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Flavor-dependent neutrino transport is described by a well-known kinetic equation for occupation-
number matrices in flavor space. However, in the context of fast flavor conversion, we identify
an unforeseen predicament: the pivotal self-induced exponential growth of small inhomogeneities
strongly violates conservation of neutrino-neutrino refractive energy. We prove that it is traded
with the huge reservoir of neutrino kinetic energy through gradients of neutrino flavor coherence
(the off-diagonal piece of the flavor density matrix) and derive the missing gradient terms. The
usual equations remain sufficient to describe flavor evolution, at the cost of renouncing energy
conservation, which cannot play any role in explaining the numerically observed final state.

Introduction.—Flavor evolution in a dense neutrino
environment is often described by a kinetic equation for
the flavor density matrices ρ(p,x, t), where the diago-
nal entries are the occupation numbers [1–11]. In the
homogeneous case, they are defined as the expectation
values of the number-operator matrices Dαβ = a†β,paα,p
with the flavor indices α and β and a†α,p the creation
operator for a left-handed neutrino of flavor α with mo-
mentum p. In the limit of vanishing neutrino masses and
flavor mixing, nontrivial flavor evolution can still arise
through classical instabilities that would engender strong
flavor correlations [12–16]. Dubbed fast flavor evolution,
this subject has been intensely studied in view of prac-
tical consequences for neutrino flavor transport in stellar
core collapse and binary neutron star mergers [17–28].

Predicting the consequences of fast conversions is thus
a central question. In tackling this problem, a key role
must be played by conserved quantities, which are the
only exact guide into the final state reached after conver-
sions. One such quantity must be energy. However,we
show that the usual equations of motion (EOMs) do not
conserve energy. In their often-used form, they are(

∂t + v ·∇r

)
ρp,r,t = −i

[
Hp,r,t, ρp,r,t

]
, (1)

where Hp,r,t =
√

2GF

∑
p′ ρp′,r,t (1 − cos θp,p′) is a ma-

trix driving flavor evolution by neutrino-neutrino refrac-
tion. The advection term proportional to v = p/|p|
quantifies a drift in coordinate space caused by inhomo-
geneities. This term allows for p-dependent instabilities,
so even an initially homogeneous system can develop fla-
vor disturbances growing exponentially and drifting to
ever smaller scales [15, 29–34].

As detailed later, even an elementary example of two
colliding beams consisting initially of νe and νx reveals
that the refractive interaction energy changes dramati-
cally as soon as initial seeds of inhomogeneity grow. The
solution of this puzzle is that one cannot look at flavor
evolution in isolation. Inhomogeneities in the weak po-
tential exert a force and trade refractive interaction en-

ergy with the huge reservoir of neutrino kinetic energy.
We here derive the missing terms in Eq. (1) and show
that to lowest order in a gradient expansion, the energy
exchange can be exactly accounted for.
Interaction energy.—We first define the ν–ν interac-

tion energy. The starting point is the many-body Hamil-
tonian H = H0 + U , where H0 =

∑
α,p ϵpa

†
α,paα,p is the

kinetic energy operator with ϵp = |p| in the massless
limit. Moreover, the interaction energy is

U =

√
2GF

8

∑
{p},α,β

a†α,p1
aα,p2

a†β,p3
aβ,p4

× up1
γµup2

up3
γµup4

, (2)

where GF is Fermi’s constant,
∑

{p} is performed over all
momenta such that p1+p3 = p2+p4, and up is the spinor
of a left-handed massless neutrino with momentum p,
normalized such that upγ

0up = 2.
The energy of the system is the expectation value of

H over the quantum state. In particular, the kinetic
energy is K = ⟨H0⟩ =

∫
d3r

∑
p ϵpTr(ρp). For the in-

teraction energy, we need to determine the average value
of a string of four creation and annihilation operators.
We use mean field approximation, where the quantum
state is assumed to be the product of single-particle
states. The expectation value factorizes as ⟨a†1a2a†3a4⟩ =

⟨a†1a2⟩⟨a†3a4⟩ + (δ2,3 − ⟨a†3a2⟩)⟨a†1a4⟩. In this way we de-
fine a potential energy of interaction U = ⟨U⟩. For a
homogeneous system, it is

U =

√
2GF

2

∫
d3r

∑
p,p′

[
Tr(ρp) Tr(ρp′) + Tr(ρpρp′)

]
× (1 − cos θp,p′), (3)

where we neglect an irrelevant (infinite) renormalization
of the neutrino chemical potential.

