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In core-collapse supernovae or compact binary merger remnants, neutrino-neutrino refraction can spawn
fast pair conversion of the type νeν̄e ↔ νxν̄x (with x ¼ μ, τ), governed by the angle-dependent density
matrices of flavor lepton number. In a homogeneous and axially symmetric two-flavor system, all angle
modes evolve coherently, and we show that the nonlinear equations of motion are formally equivalent to
those of a gyroscopic pendulum. Within this analogy, our main innovation is to identify the elusive
characteristic of the lepton-number angle distribution that determines the depth of conversion with the
“pendulum spin.” The latter is given by the real part of the eigenfrequency resulting from the linear normal-
mode analysis of the neutrino system. This simple analogy allows one to predict the depth of flavor
conversion without solving the nonlinear evolution equations. Our approach provides a novel diagnostic
tool to explore the physics of nonlinear systems.
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Introduction.—In neutrino-dense astrophysical environ-
ments, such as core-collapse supernovae and the remnants
of neutron star mergers, neutrinos experience a significant
potential due to the presence of other neutrinos. This
refractive effect strongly impacts the flavor evolution of
the neutrino radiation field and can lead to collective flavor
conversion. While the underlying equations are simple,
their nonlinear nature provides for a rich and sometimes
confusing plethora of solutions [1–4].
One case in point is fast pairwise flavor conversion of the

type νeν̄e → νxν̄x (where x indicates a generic heavy-lepton
flavor, μ or τ), conserving the net flavor content and often
called “fast flavor conversion” (FFC). Neutrino-neutrino
refraction is dimensionally quantified by a typical inter-
action energy Oð ffiffiffi

2
p

GFnνÞ. Specifically, we will use μ ¼ffiffiffi
2

p
GFnνe as an overall scale.
Another manifestation of neutrino-neutrino refraction

concerns “slow flavor conversion,” driven by the energy
spectrum and involving flavor exchange between different
energy modes. A typical flavor conversion speed is

ffiffiffiffiffiffi
ωμ

p
,

where ω ¼ Δm2=2E is the vacuum oscillation frequency
depending on the mass-squared difference Δm2 and energy
E. This is defined as “slow” because μ ≫ ω. The inter-
pretation of the nonlinear evolution [5] as a gyroscopic
flavor pendulum has been long since established [6–10]
and is the archetype for our study.
Fast flavor conversion is a multiangle effect of the flavor

lepton-number densities. While the nonlinear evolution is a
three-flavor problem [11–16], the initial instability is
between one pair of flavors [17–20], in practice νe and
νx. For identical νx and ν̄x distributions, FFC is driven by

neutrino electron lepton number (ELN) [19,21–24], but it is
straightforward to include nontrivial νx and ν̄x distributions
[15,16,25]. An instability of the flavor field requires the
ELN angular distribution to change sign at least once—it
needs one or more “crossings.” In the slow case, spectral
crossings are required instead [26].
Various methods have been proposed to identify ELN

crossings in hydrodynamical simulations [27–30] and
significant efforts have been devoted to understand when
and where favorable conditions exist for FFC instabilities
in astrophysical environments and related implications [31–
47]. However, despite ELN crossings, only minimal flavor
conversion may occur depending on the initial configura-
tion [48], because it is the exact νe and ν̄e angular
distribution that determines the ELN crossings and the
final flavor outcome [23,24,31,48–51].
This Letter aims to elucidate under which conditions one

should expect large flavor conversion due to FFC in a
homogeneous and azimuthally symmetric neutrino gas. For
the first time, we provide a simple diagnostic criterion to
predict whether FFC should occur and how much con-
version should be expected, without solving the neutrino
equations of motion (EOMs). In doing so, we rely on a
formal analogy of the EOMs with the ones of a gyroscopic
pendulum [24].
The linear normal-mode analysis [17–20,52,53] has been

widely employed to obtain the growth rate of the flavor
instability. Our main new insight consists of taking full
advantage of this approach and to recognize, for the first
time, the fundamental information provided by the initial
rate of precession as well as by the universal form of the
linear eigenfunction for the angle-dependent flavor
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conversion. Such findings provide crucial new insights into
the physics of nonlinear systems.
Mean field equations.—We describe (anti)neutrinos

