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The flavor evolution of a neutrino gas can show “slow” or “fast” collective motion. In terms of the
usual Bloch vectors to describe the mean-field density matrices of a homogeneous neutrino gas, the
slow two-flavor equations of motion (EOMs) are _Pω ¼ ðωBþ μPÞ × Pω, where ω ¼ Δm2=2E,

μ ¼ ffiffiffi
2

p
GFðnν þ nν̄Þ, B is a unit vector in the mass direction in flavor space, and P ¼ R

dωPω. For an

axisymmetric angle distribution, the fast EOMs are _Dv ¼ μðD0 − vD1Þ × Dv, whereDv is the Bloch vector
for lepton number, v ¼ cos θ is the velocity along the symmetry axis, D0 ¼

R
dvDv, and D1 ¼

R
dvvDv.

We discuss similarities and differences between these generic cases. Both systems can have pendulumlike
instabilities (soliton solutions), both have similar Gaudin invariants, and both are integrable in the classical
and quantum case. Describing fast oscillations in a frame comoving with D1 (which itself may execute
pendulumlike motions) leads to transformed EOMs that are equivalent to an abstract slow system. These
conclusions carry over to three flavors.

DOI: 10.1103/PhysRevD.107.043024

I. INTRODUCTION

The refractive energy shift of a neutrino in a medium of
neutrinos or antineutrinos of its own flavor is twice that for
a different flavor. In a seminal paper thirty years ago,
Pantaleone showed that therefore neutrino-neutrino refrac-
tion is a many-body phenomenon [1]. Shortly thereafter, in
another foundational paper, Samuel found that neutrino
flavor evolution feeding back on itself spawns intriguing
forms of collective flavor evolution [2]. While the com-
munity was somewhat slow at fully catching on to these
insights, the idea is now standard that neutrino-neutrino
refraction can strongly affect flavor-dependent neutrino
transport, notably in supernova cores or other (neutrino-)
dense environments.
Some forty research papers on this topic have appeared in

2022alone,making it impossible to do justice to this swelling
body of literature in our brief introduction, sowemerely refer
to some early [3,4] and more recent reviews [5–8] that
provide a glimpse of the richness of questions addressed in
this quest. Much recent work is directed toward under-
standing space-time dependent solutions in the context of
realistic astrophysical environments, including effects of

collisions, or understanding possible limitations of the
mean-field description.
We assume that the reader is largely familiar with this

general subject and here return to far more elementary
questions about the basic structure of the nonlinear flavor
equations of motion (EOMs). In particular, we will juxta-
pose the basic reference case of “slow” (energy-dependent)
flavor oscillations with the “fast” (angle-dependent) case
and discuss a number of striking similarities and a certain
reciprocity between them.
One key element of collective flavor evolution is the

possible appearance of instabilities in the linearized equa-
tions, signifying soliton solutions (pendulumlike behavior)
in the nonlinear regime. These were identified a long time
ago in the simplest collective-oscillation case [9–13], which
is a homogeneous and isotropic (or single-angle) neutrino
gas with a nontrivial energy distribution. A similar behavior
was recently identified in the simplest system of fast flavor
conversion [14,15] that consists of a homogeneous and
axisymmetric neutrino gas with a nontrivial angle distri-
bution of the lepton-number flux. We here juxtapose these
generic cases more systematically, discuss similarities and
differences, and show a certain reciprocity between them.
To define the exact cases of comparison, we use the usual

Bloch vectors to represent two-flavor density matrices. The
simplest collective EOMs are

_Pω ¼ ðωBþ μPÞ × Pω; ð1Þ
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where ω ¼ Δm2=2E is the vacuum oscillation frequency,
μ ¼ ffiffiffi

2
p

GFðnν þ nν̄Þ is a measure of the neutrino-neutrino
interaction strength, and P ¼ R

dωPω. Antineutrinos are
included with negative ω and we use the flavor isospin
convention: spin up means νe or ν̄μ, spin down means νμ or
ν̄e. We usually assume jωj ≪ μ, a condition that defines a
“neutrino-dense” environment. Because flavor conversion
is here driven by ω, this case has come to be called “slow
flavor oscillations.”
If we interpret the Bloch vectors as classical angular

momenta, these EOMs follow from the Hamiltonian1

Hslow ¼ B · P1 þ
μ

2
P2
0; ð2Þ

where P0 ¼ P ¼ R
dωPω and P1 ¼

R
dωωPω.

The second case of comparison uses Bloch vectors for
the density matrices of neutrinos minus that for antineu-
trinos, i.e., for the angle-dependent lepton-number occu-
pation. Here spin up means νe − νμ occupation, spin down
ν̄μ − ν̄e occupation. Assuming axial symmetry and using
the fast flavor limit of vanishing neutrino mass splitting
(ω ¼ 0), the EOMs are

_Dv ¼ μðD0 − vD1Þ ×Dv; ð3Þ
where v ¼ cos θ is the mode velocity along the symmetry
axis. In analogy to the slow case, we use the moments2

Dn ¼
Z þ1

−1
dvvnDv: ð4Þ

The fast EOMs derive from the Hamiltonian

Hfast ¼
μ

2
ðD2

0 − D2
1Þ; ð5Þ

once more using the canonical angular-momentum Poisson
brackets for the Dv. Our aim is to compare the properties of
these minimal slow and fast cases.
The slow Hamiltonian, or its quantum equivalent, arises

in many other “spin problems” and in particular in the
context of the Bardeen-Cooper-Schrieffer (BCS) theory of
superconductivity. Using Anderson’s pseudospin forma-
lism [17], a Cooper pair means “spin down” whereas
unpaired electrons correspond to “spin up,” implying a
perfect analogy. For example, pendulumlike behavior was
discovered in this system, collective oscillation between the
paired and unpaired state, in a nonequilibrium situation
when dissipation was small [18,19]. Many features of what

we call collective neutrino oscillations were discussed in a
long series of papers by Yuzbashyan and collaborators [20–
25], where often the classical and quantum cases are
clearly juxtaposed. We consider mostly the classical case
(the mean-field description of neutrino oscillations) and
the EOMs are central to our arguments rather than the
Hamiltonians themselves. Indeed, we argue the reciprocity
of the slow and fast system on the level of the EOMs, not
on the basis of canonical transformations between the
variables.
Returning to our discussion, as a final simplification we

absorb the scale μ in the definition of dimensionless time
and use dimensionless oscillation frequencies w ¼ ω=μ.
Then finally we consider the two sets of EOMs

_Pw ¼ ðwBþ P0Þ × Pw; ð6Þ
_Dv ¼ðD0 − vD1Þ ×Dv; ð7Þ

where−∞ < w < þ∞ and−1 ≤ v ≤ þ1. Wewill continue
to denote the Bloch vectors of the slow system as Pw and
those of the fast system asDv. These equations look vaguely
similar and it is the main point of our paper to show in
which sense the two systems are actually reciprocal to
each other.
We begin our discussion in Sec. II with the mapping

between the fast and an abstract slow system and we
identify and interpret the constraint for the slow system
required to enable the reverse mapping. In Sec. III we
develop the machinery of Lax vectors to identify the
invariants and prove the integrability of both systems in
the mechanical sense. Moreover, we discuss the equiv-
alence to a system with only few effective degrees of
freedom based on the roots of the spectral polynomial. In
Sec. IV we juxtapose the dispersion relations for the fast
and slow cases and show the consistency of the original
mapping on the level of the linearized system. We also
explain the equivalence of the normal modes to the roots of
the z-component of the Lax vectors if the neutrinos begin in
flavor eigenstates. Next, in Sec. V, we extend the discussion
to three flavors and derive the corresponding Gaudin
invariants. We end with some general conclusions in
Sec. VI. We address a number of additional topics in
appendices. In Appendix A we explain the general trans-
formation between moving frames in flavor space. In
Appendix B we discuss the dispersion relation in the
continuum (thermodynamic) limit following earlier work
on the Vlasov equation. Finally, in Appendix C, we prove
the integrability of the quantum version of the fast system.

II. FAST–SLOW RECIPROCITY

A. Transforming a general fast system to a
constrained slow system

To compare Eqs. (6) and (7) we first identify a few
conserved quantities. Integrating Eq. (7) over dv leads to

1The evolution of any function F on phase space is given by
_F ¼ fF;Hg where f·; ·g is a Poisson bracket. For classical
angular momenta, fPx

ω; P
y
ωg ¼ Pz

ω and cyclic permutations,
implying for example fPω;B · Pωg ¼ B × Pω.

