Topical Seminar on Frontiers of Particle Physics 2002: Neutrinos and Cosmology Yun Hu Holiday Resort of Mi Yun, Beijing, China (20-25 August 2002)

Neutrino Astrophysics Georg G. Raffelt Max-Planck-Institut für Physik, München, Germany

Lecture I: Physics with Supernovae

Lecture II: Cosmological Neutrinos

Status of Evidence for Neutrino Oscillations

System	Atmospheric	Solar	LSND
Channel	$\nu_{\mu} \rightarrow \nu_{\tau}$	$\nu_e \rightarrow \nu_{\mu\tau}$	$\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$
$\delta m^2/eV^2$	$(1.5-4) \times 10^{-3}$	LMA $(0.2-2) \times 10^{-4}$	0.2-2
sin ² 20	0.9–1	0.2–0.6	0.001–0.03
Status	Established	Established	Unconfirmed
	Mutually inconsistent with 3 mass eigenstates		
Test	Long Baseline (K2K)	KamLAND 2002 ?	MiniBooNE 2004 ?
Simplest interpre- tation	Three mass eigenstat $m_1 \leftrightarrow m_2 \ll m_3 \sim 50$ me $m_1 \sim m_2 \sim m_3 \gg 50$ me	Experimental Fluke	

What is the absolute neutrino mass scale m_{v} ?

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany

Lecture II: Cosmological Neutrinos

Neutrino Dark Matter and Cosmic Structure Formation

Neutrino Chemical Potentials, Big-Bang Nucleosynthesis, and Flavor Oscillations

Highest-Energy Cosmic Rays and the Cosmic Neutrino Sea

Massive Neutrinos and the Cosmic Baryon Asymmetry

Cosmological Limit on Neutrino Masses

Cosmic neutrino "sea" ~ 112 cm⁻³ neutrinos + anti-neutrinos per flavor

 $\Omega_{\rm v}h^2 = \sum \frac{m_{\rm v}}{94\,e\,\rm V} < 0.4$

 $m_v < 40 eV$

For all stable flavors

REST MASS OF MUONIC NEUTRINO AND COSMOLOGY

S. S. Gershtein and Ya. B. Zel'dovich Submitted 4 June 1966 ZhETF Pis'ma 4, No. 5, 174-177, 1 September 1966 A classic paper: Gershtein & Zeldovich JETP Lett. 4 (1966) 120

Low-accuracy experimental estimates of the rest mass of the neutrino [1] yield m(v_e) < 200 eV/c² for the electronic neutrino and m(v_µ) < 2.5 x 10⁶ eV/c² for the muonic neutrino. Cosmological considerations connected with the hot model of the Universe [2] make it possible to strengthen greatly the second inequality. Just as in the paper by Ya. B. Zel'dovich and Ya. A. Smorodinskii [3], let us consider the gravitational effect of the neutrinos on the dynamics of the expanding Universe. The age of the known astronomical objects is not smaller than 5 x 10⁹ years, and Hubble's constant H is not smaller than 75 km/sec-Mparsec = (13 x 10⁹ years)⁻¹. It follows therefore that the density of all types of matter in the Universe is at the present time ¹

 $\rho < 2 \times 10^{-28} \text{ g/cm}^3$.

Fermion Mass Spectrum

Weakly Interacting Particles as Dark Matter

THE ASTROPHYSICAL JOURNAL, 180: 7-10, 1973 February 15 © 1973. The American Astronomical Society. All rights reserved. Printed in U.S.A.

GRAVITY OF NEUTRINOS OF NONZERO MASS IN ASTROPHYSICS

R. COWSIK* AND J. MCCLELLAND Department of Physics, University of California, Berkeley Received 1972 July 24

ABSTRACT

If neutrinos have a rest mass of a few eV/c^2 , then they would dominate the gravitational dynamics of the large clusters of galaxies and of the Universe. A simple model to understand the virial mass discrepancy in the Coma cluster on this basis is outlined.