through the usual density matrices ϱðp⃗; r⃗; tÞ [ϱ̄ðp⃗; r⃗; tÞ].
The diagonal elements are occupation numbers, whereas
the off-diagonal ones encode flavor coherence. Ignoring
collisions, the commutator EOM for neutrinos is [54]

ið∂t þ v⃗ · ∇⃗Þϱp⃗ ¼ ½ΩE; ϱp⃗� þ
ffiffiffi
2

p
GF½Hv⃗; ϱp⃗�; ð1Þ

where vacuum oscillations are spawned by ΩE ¼ M2=2E
with M being the neutrino mass matrix. Antineutrinos
require ΩE → −ΩE, but as we study FFC we set ΩE ¼ 0
henceforth, also implying that v⃗ ¼ p⃗=E is a unit vector.
The Hamiltonian matrix

Hv⃗ ¼
Z

d3q⃗
ð2πÞ3 ðϱq⃗ − ϱ̄q⃗Þð1 − v⃗q⃗ · v⃗Þ ð2Þ

represents neutrino-neutrino refraction. The EOMs are
understood in a comoving frame in flavor space such that
refraction on ordinary matter disappears.
One central feature of FFC is that all ϱðp⃗; r⃗; tÞ and

ϱ̄ðp⃗; r⃗; tÞ, and any linear combination, follow the same
EOM that depends on v⃗ but not on E. We thus consider the
density matrices for lepton number Dp⃗ ¼ ϱp⃗ − ϱ̄p⃗, which
we also integrate over energy and normalize to the νe
density. The matrices Dv⃗ ≡ n−1νe

R∞
0 E2dE=ð2π2ÞDE;v⃗ thus

defined obey the closed system of equations

ið∂t þ v⃗ · ∇⃗ÞDv⃗ ¼ μ½Hv⃗;Dv⃗�: ð3Þ

Here, μ≡ ffiffiffi
2

p
GFnνe is a typical neutrino-neutrino inter-

action energy, whereas Hv⃗ ¼
R ðd2u⃗=4πÞDu⃗ð1 − u⃗ · v⃗Þ.

It is perhaps somewhat underappreciated that it is the
energy-integrated lepton-number matrices that drive the
entire FFC dynamics. Solving the EOMs amounts to
the task of finding Hv⃗ðtÞ. Once it has been found, the
solutions for ϱp⃗ and ϱ̄p⃗ or the particle-number densities
Sp⃗ ¼ ϱp⃗ þ ϱ̄p⃗ can be determined.
In our case study, we impose several symmetries, the

most restrictive one being that of homogeneity of the initial
setup and the solutions. Dropping the gradient and inte-
grating both sides over

R
d2v⃗=4π reveals that the total

lepton-number matrix D0 ¼
R ðd2v⃗=4πÞDv⃗ is conserved,

meaning that nνl − nν̄l is separately conserved for every
flavor l ¼ e, μ, and τ. Indeed, FFC does not convert any
net flavor. The corresponding number-density matrix S0 is
not conserved. While the total particle number (trace of S0)
is conserved, the individual nνl þ nν̄l are not, commensu-
rate with a pair-conversion effect.
As D0 is conserved, it causes a global precession on

the right-hand side of Eq. (3) that can be “rotated away” by
the unitary transformation UðtÞ ¼ exp½−iD0t� as for the

ordinary matter effect. The Hamiltonian matrix
becomes Hv⃗ ¼ −v⃗ ·

R ðd2u⃗=4πÞu⃗Du⃗. Note that we have
not assumed D0 ¼ 0, we have only absorbed its effect
by going to a comoving frame. So we recognize that, in
the homogeneous case, the evolution is entirely driven by

D⃗ðtÞ ¼ R ðd2u⃗=4πÞu⃗Du⃗ðtÞ. While the latter is not con-

served, TrD⃗2 is conserved, meaning that the lepton-number
flux, summed over all flavors, is conserved.
As a further simplification, we impose axial symmetry

on the initial setup and the solutions. Measuring v⃗ against
the symmetry axis (zenith angle θ), we integrate out the
azimuth angle ϕ and define Dv ¼