In the two-flavor case, the density matrices are often
decomposed into their trace and trace-free part as

ρp =
P 0
p 1 + P⃗p · σ⃗

2
, (4)
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where 1 is a unit matrix, P 0
p = Tr(ρp), σ⃗ a vector of

Pauli matrices, and P⃗p a polarization vector. (P⃗ is a
vector in flavor space, p one in phase space.) Exactly
one particle in mode p implies P 0

p = |P⃗p| = 1. Only P⃗p

evolves by oscillations, whereas the trace (total particle
number in a p-mode) is conserved. The oscillatory part
of the interaction energy is

Uosc =

√
2GF

4

∫
d3r

∑
p,p′

(1 − cos θp,p′) P⃗p · P⃗p′ , (5)

corresponding to that part of Eq. (3) that depends on
the trace-free parts of the ρ matrices.

For simplicity we assume in the following a system that
remains homogeneous in all but the spatial z-direction
and use v = vz. The standard EOM Eq. (1) falls into
pieces for particle number and flavor polarization as

∂tP
0
p + v∂zP

0
p = 0, (6a)

∂tP⃗p + v∂zP⃗p =
√

2GF

(
P⃗0 − vP⃗1

)
× P⃗p, (6b)

where we use the angular moments P⃗0 =
∑

p P⃗p and
P⃗1 =

∑
p vP⃗p. Thus, the usual equations decouple the

neutrino number from their flavor evolution.
Different from a neutrino gas subject to collisions with

matter (see, e.g., Refs. [35–44]), where energy is not
conserved anyway, Eqs. (6) describe a closed system
that admits a conserved energy. The kinetic part K =∫
d3r

∑
p ϵpP

0
p is seen to be conserved from Eq. (6a).

Also the nonoscillatory part of the interaction energy is
separately conserved. Uosc = (

√
2GF/4)

∫
d3r (P⃗ 2

0 − P⃗ 2
1 ),

which follows from Eq. (5), must then be conserved as
well. In the homogeneous case, this is indeed the case;
the dynamics is periodic and described by a fictitious
pendulum whose conserved energy coincides with Uosc

[45–48]. However, Eq. (6b) immediately reveals that the
conservation breaks down for inhomogeneous settings

dUosc

dt
= −

√
2GF

2

∫
d3r

(
P⃗0 · ∂zP⃗1 − P⃗1 · ∂zP⃗2

)
, (7)

where P⃗2 =
∑

p v
2P⃗p. Therefore, the traditional EOMs

are not consistent.
Two-beam example.—The nonconservation of Uosc

is a large effect as we show in a simple example of two
opposite beams along the z-axis (v = ±1). The energies
and number densities are equal, one beam initially oc-
cupied with νe, the other with νx. As usual, the beams
represent many neutrinos with p’s close enough that the
small spread is unimportant on the relevant time scales.
Therefore, we represent the flavor polarization of each
beam by a highly occupied ρ matrix and concomitant
polarization vector P⃗±(z, t). We thus need to solve

(∂t + ∂z)P⃗+ = 2 P⃗− × P⃗+, (8a)

(∂t − ∂z)P⃗− = 2 P⃗+ × P⃗−, (8b)

where the interaction strength was absorbed in the units
of time and space. For ∂zP⃗± = 0 there is no instability,
but the system has unstable inhomogeneous modes.