Subject headings: cosmology - galaxies, clusters of - neutrinos

The possibility of a finite rest mass for the neutrinos has fascinated astrophysicists (Kuchowicz 1969). A recent discussion of such a possibility has been in the context of the solar-neutrino experiments (Bahcall, Cabibbo, and Yahil 1972). Here we wish to point out some interesting consequences of the gravitational interactions of such neutrinos. These considerations become particularly relevant in the framework of big-bang cosmologies which we assume to be valid in our discussion here.

In the early phase of such a Universe when the temperature was ~ 1 MeV, several processes of neutrino production (Ruderman 1969) would have led to copious production of neutrinos and antineutrinos (Steigman 1972; Cowsik and McClelland 1972). Conditions of thermal equilibrium allow an easy estimate of their number densities (Landau and Lifshitz 1969):

$$n_{\nu i} = \frac{1}{\pi^2 \hbar^3} \int_0^\infty \frac{p^2 dp}{\exp\left[E/kT(z_{\rm eq})\right] + 1} \,. \tag{1}$$

Here n_{vi} = number density of neutrinos of the *i*th kind (notice that in writing this expression we have assumed that both the helicity states are allowed for the neutrinos because of finite rest mass); $E = c(p^2 + m^2c^2)^{1/2}$; k = Boltzmann's constant; $T(z_{eq}) = T_r(z_{eq}) = T_v(z_{eq}) = T_e(z_{eq}) \cdots$ = the common temperature of radiation, neutrinos, electrons, etc., at the latest epoch characterized by redshift z_{eq} when they may be assumed to have been in thermal equilibrium; $kT(z_{eq}) \simeq 1 \text{ MeV}$.

Since the masses of the neutrinos are expected to be small, $kT(z_{eq}) \gg m_{vi}c^2$, in the extreme-relativistic limit equation (1) reduces to

$$n_{\rm vi}(z_{\rm eq}) \simeq 0.183 [T(z_{\rm eq})/hc]^3$$
 (2)

As the Universe expands, only the neutrinos (in contrast to all other known particles) survive annihilation because of extremely low cross-sections (deGraff and Tolhock 1966), and their number density decreases with increasing volume of the Universe, simply as $\sim V(z_{eq})/V(z) = [(1 + z)/(1 + z_{eq})]^3$. Noting that $(1 + z_{eq})/(1 + z) = T_r(z_{eq})/T_r(z)$, the number density at the present epoch (z = 0) is given by

$$n_{\rm vi}(0) = n_{\rm vi}(z_{\rm eq})/(1 + z_{\rm eq})^3 \simeq 0.183[T_r(0)/hc]^3 \simeq 300 \,{\rm cm}^{-3}$$
, (3)

* On leave from the Tata Institute of Fundamental Research, Bombay, India.

7

Almost 30 years ago, beginnings of the idea of weakly interacting particles (neutrinos) as dark matter

Massive neutrinos are no longer a good candidate (hot dark matter)

However, the idea of weakly interacting massive particles as dark matter is now standard

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany

Neutrinos and Cosmology, Beijing, China (20-25 August 2002)

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany

Neutrinos and Cosmology, Beijing, China (20-25 August 2002)

COBE Sky Map of the CMBR Temperature

T = 2.728 K (uniform on the sky)

COBE Sky Map of the CMBR Temperature

Dynamical range $\Delta T = 3.353$ mK Dipole temperature distribution from Doppler effect due to our motion relative to the cosmic frame

COBE Sky Map of the CMBR Temperature

Dynamical range $\Delta T = 18 \ \mu K$ Primordial temperature fluctuations our motion relative to the cosmic frame

Last Scattering Surface

Power Spectrum of CMBR Temperature Fluctuations

Sky map of CMBR temperature fluctuations

$$\Delta(\theta, \phi) = \frac{\mathsf{T}(\theta, \phi) - \langle \mathsf{T} \rangle}{\langle \mathsf{T} \rangle}$$

Multipole expansion $\Delta(\theta, \phi) = \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} a_{\ell m} Y_{\ell m}(\theta, \phi)$