R
2π
0 ðdϕ=4πÞDv⃗ where

v ¼ cos θ is the velocity along the symmetry axis (v is not
jv⃗j ¼ 1) with −1 ≤ v ≤ þ1. The flux matrix now has only
one nonvanishing component: D1 ¼

Rþ1
−1 dv vDv. A pos-

sible factor 1=2 in front of
Rþ1
−1 d cos θ has been absorbed

in the definition of Dv.
Last, we consider only two flavors, although three-flavor

solutions can be much richer in the nonlinear regime [15–
17,25]. The corotating EOM thus becomes

i _Dv ¼ μv½Dv;D1� or _Dv ¼ μvDv × D1: ð4Þ

We here express the 2 × 2 Hermitian Dv matrices through
the usual Bloch vectors (polarization vectors) such that
Dv ¼ ðTrDv þ Dv · σÞ=2 with σ a vector of Pauli matrices.
The cross product on the right-hand side reveals that the

length of each Dv is conserved. Moreover, D0 and jD1j are
conserved. It is D1ðtÞ that drives the motion of the system
and moves like a gyroscopic pendulum [24].
Single-crossed ELN spectra.—Except for small seeds,

our system begins diagonal in the flavor basis where every
Dv has only a z component. (We use x, y, and z for
directions in flavor space.) So the initial condition is
represented by what we call the ELN spectrum,

gv ¼ Dz
v

���
t¼0

∝ ðnνe − nν̄e − nνx þ nν̄xÞv: ð5Þ

One or more “crossings” (gv changes sign) are necessary
for runaway solutions to exist. This condition is also
sufficient for solutions that may break homogeneity and
axial symmetry [22].
Motivated by the qualitative shape of the ELN angular

distributions near the neutrino decoupling regions, we use a
family of single-crossed distributions defined by

ϱeeðcos θÞ ¼ 0.50; ð6aÞ

ϱ̄eeðcos θÞ ¼ 0.45 − aþ 0.1
b

exp

�
−ð1 − cos θÞ2

2b2

�
: ð6bÞ

Here,
Rþ1
−1 ϱeed cos θ ¼ 1, whereas the two free param-

eters a ∈ ½−0.04; 0.12� and b ∈ ½0.1; 1� determine the
shape and normalization of gv ¼ ϱee− ϱ̄ee with v ¼ cos θ.
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Figure 1 shows four representative examples and illustrates
the effect of the a and b parameters.
We have solved the EOMs for the cases A–D specified in

Fig. 1 and show the evolution Dz
1ðtÞ=D1 in Fig. 2. Recall

that D1 ¼ jD1j is conserved, so we really show cos ϑ with
ϑðtÞ the zenith angle ofD1ðtÞ in flavor space. Case A has no
instability, in agreement with the results of the linear
stability analysis, whereas B −D show the characteristic
behavior of an inverted pendulum. The waiting time
between dips depends logarithmically on the smallness
of the chosen seeds. The component

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDx

1Þ2 þ ðDy
1Þ2

p
grows exponentially during that period. (For an example,
see Supplemental Material [55]).
In Fig. 3 we show snapshots of the evolution of the entire

spectrum for case B at four times indicated in Fig. 2. So we
can see how the lepton-number flux evolves in time as a
function of v ¼ cos θ. All modes evolve coherently and
return to their initial position—the overall evolution
remains periodic within the limits of numerical precision.
The same applies to the analogous evolution of the lepton-
number modes SvðtÞ.

Finally, in Fig. 4 we show contours of Dz
1ðtÞ=D1jmin ¼

cosϑmin in the plane spanned by a and b overlaid with
contours of the growth rate obtained by the linear normal-
mode analysis [18,19]. Evidently large flavor conversion
does not always correlate with a large growth rate.
Moreover, seemingly similar ELN configurations can cause
very different flavor outcomes.
The coherence of all modes suggests a small number of

underlying degrees of freedom. In fact, by applying the
Gram matrix method [8], we find that our system with
single-crossed ELN spectra is equivalent to three discrete
angle modes, which form a gyroscopic flavor pendulum in
the unstable case (see Supplemental Material [55] for more
details).

FIG. 1. Representative ELN distributions gv defined in Eqs. (6a)
and (6b) for the shown values of a and b.

