Topical Seminar on Frontiers of Particle Physics 2002: Neutrinos and Cosmology Yun Hu Holiday Resort of Mi Yun, Beijing, China (20-25 August 2002)

Neutrino Astrophysics Georg G. Raffelt Max-Planck-Institut für Physik, München, Germany

Where do Neutrinos Appear in Nature?

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany

Neutrino Astrophysics

Lecture I: Physics with Supernovae

Lecture II: Cosmological Neutrinos

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany

Sanduleak -69 202

Tarantula Nebula

Large Magellanic Cloud Distance 50 kpc (160.000 light years)

Sanduleak -69 202

Supernova 1987A 23 February 1987

eorg Raffelt, Max-Planck-Institut für Physik, München, Germai

Georg Raffelt, Max-P

•

6

西入奎至七年三月子女乃散紹與八年五月守貴 一百八重三十一月丁未出天田元祐六年十一月 等了散三年十一月丁未出天田元祐六年十一月 了了散三年十一月丁未出天王元,一月天 一月没要和元年五月已出出天開東南可數寸嚴餘 年六月乙已出東北方近濁有芒彗至丁已凡十三 月文報堂年二年六月丙辰出美慶中至七月丁卯犯 一月没要和元年五月已出出天開東南可數寸嚴餘 一月没要和元年五月已出出天開東南可數寸嚴餘 一月之日出東北方近濁有芒彗至丁已凡十三 一月大子出天王子,一月 一月一日没三年三月乙已出東南方大中祥将四 主七年三月

Supernova 1054 Petrograph

Possible SN 1054 Petrograph by the Anasazi people (Chaco Canyon, South-Western U.S.)

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany

Classification of Supernovae

Spectral Type	Ia	Ib	Ic	II
	No Hydrogen			Hydrogen
Spectrum	Silicon	No Silicon		
		Helium	No Helium	
Physical Mechanism	Nuclear explosion of low-mass star	Core collapse of evolved massive star (may have lost its hydrogen or even helium envelope during red-giant evolution)		
Light Curve	Reproducible		Large variations	
Light Curve Neutrinos	Reproducible Insignificant	~ 1	Large variations 00 × Visible ener	rgy
Light Curve Neutrinos Compact Remnant	Reproducible Insignificant None	~ 1 Neutron star Som	Large variations 00 × Visible ener (typically appea etimes black ho	rgy ars as pulsar) ble ?
Light Curve Neutrinos Compact Remnant Rate / h ² SNu	ReproducibleInsignificantNone 0.36 ± 0.11	~ 1 Neutron star Som 0.14 ±	Large variations 00 × Visible ener (typically appea etimes black ho	rgy ars as pulsar) ble ? 0.71 ± 0.34

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany

Supernova Discoveries 1885-2000

Lecture I: Physics with Supernovae

Physical Mechanism of Core-Collapse Supernovae

Supernova Neutrino Detection

Limits on Particle Properties

Flavor Oscillations of Supernova Neutrinos

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany

Stellar Collapse and Supernova Explosion

Newborn Neutron Star

Gravitational binding energy $E_b \approx 3 \times 10^{53} \text{ erg} \approx 17\% M_{SUN} c^2$

This shows up as 99% Neutrinos 1% Kinetic energy of explosion (1% of this into cosmic rays) 0.01% Photons, outshine host galaxy

Neutrino luminosity

 $\begin{array}{l} \mathsf{L}_{\nu} \ \approx \ 3 \times 10^{53} \ \text{erg} \ \text{/} \ 3 \ \text{sec} \\ \approx \ 3 \times 10^{19} \ \mathsf{L}_{SUN} \end{array}$

While it lasts, outshines the entire visible universe

Baade and Zwicky were the first to speculate about a connection between supernova explosions and neutron-star formation [Phys. Rev. 45 (1934) 138]

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany

Supernova explosion primarily a hydrodynamical phenomenon

Movies by J.A.Font, Numerical Hydrodynamics in General Relativity http://www.livingreviews.org

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany

Why No Prompt Explosion?

