

Supernova Neutrino Observations: What Could We Learn?

Opportunities to observe the next galactic supernova in neutrinos Some particle-physics lessons from SN 1987A and possible improvements

Oscillations of supernova neutrinos

Supernova Neutrino Observations: What Could We Learn?								
	Neutrino observations of SN 1987A							
	Opportunities to observe next the galactic supernova in neutrinos							
	Some particle-physics lessons from SN 1987A and possible improvements							
	Oscillations of supernova neutrinos							
1000								

eutrino 2006, 12-19, June 2006, Santa Ee

felt Max-Planck-Institut für Physik München Ger

Spectra Emerging from Supernovae									
	Prim	ary fluxes		F_e^0 for F_e^0 for for	v _e Ve				
				F _X for	$v_{\mu}, v_{\mu}, v_{\tau}, v_{\tau}$				
	After leaving the supernova envelope, the fluxes are partially swapped			$F_{e}^{0} = p F_{e}^{0} + (1-p) F_{x}^{0}$					
				$F_{\overline{e}}^{0} = \overline{p} F_{\overline{e}}^{0} + (1 - \overline{p}) F_{X}^{0}$					
			$\frac{1}{4}\sum F_{X} = \frac{2+p+\overline{p}}{4}F_{X}^{0} + \frac{1-p}{4}F_{e}^{0} + \frac{1-\overline{p}}{4}F_{e}^{0}$						
					Suprival p	robability			
	Case Mass ordering		si	n²(2 0 ₁₃)					
					p (for \mathbf{v}_{e})	p (for v_e)			
	A	Normal	≳ 10 ⁻³		0	cos ² (⊖ ₁₂)≈0.7			
	В	Inverted			sin²(⊕ ₁₂)≈0.3	0			
	С	Any		≲ 10 ⁻⁵	sin²(⊖ ₁₂)≈0.3	cos²(⊖ ₁₂)≈0.7			
	100			15	Market States		11.200.00		

So what could we learn?							
Depends or else will be	Depends on which detectors will be running, what they will see, and what else will be known at that time, e.g. about neutrino mixing parameters.						
	Even small-statistics signal (e.g. SN at Andromeda distance with a Mt detector) useful to determine spectra and duration better than SN 1987A (especially useful for particle-physics limits and for prediction of diffuse SN neutrino background)						
	High-statistics observation from galactic SN: • Early warning, direction and distance • Follow in detail stellar collapse, test SN theory • May observe new features (e.g. collapse to black hole)						
	Neutrino oscillations: • May observe evidence for flavor oscillations and determine mass hierarchy and/or magnitude of Theta-13 • May observe shock-wave propagation effects						
	Probably requires new detectors, e.g. Mton water Cherenkov (Hyper-K, MEMPHYS, UNO), neutron tagging (GADZOOKSI) large scintillator detectors (LENA), large nu-e detector (liquid argon TPC). In Europe: LAGUNA R&D initiative forming						

eutrino 2006, 13-19 June 2006, Santa Fe, New N

Raffelt, Max-Planck-Institut für Physik, München, Ger