FIG. 2. Solutions for the z component (flavor direction) of the
lepton-number flux Dz

1ðtÞ for the cases A −D specified in Fig. 1,
where case A has no instability. We show the normalized quantity
cos ϑ ¼ Dz

1=D1. Its lowest point for each of cases B −D
perfectly agrees with cos ϑmin predicted in Eq. (13).

FIG. 3. Snapshots for Dz
vðtÞ for case B. The time shots are

chosen at t1–t4 indicated in Fig. 2 between the beginning of the
pendular dip and the maximum excursion.

FIG. 4. Contour plot of the growth rate in the plane spanned by
the parameters a and b [see Eqs. (6a) and (6b)]. The white
contours represent Dz

1ðtÞ=D1jmin. The locus of vanishing lepton
number (Dz

0 ¼ 0) is marked with a dashed line. We also mark our
configurations A −D. We see that large growth rates do not
always correspond to large flavor conversion.
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Pendulum in flavor space.—The first of the linearly
independent functions suggested by the Gram matrix is the
conserved vector G ¼ D0 ¼

R
dvDvðtÞ of lepton number.

The second is the lepton-number flux RðtÞ ¼ D1ðtÞ ¼R
dvvDvðtÞ with conserved length. The third is what we

call JðtÞ ¼ R
dvwvDvðtÞ with unknown weight function

wv. They represent a gyroscopic pendulum, if they obey the
EOMs [8]

_G ¼ 0; _R ¼ μJ × R; and _J ¼ γG × R: ð7Þ

In a mechanical analogy, G represents gravity, R the center-
of-mass position relative to the point of support, J the total
angular momentum, and μ−1 the moment of inertia. Besides
the conserved G, the EOMs imply four conserved quan-
tities: length R of the radius vector, angular momentum
Jz ¼ J · G=G along “gravity,” spin S ¼ J · R=R, and
energy E ¼ V þ T ¼ γG · Rþ ðμ=2ÞJ2. Moreover, the
natural pendulum frequency λμ is given by λ2 ¼ γGR=μ.
We here assume that γ > 0, a possible negative sign is
absorbed by redefining G ¼ −D0.
We use coordinates where G defines the z direction so

that G ¼ ð0; 0; GÞ, whereas the pendulum is described in
polar coordinates ðϑ;φÞ by R ¼ Rðsϑcφ; sϑsφ; cϑÞ with
sϑ ¼ sin ϑ and so forth.
Solving the EOMs for ϑðtÞ and φðtÞ in terms of the

conserved quantities is shown in any mechanics textbook or
Appendix B of Ref. [8]. One important simplification is
that we always begin with R parallel or antiparallel to G
without an initial velocity, implying that Jjt¼0 ¼ Sjt¼0, and
because Jz and S are conserved, we may use Jz ¼ S.
Moreover, we assume that S is parallel to R and not
antiparallel. One thus finds

_φ ¼ μ
2λσ

1þ cosϑ
; ð8aÞ

_ϑ2 ¼ μ2λ2
�
2 ð1 − cos ϑÞ − σ2

4ð1 − cos ϑÞ2
sin2 ϑ

�
; ð8bÞ

where we have expressed the spin, S ¼ 2λσ, in terms of a
parameter σ and the dimensionless natural pendulum
frequency λ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γGR=μ
p

. Besides the overall scale μ, the
pendulum is fully described by the parameters λ and σ.
The zenith-angle EOM of Eq. (8) becomes yet more

informative with cϑ ¼ cos ϑ as independent variable, so
that _c2ϑ ¼ μ2λ22ð1 − cϑÞ2ð1þ cϑ − 2σ2Þ. For the right-
hand side to be positive in the neighborhood of cϑ ¼ 1,
we obtain σ < 1 as a condition for instability. For larger σ,
the pendulum is stuck in the “sleeping top position.” In the
unstable case, it nutates between the upright position and a
minimal latitude ϑmin given by cos ϑmin ¼ −1þ 2σ2. For
σ ¼ 0, it reaches the vertical downward position.