 O.1 M_{sun} Fe has nuclear binding energy ≈ 1.7 × 10⁵¹ erg
 Comparable to explosion energy

Shock wave forms within the iron core
Dissipates its energy

by dissociating the remaining layer of iron

Dissociated

material

Icissocia

(n, p, e, v)

Failed Explosion

87.9 ms 2e+09 0 relocity [cm/s] -2e+09 -4e+09 -6e+09 0.5 0.4 0.3 \succ^{o} 0.2 0.1 0 100 300 500 0 200 400 radius [km]

Spherically symmetric simulation of a 15 M_{sun} stellar model with state-of-the-art neutrino transport

Movie courtesy of Bronson Messer, Oakridge group (2001)

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany

Neutrinos to the Rescue

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany

Revival of a Stalled Supernova Shock by Neutrino Heating

Wilson, Proc. Univ. Illinois Meeting on Numerical Astrophysics (1982) Bethe & Wilson, ApJ 295 (1985) 14

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany

Supernova Collapse and Explosion

Structure of Supernova Neutrino Signal

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany

Neutrinos and Cosmology, Beijing, China (20-25 August 2002)

Failed Explosions in Spherical Symmetry

Spherically symmetric (1-D) simulations with state-of-the-art neutrino transport do not explode

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany

Novel Forms of Energy Transfer?

New particles or neutrinos with novel properties could provide a new channel of energy transfer from proto neutron star to shock wave

Must not tranfer too much energy → Limits on decaying neutrinos [Falk & Schramm, PLB 79 (1978) 511]

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany

Shock Revival by Novel Particles?

THE ASTROPHYSICAL JOURNAL, **260**:868–874, 1982 September 15 © 1982. The American Astronomical Society. All rights reserved. Printed in U.S.A.

SUPERNOVAE INDUCED BY AXION-LIKE PARTICLES

DAVID N. SCHRAMM The University of Chicago

AND

JAMES R. WILSON

Lawrence Livermore Laboratory Received 1981 December 22; accepted 1982 April 1

ABSTRACT

It is shown that a new type of particle which may have been seen in a recent accelerator experiment may, if truly present, provide a mechanism whereby gravitationally collapsing massive stars may eject their outer mantles and envelopes in supernova explosions of $\sim 10^{51}$ ergs while leaving the cores to form neutron star remnants. These particles are "axion-like," which means they interact semiweakly, decay to two photons with lifetimes $\sim 10^{-3}$ s, and have masses $0.15 \le M_a \le 1$ MeV. It is hoped that future accelerator searches will be able to confirm or deny the existence of these particles, the presence of which would cause a dramatic solution to the long-standing gravitational-collapse supernova problem.

Subject headings: elementary particles — nuclear reactions — stars: collapsed — stars: supernovae

Neutron-Finger Convection to the Rescue

Livermore group obtains robust delayed explosions with 1-D code of Mayle & Wilson

Neutrino luminosity is enhanced by "neutron finger convection" in proto neutron star

Convection in Supernovae (2-D Simulation)

Theoretical Status of Supernova Explosions

- Spherically symmetric models do not explode, even with state-of-the-art Boltzmann solvers for neutrino transport
- Delayed explosion scenario requires enhanced neutrino luminosity at early times (~ factor 2)

- Convection between proto neutron star (PNS) and shock wave and perhaps within PNS helps
- Next steps: 2-D and 3-D simulations self-consistently coupled with state-of-the-art neutrino transport

- Particle-physics models for new channel of energy transfer can be constructed
- \cdot Simplest neutrino flavor-oscillation scenario suppressed by large matter effects relative to small Δm

- New physical ingredients required?
- Explosion a magneto-hydrodynamical effect? (Strong B-fields and fast rotation possible)