2This notation, that was also used in Appendix A of Ref. [16],
is slightly ambiguous in that e.g., D0 means the zeroth moment,
not Dv at v ¼ 0, but usually this should not lead to confusion.
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_D0 ¼ 0 and thus reveals that D0 is a fixed vector. ApplyingR
vdv on both sides provides

_D1 ¼ ðD0 þ D2Þ × D1: ð8Þ

The evolution of D1 is an instantaneous precession and so
its length is conserved. For those conditions where the
motion is analogous to a gyroscopic pendulum, D0 plays
the role of gravity, whereas D1 that of the moving radius
vector that executes precessions and nutations.
There is an evident reciprocity between D1 moving

relative to the fixed D0 or conversely D0 moving in a frame
comoving with D1. To express the fast oscillations of
Eq. (7) in this comoving frame we observe that Eqs. (7) and
(8) both engender differential rotations that can be added.
Therefore, we can simply subtract the precession of the
frame comoving withD1 from the original precession of the
individualDv. Denoting Bloch vectors in the moving frame
with a tilde, we thus find

∂tD̃v ¼ −ðvD̃1 þ D̃2Þ × D̃v: ð9Þ

We present a more formal derivation of this transformation
in Appendix A. Applying

R
vdv on both sides confirms that

∂tD̃1 ¼ 0. Moreover, applying
R
dv on both sides reveals

that ∂tD̃0 ¼ −D̃2 × D̃0 and so it is indeed D̃0 that now is a
moving object with conserved length. All vectors coincide
between the two frames at t ¼ 0, so the spectra, stability
conditions, and so forth are the same in both frames.
In the fast EOMs (7), the common precession around the

fixed vector D0 does not affect the internal motion of the
system. One usually assumes that initially all Bloch vectors
are oriented in the flavor direction, apart from a small seed
that can trigger possible instabilities, i.e., a small deviation
of collinearity among the Dv. We still assume that the
conserved D0 defines the z-direction. The flavor content of
every mode is encoded inDz

v which does not depend on the
common precession. Therefore, the questions of physical
relevance are the same in the corotating system so that one
can simply remove the first term of Eq. (7) and finds the
same physical answers. In this case, D0 disappears from
both Eqs. (7) and (8) and thus never appears in the
transformed Eq. (9). Of course, it is physically clear that
the internal motion of theDv relative toD1 does not depend
on the common precession of all Dv and of D1 ¼

R
dvvDv

around D0.
So far we have treated w and v as continuous parameters.

However, sometimes it is more practical to think of discrete
sets of Bloch vectors to avoid worrying about integration
measures. In this spirit integrals

R
dv or

R
dw correspond toP

v or
P

w. With this understanding, the transformed
EOMs (9) are identical in form to the slow EOMs (6)
with the identifications

B¼−
D̃1

D1

; w¼ vD1; Pw ¼−v2D̃vjv¼w=D1
; ð10Þ

where D1 ¼ jD1j ¼ jD̃1j, −D1 ≤ w ≤ þD1, and

P0 ¼
X
w

Pw ¼ −
X
v

v2D̃v ¼ −D̃2: ð11Þ

These identifications are possible because in the new frame,
the first moment D̃1 is constant and acts as a fixed direction
around which all polarization vectors precess with different
frequencies.

B. Constrained slow system

The slow system has a vector of conserved length that
can play the role of a pendulum vector,3

R ¼ B −
X
w

Pw

w
: ð12Þ

Notice that _R ¼ −
P

w
1
w
_Pw ¼ −

P
w

1
w ðwBþ P0Þ × Pw ¼

−B × P0 − P0 × ðPw
1
wPw −Bþ BÞ ¼ P0 ×R and so

indeed R follows an instantaneous precession. Actually
the Bloch vector R thus defined is a special case
of a Lax vector, a topic that we will discuss later in
Sec. III A.
However, the transformed variables of Eq. (10) reveal

P−1 ≡P
w Pw=w ¼ −

P
vðvD̃v=D1Þ ¼ −D̃1=D1 ¼ B so

that R ¼ 0. This case of a slow flavor pendulum has not
been discussed in the literature, but of course Eq. (12)
always allows for the special case R ¼ 0. Notice that, if
R ¼ 0 at the initial instant, it remains zero throughout the
evolution. In our case, after transforming the fast EOMs,
we have already shown that it is D̃0 that is the moving
quantity of conserved length.
In the slow case with R ¼ 0, whether or not it derives

from the fast–slow transformation, we should thus consider
P−2 ≡P

w w
−2Pw instead of R. The derivative is _P−2 ¼P

w w
−2 _Pw ¼ P

w w
−2ðwBþ P0Þ × Pw ¼ B × P−1 þ P0×

P−2. Because by assumption P−1 ¼ B, the first term drops
out and so indeed _P−2 ¼ P0 × P−2 is a precession equation
that conserves the length of P−2.
We can also reverse the transformation and start from the

slow EOMs (6) and go to a frame that moves with the
vector that stays of constant length. This is eitherR or P−2,
but in both cases the evolution is driven by P0. Following
the same logic as in the earlier transformation, the moving
EOMs are ∂tP̃w ¼ wB̃ × P̃w. Next we can use Eq. (12) to

3The integral in the continuous case would be interpreted in the
principal value sense, provided Pw is integrable at w ¼ 0. Notice,
however, that w corresponds to infinite E and in a realistic
medium would be exponentially suppressed. Moreover, Eq. (10)
contains a factor w2 times a slowly varying function.
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eliminate B̃ and find with the identification v ¼ w and
Dv ¼ −P̃w=w2 the equivalent EOMs

_Dv ¼ −vðD1 −RÞ × Dv: ð13Þ

This has the form of a fast system, but only if R ¼ 0 of the
original slow system.
Therefore, in both directions of the transformation one

finds that the fast EOMs are equivalent to a specific slow
system where R ¼ 0.
The meaning of this constraint becomes more obvious

for a system of N discrete modes Dv in the fast system.
After the transformation we obtain N slow modes Pw and
some combination ofDv playing the role of the fixed vector
B. The additional degree of freedom is absorbed by the
constraintR ¼ 0 so that the slow system also has N Bloch-
vector degrees of freedom.
Therefore, we find that a slow system can be mapped to

the same form as a fast system if the vector R ¼ 0.
However, more generally, we can transform the EOMs
to a frame corotating around the z axis with frequency wc,
where the EOMs are

_Pw ¼ ½ðw − wcÞBþ P0� × Pw ð14Þ

and perform the same steps as before. In this frame, we
need to require that

Rc ¼ B −
X
w

Pw

w − wc
¼ 0: ð15Þ

This expression has the same form as a Lax vector Eq. (17) of
this system. In other words, the slow-to-fast mapping can be
done if there exists any vanishing Lax vectorLu with real u.

C. Conserved energy

The slow and fast EOMs derive respectively from the
classical Hamiltonians Eqs. (2) and (5) if we interpret the
Blochvectors as classical angularmomenta. The two terms in
Hfast are separately conserved and indeed, the same motion
obtains if we leave out the first piece 1

2
D2

0, except for an
overall precession around D0. In the slow case, on the other
hand, the two pieces exchange energy in the course of the
motion. For the pendulum solutions, the first term plays the
role of potential energy, the second term the role of kinetic
energy.
After mapping the fast system on a slow one, we recall

that B ∼D1, P1 ∼ D3, and P0 ∼D2. Therefore one expects
that the quantity

D1 · D3 þ
1

2
D2

2 ð16Þ

is conserved as one can verify using the fast EOMs (7). This
is one of many invariants of the fast system.

III. INVARIANTS AND INTEGRABILITY

A. Lax vectors

The slow EOMs (6) admit an infinite set of constants of
the motion which are best expressed in terms of the so-
called Lax vectors [22,24]:

Lu ¼ Bþ
X
w≠u

Pw

u − w
; ð17Þ

where in general u is a complex parameter, whereas w is
understood as a set of discrete frequencies. The time
derivative is found by inserting Eq. (6) for _Pw on the
right-hand side, leading to

_Lu ¼ ðuBþ P0Þ ×Lu ð18Þ

and where P0 ¼
P

w Pw. This is a formal precession
equation with complex frequency u and implies that the
length of Lu is conserved, i.e., ∂tL2

u ¼ 0, where L2
u is a

complex number.
For the fast system, we find that the corresponding Lax

vectors are

Lu ¼
X
v≠u

vDv

u − v
: ð19Þ

In analogy, the time derivative is found by inserting Eq. (7)
for _Dv on the right-hand side, leading to

_Lu ¼ ðD0 − uD1Þ ×Lu ð20Þ

with D0 ¼
P

v Dv and D1 ¼
P

v vDv. So here as well, the
complex length of Lu is conserved for any complex u.