In the linear regime (ϑ ≪ 1), the solutions (8a) and (8b)
are

_φ ¼ μλσ and _ϑ ¼ �μλ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − σ2

p
ϑ: ð9Þ

The pendulum performs a uniform precession, whereas ϑ
grows or shrinks exponentially, according to whether the
pendulum moves away from the stable position or, after a
full swing, comes back to it.
Normal mode analysis.—To match these parameters with

our full system, we consider the latter in the linear regime.
Initially Dxy

v ¼ Dx
v þ iDy

v is small, whereas Dz
v is at its

initial value gv. Thus, the linearized version of Eq. (4) is
ði∂t þ vD1ÞDxy

v ¼ vgz
R
duuDxy

u . A collective normal
mode would be of the form gvQve−iωt with ω ¼ ωP �
iΓ being the complex eigenfrequency, where the subscript
P stands for “precession.” The solution is

Dxy
v ðtÞ ¼ f

vgv
ωþ vD1

e−iωt; ð10Þ

where f depends on the initial conditions. Inserting this
back into the linear EOM reveals that ω is fixed by

Z þ1

−1
dv

v2gv
ωþ vD1

¼
Z þ1

−1
dv gvv2

ωP þ vD1 − iΓ
ðωP þ vD1Þ2 þ Γ2

¼ 1:

ð11Þ

For convenience, we also provide a step-by-step derivation
in Supplemental Material [55].
The crucial final step is to match the real and imaginary

parts of ω with the corresponding pendulum parameters of
Eq. (9): _φ ¼ μλσ ¼ ωP and _ϑ ¼ �μλ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − σ2

p
ϑ ¼ �Γϑ.

Inverting these relations and selecting the positive solution
for the second equation only reveals

σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2
P

ω2
P þ Γ2

s
and λ ¼ 1

μ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
P þ Γ2

q
: ð12Þ

Hence, the lowest pendulum position is

cos ϑmin ¼ −1þ 2
ω2
P

ω2
P þ Γ2

: ð13Þ

The equation above crucially links the maximal latitude
reached by the gyroscopic pendulum to the real and
imaginary parts of the complex eigenfrequency ω, provid-
ing a way to predict the depth of flavor mixing without
solving the equations of motion. This prediction is in
excellent agreement for all our ELN configurations, see our
examples shown in Fig. 2 for a comparison. We also see
that ωP ¼ 0 implies σ ¼ 0, leading to complete conversion,
whereas Γ ¼ 0 implies σ ¼ 1 and the pendulum is stable.
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Conclusions.—For a homogeneous and azimuthally
symmetric two-flavor neutrino gas, we have explicitly
shown that flavor conversion physics strongly depends
on details of the ELN distribution. Similar looking angular
distributions can lead to completely different outcomes.
Notably, the amount of flavor conversion does not directly
correlate with the growth rate obtained from the linear
normal-mode analysis.
Obvious characteristics are the conserved Bloch vector

of the lepton number that we call D0 and the one of lepton-
number fluxD1 with conserved length, and it is also evident
that D1ðtÞ is what drives the evolution of all Bloch vectors
(or density matrices) for individual modes of lepton or
particle number.
The evolution of D1ðtÞ appears to be equivalent to a

gyroscopic pendulum, with D0 playing the role of gravity,
suggesting that the third characteristic is what plays the role
of spin or equivalently the total angular momentum J.
However, identifying J as a simple combination of Dn ¼R
dv vnDv is not generally successful [24].
Our main innovation was to match the pendulum

parameters (natural frequency and spin) with the precession
frequency ωP and growth rate Γ obtained from the usual
normal-mode analysis of the neutrino system. It is impor-
tant to stress that, while attention was usually focused on Γ,
the previously ignoredωP provides the spin and thus allows
one to gain insight on the amount of flavor mixing.
Our work provides new insights and a simple tool to

unveil the rich phenomenology of FFC, shedding light on
the complicated physics of neutrino-dense media and, in
general, nonlinear systems of this type. While our findings
are based on a single-crossed, homogeneous and azimu-
thally symmetric neutrino gas, they could provide a first
step to analytically forecast the amount of flavor conversion
in neutrino-dense astrophysical environments. As such, this
work could have fundamental implications on our under-
standing of neutrino flavor evolution in core-collapse
supernovae and the synthesis of heavy elements in compact
binary merger remnants, where progress is currently halted
by its intrinsic numerical challenges.
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Supplemental Material
Neutrino flavor pendulum reloaded: The case of fast pairwise conversion

In this Supplemental Material, we introduce the multipole decomposition of the EOM and show that the pendulum
equations derived by truncating the multipole equations to the first few multipoles are not always predictive of the
final flavor outcome. Next, we perform a discretization of the ELN angular distribution to three modes and derive
a formal similarity with a pendulum characterized by its natural frequency and spin. We also outline the linear
normal-mode analysis for our homogeneous system and finally provide additional details on our numerical examples.