Angular power spectrum

$$C_{\ell} = \left\langle a_{\ell m}^{*} a_{\ell m} \right\rangle = \frac{1}{2\ell + 1} \sum_{m = -\ell}^{\ell} a_{\ell m}^{*} a_{\ell m}$$

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany

Multiple Peaks in CMBR Angular Power Spectrum

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany

Neutrinos and Cosmology, Beijing, China (20-25 August 2002)

A Slice of the Universe

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany

Las Campanas Redshift Survey

2dF Galaxy Redshift Survey (15 May 2002)

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany

2dF Galaxy Redshift Survey

Animations from 2dFGRS Homepage http://www.mso.anu.edu.au/2dFGRS/

Power Spectrum of Density Fluctuations

Field of density fluctuations $\delta(x) = \frac{\delta \rho(x)}{\overline{\rho}}$

Fourier transform $\delta(k) = \int d^3 x \ e^{-ik \cdot x} \ \delta(x)$

Power spectrum essentially square of Fourier transform

$$\langle \delta(k)\delta(k') \rangle = (2\pi)^3 \hat{\delta}(k-k') P(k)$$

with $\hat{\delta}$ the delta function

Power spectrum is Fourier transform of two-point correlation function

$$\xi(x) = \langle \delta(x_2) \delta(x_1) \rangle = \int \frac{d^3k}{(2\pi)^3} e^{ik \cdot x} P(k)$$

where $x = x_2 - x_1$

Gaussian random field fully characterized by power spectrum

Fitting the Cosmological Model - Neutrinos

Fitting the Cosmological Model - Neutrinos

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany

Neutrino Mass Limit from 2dF Galaxy Survey

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany

Neutrinos and Cosmology, Beijing, China (20-25 August 2002)

Matter Inventory of the Universe

Dark Energy ~ 70% (Cosmological Constant)

Baryonic Matter ~ 5% (~10% of this luminous) Dark Matter ~ 25% Neutrinos min. 0.1% max. 6%

Neutrino Mass Limits and Future Sensitivity

	Tuitium andraint	Mainz/Troitsk	2.5 eV		
	iriium enapoini	KATRIN	0.3 eV		
		SN 1987A	20 eV		
Supernova Nus Time-of-flight	Super-Kamiokande	3 eV			
	Time-of-flight	with black hole	2 eV		
		with gravity waves	1 eV		
		2dF Redshift Survey	0.8 eV		
Cosmic structure		Sloan Digital Sky Survey	0.3 eV		

 Assume 3 mass eigenstates with very small mass differences as indicated by atmospheric and solar neutrinos

• The cosmological limit refers to $m_v = \Sigma m_v/3$

Lecture II: Cosmological Neutrinos

Neutrino Dark Matter and Cosmic Structure Formation

Neutrino Chemical Potentials, Big-Bang Nucleosynthesis, and Flavor Oscillations

Highest-Energy Cosmic Rays and the Cosmic Neutrino Sea

Massive Neutrinos and the Cosmic Baryon Asymmetry How Many Relic Neutrinos?

Standard thermal population in one flavor $n_{v\overline{v}} = \frac{3}{11}n_{\gamma} \approx 112 \text{ cm}^{-3}$

Additional active neutrinos beyond	Additional families	Excluded by Z^0 width ($N_v = 3$)	
standard population of $v_e^{}, v_\mu^{}, v_\tau^{}$	Chemical potentials for v _e , v _µ , v _τ	Possible	
		and the second	
Sterile (right-handed) states	Dirac mass	Not effective in eV range	
	Right-handed currents	Excluded by energy loss of SN 1987A	
Populated by $v_L \rightarrow v_R$ transitions	Electromagnetic dipole moments	Excluded by energy loss of globular cluster stars	
	Oscillations/collisions	Hot/warm/cold DM possible	