B. Gaudin invariants

1. Slow system

The Lax vectors provide a continuous infinity of invar-
iants of the motion, which however are not linearly
independent. However, considering the Lax vectors only
for the same discrete set w of frequencies, then there is a
real Lax vector Lw for every Pw. It provides the Gaudin
invariant or Gaudin Hamiltonian [26]:

Iw ¼ Lw · Pw ¼ B · Pw þ
X
w0≠w

Pw · Pw0

w − w0 : ð21Þ

This is a conserved quantity of our original system, but can
also be interpreted as a Hamiltonian that defines a new
system of a “central” spin Pw coupled to an external B field
and to a set of “environmental” spins, the “central spin
problem” (see e.g., Ref. [20]).
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The Gaudin invariants generate all the other integrals of
motion. One example is

X
w

Iw ¼ B ·
X
w

Pw ¼ B · P0; ð22Þ

as can be seen immediately from the antisymmetry of the
second term in Eq. (21) under exchange w ↔ w0. Likewise,
the Hamiltonian of the original slow system can be
expressed as4

Hslow ¼
X
w

�
wIw þ 1

2
P2
w

�
¼ B · P1 þ

1

2
P2
0: ð23Þ

Notice that
P

w P
2
w is separately conserved and thus could

be left out without changing the EOMs. This term is
included to make up for the piece w ¼ w0 that is missing in
sums involving 1=ðw − w0Þ.
A generalization of these invariants is given by the

expressions5

Cn ¼
X
w

�
wnIw þ 1

2
nwn−1P2

w

�
ð24aÞ

¼ B · Pn þ
1

2

Xn−1
m¼0

Pm · Pn−1−m; ð24bÞ

where C0 was already given in Eq. (22) and C1 is Hslow
given in Eq. (23).

2. Fast system

To find the Gaudin invariants of the fast system, once
more we consider the Lax vectors Lv for the same set of
discrete velocities v as the original fast system. Once more
they follow the same EOMs as the original setDv and so we
find the Gaudin invariants

Iv ¼ Dv ·Lv ¼
X
v0≠v

v0Dv0 ·Dv

v − v0
: ð25Þ

A trivial conserved quantity is

C0 ¼
X
v

Iv þ
1

2

X
v

D2
v ¼ −

1

2
D2

0: ð26Þ

The next invariant

C1 ¼
X
v

vIv ¼ 0 ð27Þ

vanishes identically.
Further nontrivial conserved quantities are obtained for

n ≥ 2

Cn ¼
X
v

�
vnIv þ

1

2
vnðn − 1ÞD2

v

�
ð28aÞ

¼ 1

2

Xn−1
m¼1

Dm ·Dn−m: ð28bÞ

In terms of this chain of invariants, the fast Hamiltonian
Eq. (5) is

Hfast ¼ −ðC0 þ C2Þ ¼
1

2
D2

0 −
1

2
D2

1: ð29Þ

On the other hand, the Hamiltonian in the frame comoving
with D1 that was given in Eq. (16) is the same as C4. The
invariants of the system can be written in many ways, each
providing a different glance on its properties.

C. How many invariants per mode?

We have identified two invariants for every mode, the
length of the Bloch vector and the Gaudin invariant.
The latter is the scalar product of the Bloch vector and
the corresponding Lax vector. So for the fast system, we
haveD2

v andDv ·Lv as invariants, but in additionL2
v is also

conserved because the Lax vector also follows a precession
equation. While it is physically obvious that the system
cannot have another independent invariant per mode, it is
instructive to show this explicitly.
Following the definition of the Lax vector in Eq. (19), its

square is

L2
v ¼

X
v1;v2

Dv1 ·Dv2

v1v2
ðv − v1Þðv − v2Þ

: ð30Þ

We modify the right-hand side with the identity

v1v2
ðv − v1Þðv − v2Þ

¼ v1v2
v1 − v2

�
1

v − v1
−

1

v − v2

�
ð31Þ

4This is seen if we consider

X
w;w0
w≠w0

wPw · Pw0

w − w0 ¼
X
w;w0
w≠w0

ðw − w0ÞPw · Pw0 þ w0Pw · Pw0

w − w0

¼
X
w;w0

Pw · Pw0 −
X
w

P2
w þ

X
w;w0
w≠w0

w0Pw · Pw0

w − w0

¼ P0 · P0 −
X
w

P2
w −

X
w;w0
w≠w0

wPw · Pw0

w − w0 ;

where we have interchanged the summation variables in the last
expression, leading to the minus sign. Taking this term to the left-
hand side finally reveals that the original left-hand side is simply
1
2
ðP0 · P0 −

P
w P

2
wÞ.

5For additional expressions see Appendix A of Ref. [16]. Their
Eq. (A3) corresponds to our Eq. (24a) with their μ → 1=2.
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so that

L2
v ¼ 2

X
v1;v2

Dv1 ·Dv2

v1v2
ðv1 − v2Þðv − v1Þ

¼ 2
X
v1

Iv1
v1

v − v1
: ð32Þ

Therefore, the set of invariants L2
v is indeed a linear

combination of the Gaudin invariants Iv.

D. Integrability

The existence of two constants of motion for each of the
Bloch vectors makes the system completely integrable in
the mechanical sense. First of all, the nature of the motion
as a precession (or in matrix form, the commutator
structure) reveals that the length of each Bloch vector is
conserved, reducing the cartesian variables to two polar
coordinates. Therefore, the motion involves periodic var-
iables. In addition, there is another conserved quantity for
each Pw given, for example, by the Gaudin invariants. (The
nature of the fast case as a special case of the slow one
makes redundant a separate discussion of the former.)
Therefore, the system has only as many underlying

variables as independent Bloch vectors, i.e., the number
of different discrete w. Indeed, one can introduce canonical
variables which separate the Hamilton-Jacobi equations as
those frequencies ω� for which the vectors Lω� are along
the z-axis, and their canonical conjugate variables, namely
the z component of Lω� . An explicit solution for any
initial condition can then be constructed following, e.g.,
Refs. [20,27].
When the system is quantized, the integrability of the

equations shows up in the possibility of constructing all of
the eigenstates of the Hamiltonian analytically by the Bethe
ansatz. (See Appendix C for the integrability of the
quantum system.)

E. Degenerate solutions

The large number of conserved quantities implies that
the motion in the 2Ntot-dimensional phase space—Ntot
being the number of Bloch vectors—is restricted to an Ntot-
dimensional torus. However, depending on the set of
frequencies ωi and initial Pi, the motion of the system
can be constrained to a reduced phase space instead of
ergodically filling all of the torus. Such solutions were
called “degenerate” in Ref. [20], whereas in a previous
study by one of us [13] they were dubbed N-mode coherent
solutions. Either way, the solutions PiðtÞ with i ¼
1;…; Ntot would be linear combinations of a smaller set
of functions JiðtÞ with i ¼ 1;…; N < Ntot and in this sense
the full set PiðtÞmoves coherently rather than each of them
independently. The JiðtÞ were termed “auxiliary spins” in
Ref. [20] or “carrier modes” in Ref. [13].