Lecture I: Physics with Supernovae

Physical Mechanism of Core-Collapse Supernovae

Supernova Neutrino Detection

Limits on Particle Properties

Flavor Oscillations of Supernova Neutrinos

Cherenkov Effect

SN 1987A Event No.9 in Kamiokande

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany

Neutrino Signal of Supernova 1987A

Kamiokande (Japan) Water Cherenkov detector Clock uncertainty ±1 min

Irvine-Michigan-Brookhaven (US) Water Cherenkov detector Clock uncertainty ±50 ms

Baksan Scintillator Telescope (Soviet Union) Clock uncertainty +2/-54 s

Within clock uncertainties, signals are contemporaneous

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany

Interpreting SN 1987A Neutrinos

Short History of Neutrino Astronomy

Super-Kamiokande Neutrino Detector

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany

Neutrinos and Cosmology, Beijing, China (20-25 August 2002)
Simulated Supernova Signal in Super-Kamiokande

Sudbury Neutrino Observatory (SNO)

1000 tons of heavy water

Events from a SN at 10 kpc (no flavor oscillations)

<u>Heavy water (1 kt)</u>	<u>Events:</u>
CC: $v_e + d \rightarrow p + p + e^-$	72
CC: $\overline{v_e} + d \rightarrow n + n + e^+$	138
NC: $v_{e} + d \rightarrow v_{e} + p + n$	30
NC: $\overline{v_{e}} + d \rightarrow \overline{v_{e}} + p + n$	32
NC: $v_x + d \rightarrow v_x + p + n$	164
<u>Light water (1.4 kt)</u>	<u>Events:</u>
CC , \overline{v} + n - n + e^+	331

AMANDA - Neutrino Telescope at the Southpole

Depth

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany

Neutrinos and Cosmology, Beijing, China (20-25 August 2002)

Amanda/IceCube as a Supernova Detector

Large Detectors for SN Neutrinos

SuperNova Early Warning System (SNEWS)

Estimates of the Galactic SN Rate

Galactic Supernova Events

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany

Neutrinos and Cosmology, Beijing, China (20-25 August 2002)

The Future: A Megatonne Detector?

Local Group of Galaxies

Neutrinos and Cosmology, Beijing, China (20-25 August 2002)

Diffuse Background Flux of SN Neutrinos

 $1 \text{ SNu} = 1 \text{ SN} / 10^{10} \text{ L}_{\text{sun,B}} / 100 \text{ years}$ $\text{L}_{\text{sun,B}} = 0.54 \text{ L}_{\text{sun}} = 2 \times 10^{33} \text{ erg/s}$ $\text{E}_{v} \sim 3 \times 10^{53} \text{ erg per core-collapse SN}$

1 SNu ~ $4 L_{v} / L_{\gamma,B}$ Average neutrino luminosity of galaxies ~ photon luminosity

- Photons come from nuclear energy
- Neutrinos from gravitational energy

For galaxies, average nuclear & gravitational energy release similar

Present-day SN rate of ~1 SNu, extrapolated to the entire universe, corresponds to v_e flux of ~ 1 cm^{-2} s^{-1}

Realistic flux dominated by much larger early star-formation rate
Upper limit ~ 54 cm⁻² s⁻¹ [Kaplinghat et al., astro-ph/9912391]
"Realistic estimate" ~ 10 cm⁻² s⁻¹ [Hartmann & Woosley, Astropart. Phys. 7 (1997) 137] Measurement would tell us about early history of star formation

Experimental Limits on Relic SN Neutrinos

Lecture I: Physics with Supernovae

Physical Mechanism of Core-Collapse Supernovae

Supernova Neutrino Detection

Limits on Particle Properties

Flavor Oscillations of Supernova Neutrinos

Neutrino Mass Limits by Signal Dispersion

Time-of-flight delay of massive neutrinos

$$\Delta t = 2.57 s \left(\frac{D}{50 \text{kpc}}\right) \left(\frac{10 \text{MeV}}{E_{\nu}}\right)^2 \left(\frac{m_{\nu}}{10 \text{eV}}\right)^2$$