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany

Thermal Neutrino Distribution

Degeneracy parameter $\xi = \frac{\mu}{T}$ Invariant under cosmic expansion

Number
density
$$n_{V\overline{V}} = \int dE \frac{4\pi}{(2\pi)^3} \left(\frac{E^2}{1 + \exp(E/T - \xi)} + \frac{E^2}{1 + \exp(E/T + \xi)} \right)$$

$$= \frac{3\zeta_3}{2\pi^2} T_V^3 \left[1 + \frac{2\ln(2)}{3\zeta_3} \xi^2 + \frac{1}{72\zeta_3} \xi^4 + ... \right]$$

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany

Thermal Neutrino Distribution

$$n_{V\overline{V}} = \int dE \frac{4\pi}{(2\pi)^3} \left(\frac{E^2}{1 + \exp(E/T - \xi)} + \frac{E^2}{1 + \exp(E/T + \xi)} \right)$$

Number density
$$= \frac{3\zeta_3}{2\pi^2} T_V^3 \left[1 + \frac{2\ln(2)}{3\zeta_3} \xi^2 + \frac{1}{72\zeta_3} \xi^4 + \dots \right]$$

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany

BBN Concordance

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany

BBN Limits on Neutrino Flavors

- At BBN one flavor contributes about 16% to cosmic mass-energy density
- Extra flavors modify expansion parameter accordingly

Conservative limit |∆N_{eff}| < 1

BBN and Neutrino Chemical Potentials

· v_e beta effect can compensate expansion-rate effect of $v_{\mu,\tau}$ · No significant BBN limit on neutrino number density

Limits on Radiation Density

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany

Chemical Potentials and Flavor Oscillations

	Flavor mixing (neutrino oscillations)	Flavor equilibrium before n/p freeze out?		or equilibrium before n/p freeze out?
F	Flavor lepton numbers		yes	Solar LMA solution
	Only one common ny		maybe	LOW (depends on Θ_{13})
~	Only one common nu chemical potential	1	no	Solar SMA solution
	Stringent ξ_{v_e} limit applies to all flavors $ \xi_{v_{e,\mu,\tau}} < 0.07$ • Our knowledge of the density depends on the the solar neutrino prob		owledge of the cosmic nu depends on the solution of ar neutrino problem ND most relevant experiment	
	Extra neutrino density ΔN _{eff} < 0.0064 • Dolgov, Hansen, Pastor, Petcov & Semikoz, hep-ph	ni & Smirnov, hep-ph/0012056 Hansen, Pastor, Petcov, Raffelt & Semikoz, hep-ph/0201287		
	Cosmic neutrino density close to standard value		 Abazajian, Beacom & Bell, astro-ph/020344 Wong, hep-ph/0203180 	

Two-Flavor Neutrino Oscillations

Evolution of neutrino ensemble described in terms of density matrices

$$\mathbf{f_p} \to \rho_p = \begin{pmatrix} \mathbf{f_p^e} & \mathbf{f_p^{\mu e}} \\ \mathbf{f_p^{e\mu}} & \mathbf{f_p^{\mu}} \end{pmatrix} = \frac{1}{2} \left(\mathbf{f_p} + \vec{\sigma} \cdot \vec{P_p} \right)$$

Two-Flavor Oscillations in Media

Effect is usually different for different flavors

Equation of motion in early universe (ignoring neutrino background)

$$\partial_{t}\vec{P}_{p} = \left(\frac{\delta m^{2}}{2p}\vec{B} - \frac{8\sqrt{2}G_{F}p}{3m_{W}^{2}}\rho_{e}\vec{z}\right) \times \vec{P}_{p} \quad \text{with } \rho_{e} \text{ the } e^{\dagger}e^{-} \text{ energy density}$$

Oscillations begin when background medium is sufficiently diluted to avoid large medium effect compared to vacuum mixing