To show that this phenomenon can indeed exist, we first
reverse the problem and introduce a fictitious system of
a smaller number N < Ntot of Bloch vectors Ji with
frequencies χi obeying an analogous slow EOM with the
same unit vector B

_Ji ¼ ðχiBþ μJÞ × Ji; ð33Þ
where J ¼ P

N
i¼1 Ji. (We here return to dimensionful

frequencies and coupling strength μ.) This is yet another
slow system and as such integrable.
Therefore, we can construct Lax vectors on an arbitrary

set of frequencies ωi with i ¼ 1;…; Ntot > N and suppose
that none of the chosenωi coincides with any of the χi. This
set of Lax vectors of the fictitious system is

Li ¼ Bþ μ
XN
j¼1

Jj
ωi − χj

ð34Þ

and as such obeys the EOMs

_Li ¼ ðωiBþ μJÞ ×Li: ð35Þ

Let us assume that the fLi;ωig are fixed such that the
matching condition L ¼ J is obeyed. This can be achieved
by another factor depending on i that adjusts the arbitrary
length ofLi and/or the choice of ωi. The new systemLi is a
higher-dimensional slow system with solutions LiðtÞ that
depend on B and N < Ntot independent functions JiðtÞ
with i ¼ 1;…; N.
More difficult is the reverse problem where we begin

with a given system fPi;ωig with i ¼ 1;…; Ntot and ask
for its true dimensionality. One numerical diagnostic
requires to solve the EOMs for some chosen time interval
and determine the components of the Gram matrix, Gij ¼R t2
t1 PiðtÞ · PjðtÞ [13]. Its rank (the number of independent
eigenvalues) reveals the number of linearly independent
underlying functions.
However, this dimensionality can also be directly deter-

mined from the initial conditions without solving the EOMs
[20]. The key information is encoded in the complex length
of the Lax vector L2

u. If it vanishes for a real u at the initial
time, it must vanish at all times, which means that one of the
polarization vectors can be expressed in terms of the others,
and therefore the number of degrees of freedomdrops byone.
Indeed, the root diagram of L2

u, the generally complex
solutions ui ofL2

u ¼ 0, provides a lot of crucial information
about a given system [20]. Formally one defines the
“spectral polynomial” of our system by

QðuÞ ¼ L2
up2

u where pu ¼
YNtot

i¼1

ðu − ωiÞ: ð36Þ

Here, pu is the product of the denominators of the Lax
vectors and so, Qu is the numerator of L2

u and as such a
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polynomial in u of order 2Ntot. For all real u, we have
Qu ≥ 0, which implies that the 2Ntot zeroes are pairs of
complex conjugate solutions. As a consequence, real zeros
come in pairs of degenerate solutions.
In the fast flavor case, the constant vectorB is absent from

the Lax vector Eq. (19), but on the other hand there is a factor
u in the numerator, so the spectral polynomial once more has
degree 2Ntot if there areNtot Bloch vectorsDv. However, one
trivial real double root is now u ¼ 0, so there are at most
Ntot − 1 independent degrees of freedom, whereas one is
eliminated, corresponding to the conserved D0.
In summary, the numberN of pairs of complex conjugate

roots of the spectral polynomial is the number of inde-
pendent underlying degrees of freedom. For an arbitrary set
fPi;ωig, very special initial conditions are required to
obtain a reduced number of degrees of freedom. In the
continuum of possible initial conditions, only a discrete set
of measure zero fulfills this condition [20]. However, in the
neutrino context we consider very special initial conditions,
i.e., all Bloch vectors are initially collinear with the flavor
direction. In this case, the situation is reversed in that there
are very few independent degrees of freedom, providing
soliton solutions.

IV. NORMAL MODES AND LAX VECTORS

In the context of dense neutrino environments, one
usually imagines that they were produced in flavor eigen-
states and that the in-medium mixing angles are small. So
for both slow and and fast oscillations, one typically studies
initial conditions where all Bloch vectors are collinear with
the flavor direction that we identify with the z-direction in
flavor space. Analogous assumptions were made in the
cited discussions of the BCS Hamiltonian where the initial
state consists of paired or unpaired electrons, but not
initially of coherent superpositions of paired with unpaired
states [20–25].
Any evolution away from this initial state begins with

small excursions from the z-directions, lending itself to a
linearized analysis and to the identification of possible run-
away modes that can lead to large flavor-conversion effects.
Eventually these modes become nonlinear, representing
what were called “pendulum solutions” in the neutrino
literature or “solitons” in the BCS literature. We juxtapose
the fast and slow cases in the context of a linear normal-mode
analysis and we highlight the connection in both cases
between the linear normal-mode analysis and the Lax-vector
analysis.

A. Normal-mode analysis

1. Slow system

The fast and slow systems can both be analyzed in the
linear regime of small off-diagonal components of the
density matrices. This approach makes sense in the usual
picture where all Bloch vectors start essentially collinear

except for a small seed to trigger run-away modes. For both
systems, the starting point are the “spectra”

Gv ¼ Dz
vjt¼0 and gw ¼ Pz

wjt¼0 ð37Þ

that define the systems. This includes both continuous
functions or collections of discrete modes that are repre-
sented by collections of δ functions at different values of w
or v. In this case, integrations over the spectra are
effectively summations over discrete modes.
The most general space-time dependent linearization and

concomitant dispersion relation was developed in Ref. [28],
but here it is somewhat more transparent to linearize our
simple systems directly. For the slow case we may follow
the first study of linear stability analysis [29] and note that
initially Pxy

w ≡ Px
w − iPy

w is small, whereas Pz
w ¼ gw is at its

starting value.6 Then the linearized version of Eq. (6) is

ði∂t þ Pz
0 − wBzÞPxy

w ¼ −gw
Z

dw0Pxy
w0 ; ð38Þ

where Pz
0 ¼

R
dwgw. We have explicitly included Bz for

later comparison with Dz
1. While B is defined as a unit

vector collinear with the z-direction, both Bz ¼ �1 are in
principle possible.
A collective normalmode is of the formPxy

w ∝ gwQwe−iΩt,
where Ω is the eigenfrequency that can be complex. If Pw
with length jgwj is expressed in polar coordinates ðϑw;φwÞ,
we have Qw ¼ sin ϑwe−iφw . The linear EOMs imply the
eigenfunction

Qw ¼ A
wBz − Pz

0 −Ω
; ð39Þ

whereA does not depend onw. Inserting this result back into
the linear EOMreveals that the eigenfrequency is fixed by the
condition

Z
dw

gw
wBz − Pz

0 −Ω
¼ 1: ð40Þ

Recall thatwhileP0moves, its projectionPz
0 ¼

R
dwgw onB

is conserved.
If the spectrum consists of n discrete modes, one finds n

solutions that can be real or pairs of complex conjugate
ones. If gw is continuous and nonzero for all w, except
perhaps some crossings, the poles in the integral prevent
any real solution of the “dispersion relation” Eq. (40). The
singularity associated with the vanishing of the denomi-
nator in Eq. (40) requires special care in the interpretation,

6From the relation to the density matrix ϱw ¼ 1
2
Pw · σ we

observe that Pxy
w is the “upper right” entry of ϱw. We could also

use the lower-left off-diagonal element, the complex conjugate of
Pxy
w , leading however to the same information.
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although it leads to no practical difficulties for the special
problem we have at hand, namely identifying the insta-
bilities of the system. We discuss this issue in Appendix B.
For the discussion in the main text, we limit only to
complex frequencies, for which there is no pole in the
integration; this is enough to understand whether there are
instabilities.
If Ω ¼ ωP þ iΓ is complex, the condition of Eq. (40)

consists of a real and imaginary part that are explicitly

Z
dw

gwðwBz − Pz
0 − ωPÞ

ðwBz − Pz
0 − ωPÞ2 þ Γ2

¼ 1; ð41aÞ
Z

dw
gwΓ

ðwBz − Pz
0 − ωPÞ2 þ Γ2

¼ 0: ð41bÞ

The second equation implies that if there is any solution
with Γ ≠ 0, then there are two unstable solutions �Γ, i.e.,
an exponentially growing and a shrinking one, a point that
is of course obvious in the discrete case anyway. Moreover,
for Γ ≠ 0, the second equation can only be true if gw has
regions of positive and negative sign, an argument that also
applies to both the discrete and continuum cases. Unstable
solutions require a “spectral crossing” as a necessary
condition, which is also sufficient in the more general
case of inhomogeneous solutions [30,31].

