, Ling, Tytgat & v.Elewyck Dick, Lindner, Ratz & Wright Lalakulich, Paschos & Flanz PRD 60 (1999) 016005 PRL 84 (2000) 4039 PRD 62 (2000) 053006
Asaka, Hamaguchi, Kawasaki & Yanagida Berger Hambye, Ma & Sarkar PRD 61 (2000) 083512 PRD 62 (2000) 013007 PRD 62 (2000) 015010
Mangano & Miele Goldberg Rangarajan & Mishra Hirsch & King PRD 62 (2000) 063514 PLB 474 (2000) 389 PRD 61 (2000) 043509 PRD 64 (2001) 113005
Falcone & Tramontano PRD 63 (2001) 073007Bastero-Gil & King PRD 63 (2001) 123509Joshipura, Paschos & Rodejohann NPB 611 (2001) 227
Branco, Morozumi, Nobre & Rebelo NPB 617 (2001) 475 Hambye, Ma & Sarkar NPB 602 (2001) 23 AND MANY MORE