We can show energy nonconservation analytically in
the initial linear regime. In this limit, it is convenient
to express the x–y part of the polarization vector (the
off-diagonal element of the density matrix) in the form
ψ± = P x

± + iP y
± and initially we take P z

±(z, 0) = ζ± to be
constant. The linearized EOMs (|ψ| ≪ |ζ|) are(

∂t + ∂z
)
ψ+ = 2 i

(
+ζ−ψ+ − ζ+ψ−

)
, (9a)(

∂t − ∂z
)
ψ− = 2 i

(
−ζ−ψ+ + ζ+ψ−

)
. (9b)

These EOMs are most easily solved for the spatial Fourier

modes ψ̃±(k, t) = L−1
∫ +L/2

−L/2
dz ψ±(z, t) e−ikz for a pe-

riodic box of length L where k = 2πn/L with inte-
ger n is a discrete wave vector. Equation (9) shows
that a k mode is unstable if k1 < k < k2 with k1,2 =

ζ− − ζ+ ∓ 2
√
−ζ−ζ+. The corresponding eigenfrequen-

cies are ωk = ω0 ± iγk, where the precession frequency
ω0 = −ζ−−ζ+ does not depend on k and the growth rate
is γk =

√
(k − k1)(k2 − k). In particular, the maximum

growth rate is attained for k = ζ− − ζ+ = (k1 + k2)/2
and is γ = 2

√
−ζ+ζ− = (k2 − k1)/2.

The oscillation energy Uosc =
∫
dz P⃗+ · P⃗− has one

piece from the initial z component, Uosc(0) = ζ+ζ−L
that is conserved in the linear regime, and a piece from
the off-diagonal terms ∆Uosc =

∫
dz (ψ+ψ

∗
−+ψ∗

+ψ−)/2 =

(L/2)
∑

k(ψ̃+,kψ̃
∗
−,k+ψ̃∗

+,kψ̃−,k), where in the continuous

limit
∑

k =
∫
dk/2π. This piece can grow exponentially

if there are small seeds for the unstable Fourier modes.
If we decompose the v = ±1 modes in terms of the eigen-
modes of the linear analysis, the k modes evolve as(

ψ̃+,k(t)

ψ̃−,k(t)

)
= αk

(
k + ω0 + iγk
k − ω0 − iγk

)
e(γk−iω0)t

+ βk

(
k + ω0 − iγk
k − ω0 + iγk

)
e−(γk+iω0)t. (10)

Matching this expression with the initial conditions
ψ̃±,k(0) = ψ̃0

±,k reveals for the growing piece

αk =
(γk + iω0)

(
ψ̃0
+,k + ψ̃0

−,k

)
− ik

(
ψ̃0
+,k − ψ̃0

−,k

)
4kγk

.

(11)
Substituting in the transverse part of the oscillation en-
ergy, we finally find

∆Uosc(t) = L

k2∑
k=k1

2k(k − k)|αk|2e2γkt, (12)

where we restrict the summation to the range of unstable
eigenmodes. Notice that the most unstable eigenmode
k = k does not contribute to energy nonconservation due
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to the vanishing prefactor. Otherwise, an exponential
growth appears already at the linear level.

For more than two beams, from Eq. (7) it follows that

dUosc/dt ∝
∑

k kvP⃗v(k)·P⃗ ∗
v′(k)(1−vv′), and thus it is still

true that the energy change grows with e2γt, provided
that k ̸= 0; homogeneous modes, with k = 0, do not lead
to energy change due to the prefactor kv.

For a numerical solution that extends to the nonlinear
regime, we use periodic boundary conditions on a box of
length L = 100, divided in N spatial bins. As initial con-
ditions, we use P z

±(0) = ζ± = ±1/2. These parameters
imply that the range of unstable modes is delimited by
k1 = −2 and k2 = 0, the maximum growth rate obtains
for k = −1 and is γ = 1, and the initial oscillation energy
is Uosc(0) = ζ−ζ+L = −25. The transverse components
P x,y
± are seeded with randomly sampled functions with a

spatial dependence

P x,y
± =

Nmax∑
n=−Nmax

cx,y±,ne
iϕx,y

±,n+i 2πnz
L , (13)

where the amplitudes are sampled from a normal distri-
bution with a variance σ2 = 10−8 and the phases are
uniformly sampled from 0 to 2π; the functions are real
and so cn = c−n and ϕn = −ϕ−n. We use arbitrarily
Nmax = 100 to avoid seeds at too small scales. Numeri-
cal stability requires keeping fluctuations at the scale of
the grid spacing as small as possible.