2. Fast system

For the fast case, we follow the same steps or use directly
the explicit derivation in Ref. [15]. Here the linear EOMs
are

ði∂t −Dz
0 þ vDz

1ÞDxy
v ¼ vGv

Z
dv0v0Dxy

v0 ; ð42Þ

with the additional constraint
P

v D
xy
v ¼ 0 because the

z-direction is defined to be the direction along D0. We will
return to this question below. The eigenfunction is

Qv ¼
Av

vDz
1 −Dz

0 þ Ω
; ð43Þ

providing the condition

Z þ1

−1
dv

v2Gv

vDz
1 −Dz

0 þΩ
¼ 1; ð44Þ

where Dz
0 ¼

R
dvGv and Dz

1 ¼
R
dvvGv. Notice that Dz

0

only shifts the real part of Ω and thus has no impact on the
stability and was left out in Ref. [15]. In this sense one can
use a corotating frame whereD0 drops out from the original
EOMs. However, to avoid jumping between too many
moving frames, we here keep all terms explicitly.
To compare Eqs. (40) and (44) we recall that D1 ¼

jD1j ¼ jDz
1j is positive, whereas Dz

1 ¼
R
dvGv can be both

positive or negative. If we absorbDz
0 and P

z
0 in the real part

of Ω, Eq. (40) follows from Eq. (44) with the substitution
Dz

1 → −BzD1, v → w=D1, v2GðvÞ → −gðwÞ, meaning
gðwÞ ¼ −ðw=D1Þ2Gðw=D1Þ=D1, and the limits of integra-
tion are�D1, or alternatively one can say that gðwÞ ¼ 0 for
jwj > D1. These identifications correspond to Eqs. (10)
and (11), but now for a continuous system that involves a
factor D1 as a Jacobian from the v → w transformation.
Equation (44) is trivially solved by the real solution

Ω ¼ Dz
0. The corresponding eigenvector Qv from Eq. (43)

is independent of v, and therefore seems to represent a
uniform rotation of all polarization vectors, which however
we had excluded in the beginning by the conditionR
dvDxy

v ¼ 0. However, the Ω ¼ Dz
0 is not spurious, but

actually can be constructed explicitly. Notice that for
Ω ¼ Dz

0, the eigenvector Qv can possess an arbitrary
contribution from the Bloch vector with v ¼ 0, which
automatically satisfies the linearized EOM (42). Therefore,
the eigenvector for the mode Ω ¼ Dz

0 is

Qv ¼
1

Dz
1

�
1 −

Dz
0

Gv
δðvÞ

�
; ð45Þ

which correctly satisfies the constraint
R
dvDxy

v ¼ 0.
Physically, this mode corresponds to all Bloch vectors

aligned along a direction slightly tilted from the z-axis,
while the v ¼ 0 vector is tilted in the opposite way so that
D0 is still along the z-axis. Since Dv¼0 does not contribute
to D1 (and in fact all Dn with n > 0), the latter is still
aligned with all Bloch vectors with v ≠ 0, which therefore
just precess around D0, whereas the polarization vector
with v ¼ 0 automatically satisfies the same pure precession
motion since _Dv¼0 ¼ D0 ×Dv¼0. Therefore, the fast sys-
tem always admits a stable, uniformly rotating mode, in
which all the moments Dn with n > 0 are slightly tilted
from the z axis. The existence of this mode is crucially
connected with the conservation of D0.
By that same token, any function gw derived fromGv as a

fast-to-slow conversion fulfills

Z
dw

gw
w

¼ �1; ð46Þ

where the sign depends on Bz. On the other hand, starting
with a generic slow system with any function gw, normally it
will not fulfill this constraint which indeed corresponds
exactly to the constraint derived in the previous section that
the vector R vanishes, which is a necessary condition for a
slow system to be mapped to a fast one. We now understand
the physical origin of this issue: a fast system always admits a
conserved vectorD0 because of its rotational invariance, and
in turn it admits a uniformly precessingmode. A slow system
can only be mapped to a fast system if it accidentally also
admits a conserved vector. In the slow system case, this
conservation is not protected by any fundamental symmetry,
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and therefore it only arises if the condition R ¼ 0 is
accidentally satisfied.
For later reference, we finish by providing an alternative

form of the fast eigenvalue equation. To this end, we first
absorb Dz

0 in the definition of Ω in Eq. (44). On the right-
hand side, we use the manipulation

1 ¼
R
dvGv

Dz
1

¼ 1

Dz
z

Z
dvGv

vðvDz
1 þ ΩÞ

vDz
1 þ Ω

¼
Z

dvGv
v2 þ vΩ=Dz

1

vDz
1 þ Ω

; ð47Þ

providing the alternative form

Z þ1

−1
dv

vGv

vDz
1 −Dz

0 þΩ
¼ 0; ð48Þ

where we have restored the original meaning of Ω.

B. Sign of spectral crossing

A complex solution for Ω requires a spectral crossing as
discussed earlier. In the slow case, it is well known that in
addition the crossing must be positive, meaning that gw as
a function of w must cross from negative to positive values
of gw [32]. This condition applies for B oriented in the
positive z-direction or rather, for B defining what is the
positive z-direction. The reason for this condition is that
the potential energy of the slow Hamiltonian in Eq. (2) is
already minimal for a negative crossing and cannot be
lowered by the Pw moving away from their initial position.
Of course, a system with a positive crossing need not be
unstable—it could be stuck in the “sleeping top” position.
Therefore, also in the fast system the crossing should be

positive measured relative to the direction defined by
Dz

1 ¼
R
dvGv. For the explicit examples constructed in

Ref. [15], this is indeed the case. While the crossings of Gw
shown in their Fig. 1 look negative, also Dz

1 < 0. So a
positive crossing in this sense is a necessary condition, but
also in the fast case not a sufficient one, as seen in example
A of that paper.

C. Normal modes from Lax vectors

The eigenvalue equation for normal modes presented
earlier can be derived in a much simpler way using the Lax
vectors of a given system. We focus on the example of the
fast system, but the proof proceeds identically for the slow
system as well. The Lax vector defined in Eq. (19) obeys
Eq. (20) or explicitly

_Lu ¼ ðD0 − uD1Þ ×Lu ¼ hu ×Lu; ð49Þ

where we use the compact notation hu ≡D0 − uD1. This
means in particular that

_Lþ
u ¼ −iLz

uhþu þ ihzuLþ
u ; ð50Þ

where L�
u ¼ Lx

u � iLy
u. Notice that in general both Lx

u and
Ly
u are complex numbers.
Let us assume that initially all polarization vectors are

aligned with the z axis, except for a small perturbation δDv
orthogonal to them.We denote by δ all perturbed quantities.
If in the unperturbed situation we can find some u such that
the condition

Lz
u ¼ 0 ð51Þ

holds, then it follows that the first term on the right-hand
side of Eq. (50) drops out and the remaining motion is a
rotation around the z axis with frequency hzu ¼ Dz

0 − uDz
1,

i.e., the eigenfrequency is Ω ¼ Dz
0 − uDz

1 that can be both
real or complex. The condition Eq. (51) is recognized to be
equivalent (in integral form) to the condition Eq. (48). It
also follows that the corresponding eigenvector is aligned
exactly with the Lax vector, namely that if the initial
perturbation is chosen as

δDv ∝
vGv

v − u
ðex þ ieyÞ; ð52Þ

where ei is the unit vector along the axis i, it will evolve
in time proportionally to itself with a frequency Ω ¼
Dz

0 − uDz
1. By replacing u ¼ ðDz

0 − ΩÞ=Dz
1, we recover

the eigenstates obtained by linear dispersion analysis in
Eq. (43).
Notice that this derivation closely parallels the derivation

of the eigenfrequencies of the quantum Hamiltonian in
Appendix C.

V. THREE-FLAVOR EXTENSION

The three-flavor case is notoriously more complicated,
where the mean field of neutrino flavor is represented by
3 × 3 density matrices or by 8-dim Bloch vectors. Yet the
technique of Lax vectors carries through in this case as well
and one may identify similar Gaudin invariants and prove
the integrability of the homogeneous EOMs.

A. Bloch vectors and equations of motion

In the three-flavor case, the homogeneous flavor mean
field is represented by 3 × 3 density matrices. For the
axially symmetric fast flavor case each mode v is repre-
sented by ϱv. It can be associated to an 8-dimensional Bloch
vector using the decomposition [33,34]

ϱv ¼
X8
i¼1

Pi
vλi; ð53Þ

where λi are the 8 Gell-Mann matrices. Here ϱv is already
written as a traceless matrix, because the trace of the matrix
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is the total number of neutrinos which is conserved in the
absence of collisions. Therefore, one can still describe the
dynamics in terms of vector equations of motion, although
in 8-dimensional space.
We recollect the main properties of the Gell-Mann

matrices which will be useful in this discussion, namely,

½λi; λj� ¼ 2ifijkλk; fλi; λjg ¼ 4

3
δij þ 2dijkλk; ð54Þ

where fijk and dijk are the structure constants. Therefore,
the commutator of two matrices ϱ1 and ϱ2 can be compactly
expressed as a vector product of their Bloch vectors
½ϱ1; ϱ2� ¼ 2iðP1 × P2Þ · λ, where

ðP1 × P2Þk ¼ fijkPi
1P

j
2: ð55Þ

Notice that fijk is antisymmetric under the exchange of any
two indices.
We can now write the EOMs for the Bloch vec-

tors of lepton number in an identical form as for two
flavors

_Dv ¼ ðD0 − vD1Þ ×Dv: ð56Þ

The antisymmetry of fijk implies that this is once more a
“precession equation” in the sense that Dv moves in a
direction orthogonal to Dv so that its length is conserved.
This formal analogy implies that all of the properties we

derived in the previous sections are still valid in the three-
flavor case. For example, we can perform the exact same
mapping that leads us to the equations of slow flavor
conversions. Furthermore, it is still true that we can
associate to any set of Bloch vectors obeying the EOMs
(56) a new set of Lax vectors obeying the same equations of
motion. This means that a continuous set of Bloch vectors
can still exhibit collective motions corresponding to a small
number of degrees of freedom, e.g., a pendulum motion.