A. Multipole decomposition

One way to discretize the system of interacting Bloch
vectors Dv with v = cos θ is an expansion in Legendre
polynomials Ll(v) that more generally would appear in
a multipole expansion of D~v before assuming azimuthal
symmetry [1]. Thus, we define the new functions

Dl(t) =

∫ +1

−1

dv Ll(v)Dv(t) (S1)

that obey the co-rotating EOMs

Ḋl =
µ

2

(
alDl−1 + blDl+1

)
×D1 , (S2)

where al = 2l/(2l + 1) and bl = 2(l + 1)/(2l + 1). The
EOMs for the first few multipoles are explicitly:

Ḋ0 = 0 , (S3a)

Ḋ1 = µ
D0 + 2D2

3
×D1 , (S3b)

Ḋ2 =
3µ

5
D3 ×D1 , (S3c)

Ḋ3 = µ
3D2 + 4D4

7
×D1 . (S3d)

D0 is conserved and D1 is the only one that evolves
instantaneously like a precession, i.e., its length is con-
served. The equation for D3 is the first one clearly show-
ing the general structure that a given Dl is driven by one
higher and one lower multipole.

This infinite tower of equations can be closed by trun-
cation, assuming that the spectrum has no fine-grained
information. In this case, high multipoles should be con-
sidered to be negligible. Actually, this is a nontrivial
point because it looks like lower multipoles impact higher
ones in the EOMs, so higher multipoles should get excited
from lower ones, even if they were small at first, as also
discussed in Refs. [1, 2].

Johns et al. [3] have observed that, if we truncate
Eqs. (S2) by setting Ḋ3 = 0, the lowest multipole equa-
tions in the comoving frame are equivalent to the ones
of a pendulum in the flavor space. Comparing Eqs. (S3)
with Eqs. (7) reveals that we should identify R = D1 as
usual and J = (D0 + 2D2)/3, implying J̇ = 2Ḋ2/3. In
turn, this implies that we may identify G = 2D3/5 and

γ = µ. We now denote with Dn = Dz
n|t=0 the initial val-

ues that are not conserved except for D0 and D1. With
this notation, one finds for the spin S = (D0 + 2D2)/3
and finally

λ2 =
2

5
D3D1 , (S4a)

σ2 =
S2

4λ2
=

(1/9) (D0 + 2D2)2

(8/5)D1D3
. (S4b)

With these identifications, our interpretations agree with
the ones in Ref. [3], noting that they used the symbol σ
for what we call S. Hence, the condition for an instability
σ < 1 reads

(D0 + 2D2)2

D1D3
<

72

5
. (S5)

Or, equivalently, the pendulum is locked in its initial con-
figuration if

ξ =
S2

(2/5)Dz
1D

z
3

> 4 . (S6)

From the relations Γ = µλ
√

1− σ2 and cosϑmin =
−1 + 2σ2 provided in the main text, these results imply

Γ = µ

√
2D1D3

5
− (D0 + 2D2)2

36
, (S7a)

cosϑmin = −1 +
5 (D0 + 2D2)2

36D1D3
(S7b)

for the initial growth rate and depth of conversion. These
predictions can be compared with those of our numerical
examples, or equivalently, with those from the normal-
mode analysis.