Figure 1 shows the solution for a single realization of
initial seeds. The upper panel shows contours of the νx-
content of the beam initially occupied with νe, as a func-
tion of z and t. The lower panel shows Uosc(t) in units
of Uosc(0). On the shown timescale, the range of unsta-
ble modes −2 < k < 0 grows nonlinear and then keeps
oscillating, with beats between different modes causing
an irregular pattern that in detail depends on the choice
of seeds. In the longer run, these nonlinear modes feed
higher-k modes and flavor variations will obtain on ever
smaller scales. If we had used a larger box, or equiv-
alently averaged over more than one realization of the
initial conditions, the amplitude of the oscillations in the
final state would shrink. Nevertheless, the bulk of the
nonconservation of Uosc happens in the initial phase, and
is clearly a large effect.

Inhomogeneous kinetic equations.—The lack of
refractive-energy conservation questions the validity of
the traditional EOMs. The strategy for their derivation
is a perturbative expansion in three small parameters:
(i) The mass-to-energy ratio rm = mν/ϵp, where mν is
the neutrino mass, but in our fast flavor limit we do not
worry about it. (ii) The fractional refractive energy shift
rµ = µ/ϵp, where µ =

√
2GFnν is a scale for the ν–ν

interaction energy. For T ≃ 5 MeV in the decoupling re-
gion of a supernova, nν ≃ 1033 cm−3, µ ≃ 0.2 meV, and
rµ ≃ 10−11 and thus indeed very small. (iii) The scale
of density variations ℓ in units of the neutrino de Broglie
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FIG. 1. Solution of our two-beam example for one realization
of initial seeds. Top: Contours of νx content of v = +1 beam
as a function of z and t. Bottom: Evolution of oscillation
energy Uosc(t) in units of Uosc(0).

wavelength rℓ = (ℓ|p|)−1 ≪ 1. Density variations are on
scales much larger than |p|−1. The EOMs are typically
derived to lowest order in all of these small ratios, no-
tably neglecting terms of the order of rℓrµ, which causes
the nonconservation of energy.

To augment Eq. (1) with the missing terms, we note
that in an inhomogeneous setting, the space-dependent
occupation-number matrix is defined by a Wigner distri-
bution [49], the expectation value of

Dαβ(r,p) =
∑
k

a†β,p+k/2aα,p−k/2e
−ik·r. (14)

Here, the Fourier wavevector k measures the typical
length scale over which the density matrix is changing,
and is therefore |k| ∼ ℓ−1 ≪ |p|. The time derivative is
obtained using Heisenberg’s equations. The commutator
with the kinetic energy is easily established as(
∂Dαβ

∂t

)
0

= i
∑
k

a†
β,p+ k

2

aα,p− k
2
e−ik·r

(
ϵp+ k

2
− ϵp− k

2

)
≃ −v ·∇rDαβ , (15)

recovering the usual advection term.
For the interaction part, we here outline the general

strategy and report details in the Supplemental Material
(SM). The commutator [D,U ] produces strings of four
creation and annihilation operators, or four-point cor-
relation functions. The average of these combinations



4

are evaluated again using the mean-field approximation.
In the homogeneous limit, when taking the expectation
value of ⟨a†1a2⟩, the momenta of state 1 and 2 must be

equal. We go one step further and include the inhomo-
geneity to first order in k. The final result, fully derived
in the SM, is

∂tρp,r + v ·∇rρp,r +
1

2

{
∇pΩ

(0)
p,r,∇rρp,r

}
− 1

2

{
∇rΩ

(0)
p,r,∇pρp,r

}
= i
[
ρp,r,Ωp,r

]
, (16)

where we introduce

Ω(0)
p,r =

√
2GF

∑
p′

(1 − cos θp,p′)
[
ρp′,r + Tr(ρp′,r)1

]
(17)

that coincides with the standard Hp,r stated after Eq. (1) except for the additional trace term that drops out in
commutators, but not in the anticommutators on the left-hand side. Moreover,

Ωp,r = Ω(0)
p,r +

√
2GF

∑
p′

p+ p′

p2p′2
(p× p′) ·

[
∇rρp′,r + Tr(∇rρp′,r)1

]
, (18)

where p = |p| and p′ = |p′|.
Ωp,r is the renormalized quasiparticle energy, in gen-

eral a matrix in flavor space, analogous to the renormal-
ized quasiparticle energy in Landau’s theory of a Fermi
liquid [50]. This induces a renormalization in the group
velocity ∇pΩ

(0)
p,r (only the zero order terms must be kept

which already contain one gradient) and a weak force
field −∇rΩ

(0)
p,r.