Neutrino Mass Limits by Signal Dispersion

Neutrino Mass Limits by Signal Dispersion

Time-of-flight delay of massive neutrinos $\Delta t = 2.57 s \left(\frac{D}{50 \text{kpc}}\right) \left(\frac{10 \text{MeV}}{\text{E}_{v}}\right)^{2} \left(\frac{\text{m}_{v}}{10 \text{eV}}\right)^{2}$			
SN 1987A	$E \approx 20$ MeV, $\Delta t \approx 10$ s, $D \approx 50$ kpc Simple estimate or detailed maximum likelihood give similar results	m _{ve} < 20 eV	
Future Galactic SN (Super-K)	D ≈ 10 kpc, Rise-time 0.01 s Sensitivity approximately [T.Totani, PRL 80 (1998) 2040]	m _{ve} ~3eV	
Future SN in Andromeda (Megatonne)	D ≈ 750 kpc, ∆t ≈ 10 s Sensitivity appro×imately	m _{ve} ~1-2 eV	

Neutrino Mass from Early Black Hole Formation

Neutrino Mass Limits and Future Sensitivity

	Tritium endpoint	Mainz/Troitsk	2.5 eV	
		KATRIN	0.3 eV	
		SN 1987A	20 eV	
	Supernova Nus Time-of-flight	Super-Kamiokande	3 eV	
		with black hole	2 eV	
		with gravity waves	1 eV	
		2dF Redshift Survey	0.8 eV	
	Cosmic structure	Sloan Digital Sky Survey	0.3 eV	

 Assume 3 mass eigenstates with very small mass differences as indicated by atmospheric and solar neutrinos

• The cosmological limit refers to $m_v = \Sigma m_v/3$

The Energy-Loss Argument

Axion Emission Processes in Stars

Nucleons	$\frac{c_{N}}{2f_{a}}\overline{\Psi}_{N}\gamma_{\mu}\gamma_{5}\Psi_{N}\partial^{\mu}a$	Nucleon Bremsstrahlung	$\begin{array}{c} & a \\ & \ddots & \\ & & N_1 \\ & & & N_2 \\ & & & & N_4 \end{array}$
Photons	<mark>Ce</mark> 2fa ^Ψ eγμγ5Ψe∂ ^μ a	Primakoff	γ~~~~~a
Electrons $= -C_{\gamma} \frac{\alpha}{2\pi f_{0}} \frac{1}{4} F_{\mu\nu}$		Compton	γ _{γγ} e e e e e e e e
	$C_{\gamma} \frac{\alpha}{2\pi f_{\alpha}} \frac{1}{4} F_{\mu\nu} \tilde{F}^{\mu\nu} \alpha$	Pair Annihilation	e ⁻ γ e ⁺ α
	$= -c_{\gamma} \frac{1}{2\pi f_{\alpha}} E \cdot B \alpha$	Electromagnetic Bremsstrahlung	e ⁻ e ⁻

SN 1987A Axion Limits

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany

Neutrinos and Cosmology, Beijing, China (20-25 August 2002)

Astrophysical Axion Bounds

Large Extra Dimensions

Supernova Limit on Large Extra Dimensions

Hierarchy problem solved by true Planck scale M being close to electroweak scale in space with n extra dimensions, assumed to be compactified on n tori with periodicities $2\pi R$.

Newton's law at large distances governed by

 $G_{\rm NI}^{-1} = M_{\rm PI}^2 \approx M^{\rm n+2} R^{\rm n}$

FIG. 1. The leading diagrams contributing to processes $NN \rightarrow NNh$ and $NN \rightarrow NN\phi$. Nucleons are denoted by solid lines and the KK-modes h or ϕ are denoted by dashed lines. Solid squares denote an insertion of the single-nucleon energy-momentum tensor, while solid ovals containing A denote an insertion of the full NN scattering amplitude. The solid oval containing Γ denotes the non-pole vertex required for the sum of diagrams to satisfy $\partial_{\mu}M^{\mu\nu} = 0$.