Flavor Equilibration: LMA Solution

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany

Flavor Equilibration: LMA With Non-Zero Θ_{13}

Flavor Equilibration: LOW Solution

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany

Synchronized Oscillations by Self-Interactions

Equation of motion in early universe with neutrino background

$$\partial_{t}P_{p} = + \left(\frac{\delta m^{2}}{2p}B - \frac{8\sqrt{2}G_{F}p}{3m_{W}^{2}}\rho_{e}z\right) \times P_{p} + \sqrt{2}G_{F}(P-\overline{P}) \times P_{p} \quad \text{neutrinos}$$

$$\partial_{t}\overline{P_{p}} = -\left(\frac{\delta m^{2}}{2p}B - \frac{8\sqrt{2}G_{F}p}{3m_{W}^{2}}\rho_{e}z\right) \times \overline{P_{p}} + \sqrt{2}G_{F}(P - \overline{P}) \times \overline{P_{p}} \quad \text{anti-neutrinos}$$

with the integrated neutrino polarization vectors

$$\mathbf{P} = \int \frac{d^3 \mathbf{p}}{(2\pi)^3} \mathbf{P}_{\mathbf{p}} \quad \text{and} \quad \overline{\mathbf{P}} = \int \frac{d^3 \mathbf{p}}{(2\pi)^3} \overline{\mathbf{P}}_{\mathbf{p}}$$

 "Magnetic field" caused by neutrinos themselves much larger than vacuum or medium terms.

 Couples "magnetic moments" to one large dipole which precesses with a single frequency.

Pastor, Raffelt & Semikoz, PRD 65 (2002) 053011

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany

Synchronized Oscillations by Self-Interactions

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany

Synchronized Oscillations by Self-Interactions

Zero-Frequency Synchronized Oscillations

Synchronized oscillation frequency, assuming all P vectors start parallel or antiparallel to z-axis	$\omega_{\text{synch}} = \frac{\int \frac{d^3}{(2\pi)^3}}{\left \int \frac{d^3}{(2\pi)^3} \right ^3}$	$\frac{\frac{p}{p}}{\frac{\delta m^2}{2p}} \left(P_p + \overline{P_p} \right) \\ \frac{\frac{d^3 p}{(2\pi)^3}}{\frac{d^3 p}{(P_p - \overline{P_p})}} $
Only neutrinos, no anti-neutrinos	$\omega_{synch} = \frac{\delta m^2}{2}$	$\left\langle \frac{1}{P} \right\rangle$
Equal distribution of neutrinos of one flavor and anti-neutrinos of the other	ω _{synch} = 0	Oscillations completely suppressed
In a three-flavor system, oscillations are suppressed (infinitesimally slow) when	ξ(ν _e) = ξ(ν _μ) = ξ(ν _τ)

Pastor, Raffelt & Semikoz, PRD 65 (2002) 053011

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany

Flavor Equilibration: LMA and $\xi(v_{\mu}) = -\xi(v_{\tau})$

• Laboratory measurements of m_v imply Ω_v • Structure-formation limits on Ω_v directly constrain m_v

Lecture II: Cosmological Neutrinos

Neutrino Dark Matter and Cosmic Structure Formation

Neutrino Chemical Potentials, Big-Bang Nucleosynthesis, and Flavor Oscillations

Highest-Energy Cosmic Rays and the Cosmic Neutrino Sea

Massive Neutrinos and the Cosmic Baryon Asymmetry

Global Cosmic Ray Spectrum

ermany Neutrinos and Cosmology, Beijing, China (20-25 August 2002)

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany

Spectrum of Highest-Energy AGASA Events

Neutrinos and Cosmology, Beijing, China (20-25 August 2002)

Z-Bursts and Highest-Energy Cosmic Rays

Neutrinos $E_v \sim 10^{21} - 10^{22} \text{ eV}$ from unknown sources

Resonant Z-Boson Production Cosmic relic neutrinos m_v ~ 1 eV

Neutrino energy on resonance $E_{v} = \frac{M_{Z}^{2}}{2m_{v}} = \frac{4.2 \times 10^{21} \text{eV}}{m_{eV}}$

Decay (Z-Burst) On average 2 Nucleons 10 $\pi^{0} \rightarrow 20 \gamma$ 17 $\pi^{\pm} \rightarrow e^{\pm} \vee \underline{\nu}$

Measured cosmic rays

For example:

- Weiler hep-ph/9710431
- Fargion et al. hep-ph/0112014
- Fodor, Katz, Ringwald hep-ph/0203198