All additional terms are small, of the order of rµrl,
and thus will not produce quantitatively large flavor-

conversion effects. However, as a qualitatively new ef-
fect, the renormalized group velocity causes a slow spatial
drift of neutrinos; the order of magnitude of the velocity
is |∇pΩ

(0)
p,r| ∼ rµ. Since rµ ∼ 10−11, this is completely

negligible compared to the standard neutrino velocity.
The most significant impact comes from the weak force

−∇rΩ
(0)
p,r, which can change the neutrino kinetic energy.

Part of this force originates from gradients in the neutrino
number density. Our new insight is that an additional
component originates from gradients in flavor composi-
tion. To see this clearly, we rewrite the EOMs as

∂tρp,r + v ·∇rρp,r = i
[
ρp,r,Ωp,r

]
+ ∇r ·Φp,r −∇p · Fp,r, (19)

where

Φp,r =

√
2GF

2

∑
p′

(1 − cos θp,p′)
[{
ρp′,r,∇pρp,r

}
+ 2 Tr(ρp′,r)∇pρp,r

]
(20)

is the number flux of neutrinos passing through a surface element of coordinate space at phase-space location {p, r},
as seen from the structure analogous to a continuity equation, whereas Fp,r is the same in momentum space, given by
the same expression with ∇p → ∇r. This term couples the trace of the density matrix with the polarization vector;
taking the trace, we find

Tr(Fp,r) =

√
2GF

2

∑
p′

(1 − cos θp,p′)
[
3P 0

p′,r∇rP
0
p,r + P⃗p′,r ·∇rP⃗p,r

]
. (21)

Thus, spatial gradients of the polarization vectors can
feed ν kinetic energy. This term implies a net rate of en-
ergy gain or loss of order dϵp/dt ≃ µ/ℓ. Over a timescale
ℓ, the energy that a ν can accumulate is of order µ≪ ϵp,
so we recover that this is a small effect relative to ϵp,

but large relative to the interaction energy. It provides
the missing channel by which kinetic and refractive en-
ergy can be traded. Even a small amount of energy µ lost
(gained) from the large ν kinetic energy explains the large
change in the refractive energy, since Uosc/K ≃ µ/ϵp.
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With the new kinetic equations, we can directly prove
that to first order in rµ and rℓ, the total energy is con-
served. After integrating by parts, we find

dK

dt
=

∫
d3r

∑
p

Tr (v · Fp,r) . (22)

Substituting the polarization vector part of Eq. (21) in
Eq. (22), we find that it precisely balances the rate of
change in the oscillation energy found in Eq. (7).

Discussion.—We have shown that the usual kinetic
equation for mixed neutrinos Eq. (1) is non-conservative
in the inhomogeneous case. We have illustrated this point
with a simple two-beam example, where the ν–ν interac-
tion energy strongly changes, and we have also shown this
effect analytically in the linear regime. Deriving missing
gradient terms beyond Eq. (1), we have shown that the
refractive energy gained or lost is precisely traded with
neutrino kinetic energy that usually is not followed. In
our two-beam example, the monochromatic initial energy
distribution develops small space-time dependent shifts
that account for the missing energy. We have not tried
to study this effect numerically because it requires many
p-modes around the original one, but we have proven
energy conservation analytically.

The usual EOMs correctly account for flavor evolution,
meaning the trace-free part of the density matrices often
described by polarization vectors. On the other hand,
the particle number in a given p-mode is conserved, cor-
responding to the trace part of the EOM, where the left-
hand side of Eq. (1) is a continuity equation. Therefore,
the trace part of the EOM must be expanded to higher
order in the gradients to capture nontrivial evolution.
The reshuffling of neutrinos among p-modes is a small
effect relative to the large kinetic energies, yet precisely
absorbs the missing refractive energy.