B. How many degrees of freedom?

To investigate the integrability of the system, we need to
identify both the number of dynamical degrees of freedom
and the number of independent invariants. In the two-flavor
case, the number of Lagrangian degrees of freedom of N
Bloch vectorsDv is exactlyN, since the length of eachDv is
conserved, and two angles are needed to describe themotion,
one of which is the canonical conjugate of the other. In
addition, the length of the Lax vector Lv is also conserved,
providingN constants of themotion that are equivalent to the
N Gaudin invariants (Sec. III C). Therefore, we had N
linearly independent invariants and the system was therefore
integrable in the mechanical sense.
What is the number of degrees of freedom in the three-

flavor system? To answer this question, we first need to
identify the analogue of the length conservation for the

three-dimensional Bloch vectors. The density matrices
obey a commutator equation of the form

∂ϱv
∂t

¼ −i½Hv; ϱv�: ð57Þ

It is easily shown that the trace of ϱv is conserved. As a
consequence, the traces of the powers ρnv are conserved as
well for any n. We usually consider ϱv to denote the
traceless part of the density matrix which can be expressed
in terms of the Bloch vector Dv and in this case for n ¼ 1,
Trρv ¼ 0 identically. The nontrivial conservation laws
come from n ¼ 2 and n ¼ 3, giving

D2
v ¼ Dv · Dv ¼ const ð58Þ

and

hDv;Dv;Dvi ¼ const; ð59Þ

where we define the triple product as hA; B;Ci ¼
dijkAiBjCk. For higher values of n, we find no new
conservation laws. These two invariants of motion are
the analogue of the fixed-length property of the two-flavor
Bloch vectors. Therefore, for N Bloch vectors with 8
components each, only 6 angles are needed to parametrize
each of them. In analogy with the two-flavor case, we may
say that the system admits 3N Lagrangian variables and 3N
canonically conjugate variables.
Another way of looking at the number of variables

comes from observing that the diagonal elements of the
original density matrix of one mode of the neutrino
radiation field are the usual occupation numbers, whereas
the complex off-diagonal elements encode flavor coher-
ence. In the two-flavor case, there are two diagonal
elements and one independent off-diagonal one (one
complex number or two real parameters). Altogether there
is the trace, the length of the Bloch vector, and two angle
variables. In the three-flavor case, there are three real
diagonal elements and three independent complex off-
diagonal ones (six real parameters). Altogether we have
the trace, the length of the Bloch vector, and its triple
product, and in addition six angle variables encoding flavor
coherence information.
The physical interpretation of the conserved-length

parameters follows if we imagine that initially all neutrinos
begin in flavor eigenstates so that ϱ ¼ diagðfνe ; fνμ ; fντÞ
beforemaking it traceless.We have already observed that the
trace conservation implies that flavor evolution without
collisions conserves

P
l f

n
νl for any n. In the two-flavor

case, the two conserved quantities are particle number ðfνe þ
fνμÞ=2 and the coefficient of σ3 in the Pauli-matrix expan-
sion, which is ðfνe − fνμÞ=2. Its absolute value is the length
of the Bloch vector. In general, ðfνe − fνμÞ=2 is the z
component of the Bloch vector which is not conserved as
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flavor oscillations proceed. The initial quantity ðfνe − fνμÞ=2
is the conserved length of theBlochvector if neutrinos start in
flavor eigenstates.
In the three-flavor case, the relevant parameters are the

coefficients in the Gell-Mann matrix expansion, i.e., the
eight components of the Bloch vector P, and in addition
the coefficient P0 ¼ 1

3
Trϱ of the unit matrix, which is not

part of the Bloch vector. To represent the initial ϱ that has
only diagonal components, we only need P0 and P3;8, the
coefficients of the diagonal matrices λ3;8, and find

P0 ¼
fνe þ fνμ þ fντ

3
; ð60aÞ

P3 ¼
fνe − fνμ

2
; ð60bÞ

P8 ¼
fνe þ fνμ − 2fντ

2
ffiffiffi
3

p : ð60cÞ

The squared length of the Bloch vector P · P ¼ P2
3 þ P2

8 ¼
1
3
ðf2νe þ f2νμ þ f2ντ − fνefνμ − fνefντ − fνμfντÞ is conserved

under flavor oscillations. The third conserved quantity is
the triple product hP;P;Pi ¼ ð ffiffiffi

3
p

P2
3−P2

8=
ffiffiffi
3

p ÞP8 ¼
1
18
ð−fνe −fνμ þ 2fντÞð−fνe þ 2fνμ −fντÞð2fνe −fνμ −fντÞ.

C. Gaudin invariants and integrability

To identify the Gaudin invariants, it is more straightfor-
ward to express the Lax vectors in matrix form. The
original EOMs are ∂tDv ¼ −i½Hv;Dv� with Hv ¼
D0 − vDv or in vector form ∂tDv ¼ Hv ×Dv with Hv ¼
D0 − vD1. The Lax vectors are in vector and matrix form

Lu ¼
X
v

Dvv
u − v

and Lu ¼ Lu · λ; ð61Þ

obeying the original EOMs ∂tLv ¼ Hv ×Lv or in matrix
form ∂tLv ¼ −i½Hv; Lv�.
From this follows in particular that the entire family of

operators Dn
vLmv obey the EOMs

∂ðDn
vLmv Þ
∂t

¼ −i½Hv;Dn
vLmv �; ð62Þ

and therefore their traces are conserved. This implies a
new set of conserved quantities Iv ¼ Lv ·Dv, Jv ¼
hLv;Dv;Dvi, and Kv ¼ hLv;Lv;Dvi. These are the gen-
eralizations of the two-flavor Gaudin invariants to three
flavors. Notice that these invariants are all linearly inde-
pendent of one another. Indeed, Jv can obviously not be
expressed in terms of Iv, because it involves the tensor dijk
which does not appear in the definition of Iv.
The third family of invariants, Kv, can be written using

the strategy that we adopted to derive Eq. (32) as

Kv ¼ 2
X
v1

hDv1 ;Lv1 ;Dvi
v1

v − v1
; ð63Þ

but it cannot be further simplified, and therefore is not
expressible in terms of Jv. Just as in the two-flavor case,
one can introduce additional sets of invariants which are
linearly dependent on Iv, Jv, and Kv, namely L2

v and
hLv;Lv;Lvi. We have already proved in the two-flavor
case (Sec. III C) that L2

v can be expressed in terms of Iv
alone. One can analogously prove that

hLv;Lv;Lvi ¼ 4
X
v1

v1K1

v − v1
: ð64Þ

Therefore, we have 3N Lagrangian degrees of freedom, and
3N associated conservation laws for Iv, Jv, and Kv. This
guarantees integrability in the mechanical sense also for the
three-flavor motion.

VI. CONCLUSIONS

The homogeneous nonlinear equations of motion for
collective neutrino flavor oscillations have two often-
studied limits, the single-angle case of slow oscillations
and fast oscillations, corresponding to the multiangle case
in the limit of vanishing neutrino masses. In the classical
limit (mean-field approach), both cases correspond to
ensembles of classical interacting spins, but with different
interaction structure.
Whereas the “slow Hamiltonian” corresponds to well-

studied cases in other fields, in particular the BCS
Hamiltonian in the theory of superconductivity, the “fast
Hamiltonian” appears to be less prominent. On the other
hand, both cases have many similarities. It has been
previously observed that both cases have soliton (pendu-
lumlike) solutions, the nonlinear manifestation of the run-
away solutions of a linear mode analysis.
We have systematically juxtaposed the two cases and

developed the similarities and differences between them.
Our starting point is the observation that the EOMs of the
fast system can always be mapped on an abstract slow
system. For the special case when the fast system has a
pendulum solution, our transformation has the intuitive
interpretation that, from the perspective of the moving
pendulum, it is the “direction of gravity” the moves like a
“reciprocal” pendulum with EOMs formally equivalent to a
slow system. While transforming the EOMs to corotating
frames is a standard procedure in this field, probably this is
the first time one has used a more general transformation.
On the other hand, a slow system can be mapped on an