Cullen & Perelstein, hep-ph/9904422 Hanhart et al., nucl-th/0007016

 SN core emits large flux of KK gravity modes by nucleonnucleon bremsstrahlung

Large multiplicity of modes

SN 1987A energy-loss argument: $R < 0.7 \times 10^{-3} \text{ mm}$ (n = 2)R < 0.8 × 10⁻⁶ mm (n = 3)

Is the most restrictive limit on such theories, except for cosmological arguments

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany

Neutrinos and Cosmology, Beijing, China (20-25 August 2002)

Improved Limits on Large Extra Dimensions

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany

Neutrinos and Cosmology, Beijing, China (20-25 August 2002)

KK Graviton Retention by Neutron Star

Neutrinos and Cosmology, Beijing, China (20-25 August 2002)

Third EGRET Catalog (Hartmann et al. 1999)

Neutron Star Excess Heat

 Neutron stars retain 50-60% of KK gravitons in a halo

 \bullet Emits γ rays by KK decays

Neutron star cooling calculations vs. observations (Pavlov, Stringfellow & Cordova 1996, Larson & Link 1999)

To avoid excess heating by KK decay M > 1600 TeV (n = 2) M > 60 TeV (n = 3)

Summary of Limits on Large Extra Dimensions

		M ^{min} [TeV]		R ^{max} [mm]	
		n = 2	n = 3	n = 2	n = 3
Laboratory experiments		0.6	-	0.2	-
SN 1987A neutrino signal		30	3	7×10-4	8×10-7
EGRET	Cosmic SNe	84	7	8×10 ⁻⁵	2×10-7
	Cas A	73	7	1×10-4	2×10-7
	PSR J0953+0755	300	19	8×10-6	4×10 ⁻⁸
	RX J185635-3754	454	27	3×10-6	2×10 ⁻⁸
Excess heat PSR J0953+0755		1680	60	2×10-7	5×10 ⁻⁹

Hannestad & Raffelt, PRL 88 (2002) 071301 [hep-ph/0103201]

Lecture I: Physics with Supernovae

Physical Mechanism of Core-Collapse Supernovae

Supernova Neutrino Detection

Limits on Particle Properties

Flavor Oscillations of Supernova Neutrinos

Flavor-Dependent Fluxes and Spectra

Numerical model of Totani, Sato, Dalhed & Wilson, ApJ 496 (1998) 216

Can we see the prompt neutrino burst?

Three-Flavor Oscillation Scenario

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany

Neutrinos and Cosmology, Beijing, China (20-25 August 2002)
Three-Flavor Oscillation Scenario

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany

Earth Effect at SNO

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany

Earth Effect at SNO

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany

Degenerate Fermi Seas in a Supernova Core

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany

Flavor Conversion in a Supernova Core

Suppression of mixing angle by medium effects responsible for flavor-lepton number conservation in a supernova core

Conclusions of Lecture I

- Core-collapse supernova explosions probably explained by neutrino-driven delayed explosion mechanism
- But thus far no working numerical standard model
- Convection key to successful explosion?

- High-statistics observation of a galactic SN is
- Crucial for empirical study of core-collapse event
- Not sensitive to sub-eV neutrino masses
- May differentiate between some mixing scenarios

- If neutrino mixing parameters in currently favored regions • Neutrino flavor oscillations not important for SN physics
- But crucial for detector signal interpretation
- Sterile nus and/or dipole moments can have strong effects

- Particle emission by supernova cores continues to provide most restrictive limits on various theories (axions, r.h. neutrinos, extra dimensions, ...)
- High-statistics observation would put these on firm grounds