These novel terms come from the gradients of the neu-
trino self-energy. With hindsight, that they would af-
fect neutrino evolution, is obvious from the viewpoint of
physical kinetics, and implicitly present in previous for-
mal derivations [2, 3, 5–7], but usually assumed to be
a small effect. Our new insight is that fast conversions
spontaneously break homogeneity, magnifying the gradi-
ents of the trace-free density matrix, making these terms
large enough to explain completely the apparent non-
conservation of energy.

We note that Eq. (1) conserves entropy and including
the new gradient terms, this is also the case, i.e., entropy
is conserved order by order in the gradient expansion (see
Supplemental Material). On the practical level, the con-
servation of entropy, but not of energy, could be used to
test numerical stability. Even more importantly, in mak-
ing predictions on the final state induced by conversions,
energy conservation cannot be used in practice, unless
the new terms are kept.

Our finding may shed new light on a recent proposal
that the final outcome of fast conversions may be some

sort of thermalized state [51]. The quasi-steady state
generically observed in numerical simulations of fast con-
versions [52–57] is only determined by the oscillatory part
of the density matrix, yet its dynamics does not admit a
separately conserved energy. Thus, it cannot separately
thermalize, since it exchanges energy with the kinetic en-
ergy of neutrinos.
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S1

Supplemental Material for the Letter
Inhomogeneous Kinetic Equation for Mixed Neutrinos: Tracing the Missing Energy

In this Supplemental Material, we provide further details on the derivation of the equation of motion (EOM)
discussed in the main text.

A. Detailed derivation of the equations of motion

For the reader’s convenience, we reproduce some of the equations from the main text. The starting point of the
derivation is the many-body Hamiltonian describing the neutrino kinetic energy and interactions. This is written
H = H0 + U , where H0 =

∑
α,p ϵpa

†
α,paα,p is the neutrino kinetic energy operator, and

U =

√
2GF

8

∑
{p},α,β

a†α,p1
aα,p2

a†β,p3
aβ,p4

up1
γµup2

up3
γµup4

. (S1)

We will henceforth use the notation (p1,p2)(p3,p4) = up1γ
µup2up3γµup4 .

We want to determine the time evolution, under this Hamiltonian, of the density operator

Dαβ(p, r) =
∑
k

a†β,p+k/2aα,p−k/2e
−ik·r, (S2)

or more conveniently of its spatial Fourier transform

D̃αβ(p,k) = a†β,p+k/2aα,p−k/2. (S3)

Following the notation in the main text, we denote the expectation value over the quantum state ⟨Dαβ(p, r)⟩ =
ραβ(p, r) and analogously for the Fourier transform ⟨D̃αβ(p,k)⟩ = ρ̃αβ(p,k).

We start by obtaining the commutator of the non-interacting Hamiltonian H0 with this operator; using the standard
commutation rules we easily find

[H0, D̃αβ(k,p)] =
(
ϵp+k/2 − ϵp−k/2

)
D̃αβ(k,p). (S4)

Expanding to first order in k, and using ∇pϵp = v, we find(
∂D̃αβ

∂t

)
0

= i[H0, D̃αβ ] = iv · k D̃αβ , (S5)

which Fourier transformed leads to the usual advective term quoted in the main text.
Let us now consider the commutator of the interaction Hamiltonian U , which gives

[U , D̃αβ ] =

√
2GF

8

∑
{p},γ

(p1,p2)(p3,p4)

×
[
a†γ,p1

aγ,p2
a†β,p3

aα,p−k/2δp4,p+k/2 + a†β,p1
a†γ,p3

aγ,p4
aα,p−k/2δp2,p+k/2

− a†β,p+k/2a
†
γ,p1

aγ,p2
aα,p4

δp3,p−k/2 − a†β,p+k/2aα,p2
a†γ,p3

aγ,p4
δp1,p−k/2

]
, (S6)

where δp1,p2
is a Dirac delta forcing the equality p1 = p2. We can now take the expectation value of this operator

over the mean-field state; the corresponding terms can be grouped in pairs which are identical after the exchange
p1 → p3, p2 → p4, so we finally obtain

⟨[U , D̃αβ ]⟩ =

√
2GF

4

∑
{p},γ

(p1,p2)(p3,p4)