equivalent fast system only if its system of spins (or Bloch
vectors) obeys an additional constraint. This fundamental
difference between the two cases is traced to the presence of
an external vector in the slow system, the mass direction B
in flavor space, whereas the fast system has no preferred
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direction except for the conserved total angular momentum,
which is determined by initial conditions, not the
Hamiltonian itself.
We have adapted the powerful tool of Lax vectors,

introduced in this field in studies of the BCS Hamiltonian,
to the fast system. In this way, it is straightforward to
identify the invariants of the systems and especially the
Gaudin invariants, but also offers another perspective on
the normal mode analysis, allowing one to derive the
dispersion relation in a single line.
In the continuum (thermodynamic) limit, this dispersion

relation covers only the collective modes, whereas the
noncollective ones require a different interpretation. Using
the equivalence of our linearized system to the Vlasov
equation, we highlight the equivalence of the noncollective
modes to the well-known Case-Van Kampen modes. In this
way, decoherence of a generic initial condition is a natural
feature of our system.
The Gaudin invariants immediately prove the integra-

bility of the system. We explicitly show that the integra-
bility also translates to the quantum case.
These techniques and many of our conclusions carry

over to the three-flavor case, where the Bloch vectors and
Lax vectors live in an eight-dimensional space. While part
of this extension is straightforward, it involves a number of
nontrivial steps and new invariants, owing to the SU(3)
structure of this problem.
Relative to the question of neutrino flavor evolution in

real astrophysical environments, our homogeneous system
is probably too constrained to serve as a realistic proxy. On
the other hand, it provides surprising insights on the
foundational properties of the nonlinear EOMs and their
possible solutions.
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APPENDIX A: COMOVING FRAMES

Precession equations of the type used throughout this
paper can become more transparent in a moving frame in
flavor space. Frames rotating around the z-direction [10]
have become standard. However, one has to be careful to
change everything consistently. In the fast EOM (7) we
may simply leave out D0 by going to a frame rotating
around the fixedD0 with unit frequency. On the other hand,

going to a frame corotating with frequency wc around B in
the slow EOM (6) changes w → w − wc.
To derive the formal transformation between two frames

we consider the precession equations

_Pw ¼ Jw × Pw; ðA1Þ

where Pw is a Bloch vector that depends on some attribute
w and precesses around some other vector Jw that may itself
depend on time. Moreover, we consider another precession
equation of the form

_R ¼ H ×R ðA2Þ

and we want to express the former in a frame that comoves
with R.
The formal transformation is more easily derived using

instead the commutator form of the EOMs. We recall that
any 2 × 2 Hermitian matrix P can be expressed as P ¼
1
2
ðTrPþ P · σÞ in terms of the Pauli matrices and a Bloch

vector P. The commutation relations of the Pauli matrices
imply that an EOM of the form

i∂tP ¼ ½H;P� ðA3Þ

is represented by TrP ¼ 0 and _P ¼ H × P. The EOM (A3)
is formally solved by Rt ¼ UtR0U

†
t with

Ut ¼ T exp

�
−i

Z
t

0

Ht0dt0
�
; ðA4Þ

where T is the time-ordering operator. This transformation
provides the compound effect of infinitesimal precessions
aroundHt that is itself moving. The content of Eq. (A4) can
also be expressed as

i∂tUt ¼ HtUt and i∂tU
†
t ¼ −U†

tHt; ðA5Þ

where it was assumed that H is a Hermitian matrix. One
can verify that indeed i∂tR¼i∂tðUR0U†Þ¼HUR0U†−
UR0U†H¼½H;R�.
We now denote matrices in the new frame with a

tilde, i.e., P̃w ¼ U†PwU. In particular, R̃ ¼ U†RU ¼
U†UR0U†U ¼ R0. So indeed R ¼ R0 at all times, which
was the original goal of the transformation. The equivalent of
Eq. (A1) is i∂tPw ¼ ½Jw;Pw�. In the new frame it is explicitly
i∂tP̃w ¼ i∂tðU†PwUÞ ¼ ði∂tU†ÞPwU þ U†Pwði∂tUÞ þ
U†ði∂tPwÞU ¼− U†HPwU þ U†PwHU þU†½Jw; Pw�U ¼
− ½H̃; P̃w� þ ½J̃w; P̃w� and finally

i∂tP̃w ¼ ½J̃w − H̃; P̃w�: ðA6Þ

In this form, our result also applies to three flavors. Returning
to Bloch vectors, the result is equivalent to
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∂tP̃w ¼ ðJ̃w − H̃Þ × P̃w: ðA7Þ

This is the same prescription that was argued in themain text:
To take out the motion engendered byHwemust subtract H̃
in the transformed frame from thevector J̃w that generates the
original motion.

APPENDIX B: LINEAR STABILITY ANALYSIS IN
THE THERMODYNAMIC LIMIT

The dispersion relation Eq (40) is unsatisfactory from a
mathematical standpoint, because it involves an integral
which is singular for real frequencies. A prescription on
how to deal with this singularity should be given. This issue
has historically first been solved in the context of collision-
less plasma oscillations. Indeed, Eq. (38) is mathematically
identical to the linearized Vlasov equation describing the
evolution of an initial spatially monochromatic small
perturbation δfðr; vÞ ¼ δfkðvÞeik·r in the distribution
function of electrons in a plasma (here v is the electron
speed)7

∂δfk
∂t

þ ik · vδfk ¼ −
4πie2

mk2
k ·

∂f0
∂v

Z
δfkd3v; ðB1Þ

where f0ðvÞ is the unperturbed distribution, e andm are the
electron charge and mass; see, e.g., Ref. [35]. Let k be
aligned with the z axis. We now define

Pk ¼
Z

δfkdvxdvy; ðB2Þ

and similarly

g ¼ −
4πe2

mk

Z
∂f0
∂vz

dvxdvy: ðB3Þ

Integrating Eq. (B1) over vx and vy, we obtain

i
∂PkðvzÞ

∂t
− kvzPkðvzÞ ¼ −g

Z
PkðvzÞdvz: ðB4Þ

This equation is indeed identical to Eq. (38), with the
identification kvz ¼ w. The singularities in the dispersion
relation appear in the same way in this analogous problem;
below, we summarize the main results from the literature
concerning this issue.
The eigenmodes of the linearized problem can be

separated into collective and noncollective modes, as is
done in Ref. [36]. The collective modes pxy

w;i appear as
discrete complex solutions Ωi of the dispersion relation
(40), and, as shown in the text, they always appear in pairs

of complex conjugate solutions. The number of such
collective modes depend on the spectrum gw; for example,
for noncrossed spectra there are no collective modes.
The noncollective modes are not predicted by the

dispersion relation (40). Rather, they correspond to a
continuum of modes with real frequencies Ωv ¼
vBz − Pz

0, and do not show up in our dispersion relation
because their eigenfunctions are singular

pxy
w;v ∝ δðw − vÞ − gw

Ωv þ Pz
0 − wBz

1

1þ fv
; ðB5Þ

where

fv ¼
Z
PV

gw
Ωv þ Pz

0 − wBz dw: ðB6Þ

The pole in the eigenmode (B5) is meant to be integrated in
principal value (PV).
By explicit substitution, one can verify that these

eigenmodes indeed satisfy Eq. (38). These modes were
first identified as the so-called Case-Van Kampen modes
[37] in the case of collisionless plasma oscillations, where it
was shown that the collective and noncollective modes
together form a complete set of eigenmodes for the
linearized Vlasov equation. By the same token, in our
problem of neutrino oscillation, any initial perturbation
Pxy
w ðt ¼ 0Þ can be decomposed in collective and non-

collective eigenmodes which evolve independently, so that
the full evolution can be written (see, e.g., Ref. [38])

Pxy
w ðtÞ ¼

X
i

aip
xy
w;ie

−iΩit þ
Z

dvbðvÞpxy
w;ve−iΩvt; ðB7Þ

where the coefficients ai and bðvÞ are determined by the
initial conditions.
However, the integrated lepton number PxyðtÞ ¼R
dwPxy

w ðtÞ has an entirely different dynamics in the
continuum limit. The reason is that the superposition of
the Case-Van Kampen modes, evolving with a continuum
of frequencies in time, translates into a damped behavior.
This behavior is the exact analog of Landau damping in
collective plasma oscillations; even though the individual
polarization vectors have nondecaying terms in their
perturbation, because of their fast precession with incom-
mensurate frequencies they lead to a perturbation in the
integrated lepton number that decays in time.
The dynamics of PxyðtÞ could be obtained by explicitly

integrating Eq. (B7). However, it is easier to circumvent the
expansion in eigenstates and directly look at the evolution
in time of the initial condition using the Laplace method,
following the strategy in Ref. [35]. By this method, one
finds that PxyðtÞ evolves in time as