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany

Fitting the Cosmic Ray Spectrum with Z-Bursts

Cosmic ray spectrum near cutoff can be fit for a wide range of allowed neutrino masses

Main problems

- Huge source flux of EHE neutrinos required
- No plausible sources known
- Accompanying photons must be perfectly obscured

Kalashev et al. hep-ph/0112351

Fodor, Katz & Ringwald, hep-ph/0203198

Discovery Potential for Required Neutrino Fluxes

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany

Lecture II: Cosmological Neutrinos

Neutrino Dark Matter and Cosmic Structure Formation

Neutrino Chemical Potentials, Big-Bang Nucleosynthesis, and Flavor Oscillations

Highest-Energy Cosmic Rays and the Cosmic Neutrino Sea

Massive Neutrinos and the Cosmic Baryon Asymmetry

Baryogenesis in the Early Universe

Sakharov conditions for creating the Baryon Asymmetry of the Universe (BAU)

- C and CP violation
- Baryon number violation
- Deviation from thermal equilibrium

Particle-physics standard model

- Violates B and L by electroweak instanton effects
- Conserves B L

In cosmological evolution

- Pre-existing B+L erased at EW phase transition
- Creation of BAU at phase transition not possible, except for special parameters in SUSY models

Leptogenesis by Majorana Neutrino Decays

Another classic paper

Volume 174, number 1

PHYSICS LETTERS B

26 June 1986

BARYOGENESIS WITHOUT GRAND UNIFICATION

M. FUKUGITA

Research Institute for Fundamental Physics, Kyoto University, Kyoto 606, Japan

and

T. YANAGIDA

Institute of Physics, College of General Education, Tohoku University, Sendai 980, Japan and Deutsches Elektronen-Synchrotron DESY, D-2000 Hamburg, Fed. Rep. Germany

Received 8 March 1986

A mechanism is pointed out to generate cosmological baryon number excess without resorting to grand unified theories. The lepton number excess originating from Majorana mass terms may transform into the baryon number excess through the unsuppressed baryon number violation of electroweak processes at high temperatures.

See-Saw Model for Neutrino Masses

Leptogenesis by Out-of-Equilibrium Decay

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany

Connection to Neutrino Mass

$\Gamma_{\text{Decay}} = g_v^2 \frac{M}{8\pi}$	Decay rate of heavy Majorana neutrino
$H \approx \sqrt{g_{eff}} \frac{T^2}{m_{Pl}}$	Cosmic expansion rate
Γ _{Decay} < H _{T=M}	Requirement for strong deviation from equilibrium
$g_{v}^{2} \frac{M}{8\pi} < \sqrt{g_{eff}} \frac{M^{2}}{m_{Pl}}$	
$\frac{g_v^2}{M} < \frac{8\pi \sqrt{g_{eff}}}{m_{Pl}}$	
$m_{v} = \frac{g_{v}^{2} \langle \phi \rangle^{2}}{M} < \frac{8\pi \sqrt{g_{eff}}}{m_{Pl}} \langle \phi \rangle^{2} \sim 10^{-3} eV$	translates into a limit on the observable neutrino mass

Leptogenesis by Majorana Neutrino Decays

In see-saw models of neutrino masses, right-handed heavy Majorana neutrinos provide source for L-violation

Cosmological evolution:

- \cdot B = L = O early on
- Thermal freeze-out of heavy Majorana neutrinos
- Out-of-equilibrium CP-violating decay creates net L
- Shift L excess into B by sphaleron effects

Consistent with hierarchical masses below 0.1 eV

Leptogenesis – A Popular Research Topic

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany

Conclusions of Lecture II

Large-scale galaxy redshift surveys

- Best limit of m_v < 0.8 eV,
 Future sensitivity ~ 0.3 eV

If solar LMA solution applies, cosmic neutrino number density precisely determined by BBN

If highest-E cosmic-ray neutrinos are found, Z-bursts provide handle on my

Majorana neutrino masses in the favored range suggest a leptogenesis scenario for generating cosmic baryon asymmetry