×
[
(⟨a†γ,p1

aγ,p2
⟩⟨a†β,p3

aα,p−k/2⟩ − ⟨a†γ,p1
aα,p−k/2⟩⟨a†β,p3

aγ,p2
⟩)δp4,p+k/2

− (⟨a†γ,p1
aγ,p2

⟩⟨a†β,p+k/2aα,p4
⟩ − ⟨a†γ,p1

aα,p4
⟩⟨a†β,p+k/2aβ,p4

⟩)δp3,p−k/2

]
. (S7)



S2

In each term, it will prove convenient to reparametrize the momenta in such a way as to separate the large momenta
(associated with the neutrino energies) from the small momenta (associated with the spatial gradients of the density

matrix). In particular, in terms of the form ⟨a†β,p1
aα,p2

⟩, because of the slowly-varying nature of the density matrix, we

find a non-vanishing result only if p1 and p2 differ by terms of order ∼ ℓ−1. Thus, for example, it proves convenient
to reparameterize the first term ⟨a†γ,p1

aγ,p2
⟩⟨a†α,p3

aβ,p−k/2⟩ choosing p1 = p′ + (k − q)/4, p2 = p′ − (k − q)/4,
p3 = p + q/2, p4 = p + k/2, which makes it clear that p and p′ are large momenta, while q and k are small.
Adopting a similar parameterization for all the terms we find

⟨[U , D̃αβ ]⟩ =

√
2GF

4

∑
p′,q,γ

[
ρ̃αβ

(
p +

q− k

4
,
q + k

2

)
ρ̃γγ

(
p′,

k− q

2

) (
p +

q

2
,p +

k

2

)(
p′ +

k− q

4
,p′ +

q− k

4

)

− ρ̃αγ

(
p +

q− k

4
,
q + k

2

)
ρ̃γβ

(
p′,

k− q

2

)(
p +

q

2
,p′ +

q− k

4

)(
p′ +

k− q

4
,p +

k

2

)
− ρ̃αβ

(
p +

k− q

4
,
k + q

2

)
ρ̃γγ

(
p′,

k− q

2

)(
p− k

2
,p− q

2

)(
p′ +

k− q

4
,p′ +

q− k

4

)
+ ρ̃αγ

(
p′,

k− q

2

)
ρ̃γβ

(
p +

k− q

4
,
k + q

2

) (
p− k

2
,p′ +

q− k

4

)(
p′ +

k− q

4
,p− q

2

)]
. (S8)

We can now take the inverse Fourier transform by multiplying by e−ik·r1 and summing over all k. We perform the
full manipulations only on the first of the four terms; the other ones are treated analogously. Introducing the notation
a = k− q, b = k + q, we can write this term as∑

a
2 ,

b
2 ,p

′,γ

ei
b
2 ·(r2−r1)+i a

2 ·(r3−r1)ργγ(p′, r3)ραβ

(
p− a

4
, r2

)(
p +

q

2
,p +

k

2

)(
p′ +

a

4
,p′ − a

4

)
.

In this expression, we must now perform the expansion for |k,q| ≪ |p,p′|. For the spinor part, this requires using
the explicit form of the spinors expanded to first order in the momenta a and b. The result depends on the mutual
orientation of the vectors p and p′. Thus, we introduce a set of three orthonormal directions

ey =
p× p′

pp′ sin θpp′
, ex =

ey × p

p
, ez =

p

p
. (S9)

We can now use the result that(
p +

q

2
,p +

k

2

)(
p′ +

a

4
,p′ − a

4

)
≃ 4(1 − cos θpp′) − sin θpp′ [bxp

′ + iay(p+ p′)]

pp′
. (S10)

This expression is obtained by a direct use of the corresponding spinors. The other matrix element is(
p +

q

2
,p′ − a

4

)(
p′ +

a

4
,p +

k

2

)
= −

(
p +

q

2
,p +

k

2

)(
p′ +

a

4
,p′ − a

4

)
(S11)

by virtue of Fierz identities.
The expansion in powers of k and q involves three terms. The zeroth-order term is then simply

4
∑
p′,γ

(1 − cos θpp′)ργγ(p′, r)ραβ(p, r), (S12)

where we call r1 = r since only one spatial variable survives in the final result. Next we have a first-order term coming
from the gradient expansion ραβ(p− a/4, r2) ≃ ραβ(p, r2) −∇pραβ · a/4, leading to