7We use here unrationalized units (fine-structure constant
α ¼ e2) that are conventionally applied in plasma physics, but
here put the speed of light c ¼ 1.
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PxyðtÞ ¼
X
α

Aαe−iΩ̃αt; ðB8Þ

where Aα are determined by the initial condition and Ω̃α are
the solutions of the modified dispersion relation

Z
C
dw

gw
wBz − Pz

0 − Ω̃α

¼ 1; ðB9Þ

where the contour of integration C is chosen as the real axis
if ImðΩ̃αÞ > 0, therefore identical to Eq. (40), whereas for
ImðΩ̃αÞ < 0 the contour of integration is deformed so as to
pass below the pole w ¼ ðΩ̃α þ Pz

0Þ=Bz.
The difference in the contour definition for growing

(ImΩ̃α > 0) and shrinking modes (ImΩ̃α < 0) originates
from causality requirements. Because of this difference,
the frequencies Ω̃α do not appear in complex conjugate
pairs. The modified dispersion relation admits new shrink-
ing modes without the corresponding growing ones.
Physically, these shrinking modes come from Landau
damping of the initial perturbation, due to the phase mixing
of the many polarization vectors with incommensurate
frequencies. The symmetry between growing and shrinking
modes is therefore broken by the second principle of
thermodynamics, which implies the decoherence of the
motion of individual polarization vectors into a damping of
the integrated lepton number.

APPENDIX C: DIAGONALIZATION OF THE
QUANTUM FAST FLAVOR SYSTEM

The quantum version of the fast flavor system can be
regarded as a system of spin-1=2 Sv with the Hamiltonian

H ¼ μ

2

X
v;v0

ð1 − vv0ÞSv · Sv0 : ðC1Þ

We assume for definiteness a discrete system of N spins.
Here we have assumed that each modewith cosine of zenith
angle v is occupied by exactly one neutrino; the method is
easily generalizable to the case in which there is a varying
occupation number. This Hamiltonian is solvable in the
quantum mechanical sense. A first indication of this comes
from the fact that the Gaudin invariants, which we showed
to be conserved in the analog classical system, are also
conserved in the quantum sense, meaning that their
operators

Iv ¼
X
v0≠v

v0Sv0 · Sv

v − v0
ðC2Þ

commute with the Hamiltonian, as can be verified by
explicit computation.
The existence of the Gaudin invariants implies that this

Hamiltonian can be exactly diagonalized. In this appendix,

we show how the eigenstates of the Hamiltonian can be
constructed. Since the fast flavor system is so similar to the
slow flavor system, the diagonalization procedure is very
similar to the one shown in Ref. [16]: whenever necessary,
we will emphasize the differences.
A first, fundamental difference to the slow flavor system

is the following. The Hamiltonian (C1) is invariant under a
simultaneous rotation of all polarization vectors. This is not
the case for the slow system, where there is a privileged
direction fixed by the B vector. The rotational invariance of
the fast flavor system implies the conservation of the
generator of collective rotation

D0 ¼
X
v

Sv; ðC3Þ

which indeed commutes with the Hamiltonian. Therefore,
we reach again the conclusion stated multiple times in the
main text that the fast flavor system is analogous to a slow
flavor system endowed with an exactly conserved vector.
For the fast flavor system, such a vector is D0, which is
conserved by rotational invariance.
Let us now determine the eigenstates. The Hamiltonian

(C1) admits two trivial eigenstates, in which all the spins
are aligned along, say, the z direction. We will use the
notation jS; Szi to denote the eigenstates of the total spin
with eigenvalues S and z component Sz. Then the two
eigenstates identified above are jN

2
;�N

2
i. However, because

of rotational invariance, there is nothing special about the z
direction, and these two states rotated in an arbitrary way
are still eigenstates of the Hamiltonian with the same
eigenvalues. Therefore, the entire multiplet of 2N þ 1

states j N
2
; Szi, with Sz ranging from − N

2
to N

2
, are degenerate

eigenstates of the Hamiltonian. This stands in sharp
contrast to a generic slow flavor system, for which only
the two eigenstates jN

2
;�N

2
i with spin totally aligned to the

z axis defined by B are eigenstates.
We now need to identify the remaining eigenstates. We

will classify them in terms of their z component of spin Sz,
and wewill start looking for eigenstates containing all spins
aligned, for example negatively, along the z axis, except for
a single spin flipped (therefore, Sz ¼ − N

2
þ 1). If there

were no interaction, all N states of the form j↑↓…↓i,
j↓↑…↓i,..., j↓↓…↑i would be degenerate eigenstates of
the Hamiltonian. The presence of the interaction splits the
degeneracy and selects N combinations of these states,
which we now identify; these states are essentially the
analog of the magnon excitations in the one-dimensional
Ising model, with the difference that our Hamiltonian (C1)
breaks translational invariance, so that the form of the
eigenstates is not as simple as in the Ising model.
To identify the form of the eigenstates with a single spin

flip, we use the Bethe ansatz and assume that they can be
written as
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jψui ¼ Qu

����N2 ;−
N
2

�
; ðC4Þ

where Qu is an operator we are now going to identify. In
order to do so, let us recall that the Lax vectors introduced
in the main text

Lu ¼
X
v

vSv

u − v
ðC5Þ

follow a pure precession motion

_Lu ¼ ðD0 − uD1Þ ×Lu ¼ i½H;Lu�: ðC6Þ

Defining the vector hu ¼ D0 − uD1 implies that

½H; Lþ
u � ¼ Lþ

u hzu − hþu Lz
u; ðC7Þ

where L�
u ¼ Lx

u � iLy
u and so forth.

We now make the ansatz that the operatorQu introduced
above coincides with Lþ

u , and determine how the
Hamiltonian acts on the state jψui

Hjψui ¼ ½H; Lþ
u �
����N2 ;−

N
2

�
þ Lþ

uH

����N2 ;−
N
2

�
: ðC8Þ

The last term is HjN
2
;− N

2
i ¼ E0jN2 ;− N

2
i, where E0 is the

ground state energy. In the first term, we notice that
Lþ
u huz jN2 ;− N

2
i ¼ eujψui, where eu is the eigenvalue of

the operator huz acting on the ground state jN
2
;− N

2
i, namely

eu ¼ −
X
v

1 − uv
2

: ðC9Þ

Therefore, we obtain

Hjψui ¼ ðE0 þ euÞjψui − hþu Lz
u

����N2 ;−
N
2

�
: ðC10Þ

Therefore, if u is chosen as one of the roots of Lz
ujN2 ;− N

2
i,

namely one of the roots of the Bethe equation

X
v

v
u − v

¼ 0; ðC11Þ

the last term vanishes and the state jψui is indeed an
eigenstate of the Hamiltonian. The Bethe equation admits
therefore N − 1 eigenstates with a single spin flip; an
additional such eigenstate is contained among the multiplet
of 2N þ 1 eigenstates of the total spin Dz

0, namely the
state jN

2
;− N

2
þ 1i.

This procedure can be generalized to states with more
than one spin flip. For example, one can prove that the
commutator

½H; Lþ
u Lþ

v � ¼ Lþ
u Lþ

v ðhzu þ hzv þ 1 − uvÞ

− Lþ
u hþv

�
Lz
v −

u
v − u

�

− Lþ
v hþu

�
Lz
v −

v
u − v

�
: ðC12Þ

Therefore, the state Lþ
u Lþ

v jN2 ;− N
2
i is an eigenstate of the

Hamiltonian provided that the last two terms in parentheses
vanish identically, namely if the Bethe equations are
satisfied

Jzv ¼
u

v − u
; Jzu ¼

v
u − v

; ðC13Þ

with the compact notation Lz
ujN2 ;− N

2
i ¼ JzujN2 ;− N

2
i. The

eigenvalue of the Hamiltonian on this new eigenstate
is E0 þ eu þ ev þ 1 − uv.
Therefore, the repeated application of the operator

Lþ
u1…Lþ

un on the ground state generates a novel eigenstate
with eigenvalue E0 þ

P
i eui þ 1

2

P
i;j≠ið1 − uiujÞ, pro-

vided that the Bethe equations are satisfied

Jzui ¼
X
j

uj
ui − uj

; ðC14Þ

which completes our proof.
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