−2i
∑
p′,γ

(1 − cos θpp′)∇rργγ(p′, r) ·∇pραβ(p, r). (S13)

Finally, from the expansion of the spinor part we obtain

−
∑
p′,γ

sin θpp′

pp′

[
2ip′ργγ(p′, r) ex ·∇rραβ(p, r) − 2(p+ p′)ραβ(p, r) ey ·∇rργγ(p′, r)

]
. (S14)
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Performing analogous manipulations on all four terms of Eq. (S7) we finally reach the form

∂ρp,r
∂t

+ v ·∇rρp,r = i
√

2GF

∑
p′

(1 − cos θpp′)[ρp,r, ρp′,r] +

(
∂ρp,r
∂t

)
der

+

(
∂ρp,r
∂t

)
spinor

, (S15)

where we introduce the compact notation ρp,r = ρ(p, r) as in the main text. The terms (∂ρp,r/∂t)der originate from
the derivatives of the density matrices with respect to momenta, analogously to Eq. (S13), and can be written as(

∂ρp,r
∂t

)
der

=

√
2GF

2

∑
p′

(1 − cos θpp′)
({

∇rρp′,r,∇pρp,r

}
+ 2Tr(∇rρp′,r) ·∇pρp,r

)
. (S16)

The expansion of the spinors leads to a term of the form(
∂ρp,r
∂t

)
spinor

=

√
2GF

2

∑
p′

sin θpp′ex
p

·
({
ρp′,r,∇rρp,r

}
+ 2Tr(ρp′,r)∇rρp,r

)
+
i
√

2GF

2

∑
p′

sin θpp′

(
1

p
+

1

p′

)
ey ·

[
ρp,r,∇rρp′,r

]
. (S17)

Using now the identity

∇p cos θpp′ =
sin θpp′

p
ex, (S18)

and repeatedly integrating by parts, we are led to the equations finally reported in the main text.

B. Entropy Conservation

Besides conserving energy, the newly introduced EOMs have also the property of conserving the entropy of the
neutrino gas, defined by

Sν =

∫
d3r

∑
p

Tr (sp,r) , (S19)

where

sp,r = −
[
ρp,r log ρp,r + (1 − ρp,r) log(1 − ρp,r)

]
, (S20)

so that the time derivative can be written

dSν

dt
=

∫
d3r

∑
p

Tr

[
∂ρp,r
∂t

log

(
1 − ρp,r
ρp,r

)]
. (S21)

For the standard EOMs, without the new terms, entropy conservation is automatically enforced. We now show that
the new terms from the gradient expansion also maintain this conservation law.

To compute the time derivative of the entropy, it is convenient to rewrite the EOMs reported in the main text as

∂tρp,r + v ·∇rρp,r = i
[
ρp,r,Ωp,r

]
+

1

2

{
∇rΩ

(0)
p,r,∇pρp,r

}
− 1

2

{
∇pΩ

(0)
p,r,∇rρp,r

}
. (S22)

We can now replace the time derivative Eq. (S22) in the rate of change of the entropy Eq. (S21); the advection term
of course does not lead to any change in entropy. The commutator term also leads to a vanishing entropy change,
as follows from the identity Tr ([Ωp,r, ρp,r]F(ρp,r)) = 0, where the matrix F is a generic function. Finally, from the
anticommutator terms we find

dSν

dt
=

1

2

∫
d3r

∑
p

Tr
[{

∇rΩ
(0)
p,r,∇psp,r

}
−
{
∇pΩ

(0)
p,r,∇rsp,r

}]
, (S23)



S4

where we have recognized the total derivative

∇pρp,r log

(
1 − ρp,r
ρp,r

)
= ∇psp,r. (S24)

Even though the operators ρp,r and hp,r do not commute, this manipulation can be performed for all terms within
the trace. Finally, by integrating by parts both terms, we can easily conclude that the rate of change of the entropy
vanishes. Therefore, we recover the physically intuitive conclusion that, in the absence of incoherent collisions, which
could only appear to second order in GF, neutrino entropy is conserved.
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