Actually, as a starting point for their pendulum discus-
sion, the authors of Ref. [3] used the second-order equa-
tion

r × r̈

µ
+ Sṙ = µD1G× r , (S8)

where R = D1, r = R/R, the spin of the pendulum is
S = r · ( 1

3D0 + 2
3D2), and G = 2

5D3.
To show that this second-order equation follows from

our two first-order ones, we write the latter in the form
ṙ = J × r and J̇ = G × r where µ was absorbed in
the definition of time and all other coefficients in the
definition of G. Taking another derivative of the first



S2

equation yields r̈ = J̇×r+J×ṙ and inserting the second
equation for J̇ gives r̈ = (G×r)×r+J× ṙ = (G ·r)r−
G+J × ṙ, where we have used r2 = 1. Now we consider
r×r̈ and see that the first term disappears and the second
is G × r; the third is r × (J × ṙ) = (r · ṙ)J − (r · J)ṙ.
Noting that ṙ is perpendicular to r and r · J = S is the
conserved spin, we find r× r̈+S ṙ = G×r. Reinstating
the original meaning of the variables leads to Eq. (S8).
The advantage is that J no longer appears, but only the
conserved spin.

As already discussed in the main text, for sufficiently
large S, the pendulum is locked in its initial stable con-
figuration and cannot swing away from the flavor axis.
Hence, the pendulum is stable, and we expect that FFC
cannot take place. The pendulum is also in a stable con-
figuration when it is oriented in the same direction as the
gravity vector G.

Figure S1 shows the contour plot of the minimum value
of the lepton-number flux Dz

1(t) in the plane spanned by
a and b. We can see from Fig. S1 (see also Fig. 4) that we
expect a different flavor outcome as a function of a and
b, with regions of no flavor mixing despite the existence
of an ELN crossing.

In agreement with Ref. [3], our results support that
the outcome of the neutrino flavor qualitatively changes
depending on the relative signs of the l = 0–3 multipoles.
The relative sign of D0|t=0 and D2|t=0 determines the

0.2 0.4 0.6 0.8 1.0
b

�0.04

�0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.12

a

Dz
0 = 0

A

B C

D

⇠ > 4⇠ < 4

Dz
1(t)/D1|min

�0.4

�0.2

0.0

0.2

0.4

0.6

0.8

1.0

FIG. S1. Contour plot of the minimum value of the lepton-
number flux Dz

1(t)/Dz
1 |t=0 in the plane spanned by a and b

(see Eqs. 6a, 6b and Fig. 4). The isocontour of the config-
urations with ξ = 4 (obtained by truncating the multipole
expansion of the EOM at l = 3) is marked by dashed blue
lines, where the arrows point into the unstable region (ξ . 4).
Due to the limited number of multipoles, this criterion wors-
ens for very peaked angular distributions and does not allow
one to reliably predict the flavor outcome for a general ELN
configuration.

magnitude of S. Secondly, the relative sign of D1|t=0 and
D3|t=0 also determines whether the pendulum is initially
in a stable (unstable) equilibrium configuration, before it
is perturbed. Our results are also in agreement with the
ones of Ref. [3] for the configurations when gravity plays a
role in stabilizing the pendulum (results not shown here).
Qualitatively, these findings are in agreement with Fig. 3
of Ref. [3] where the relative signs of the multipoles lead
to different growth rates of the flavor instability.

This suggests that it may be enough to rely on the
l = 0–3 multipoles of Dv in order to predict the stability
of the flavor pendulum and gauge the amount of flavor
mixing. However, it is important to stress that the errors
induced by truncating the angular-moment expansion at
an arbitrary small l propagate back to large scale with
major consequences on the overall flavor evolution in the
nonlinear regime [2].

The ξ = 4 isocontour (dashed blue line) in Fig. S1
shows unstable regions predicted by the pendulum anal-
ysis. We find that in the stable (bottom) part of the
parameter space in Fig. S1, the spin is large enough to
lock the flavor pendulum, not letting it swing away from
the flavor axis. Conversely, in the unstable (top) region
in Fig. S1, S is smaller, allowing r to oscillate. However,
we also find that fast flavor mixing does not occur for all
configurations below the black dashed line representing
the locus where Dz

0 = 0 and the unstable regions do not
coincide with the ξ = 4 contour.

This discrepancy is due to the fact that, for very
forward-peaked distributions, the ξ criterion worsens, see
the lower region below the Dz

0 = 0 line. Moreover, we
can see a sudden transition to large flavor mixing in the
proximity of the Dz

0 = 0 line, not predictable by the ξ
criterion. These deviations of the numerical results from
the ξ = 4 constraints are due to the fact the high-l mul-
tipoles (with l > 3) are relevant and do affect the flavor
stability. As a consequence, it is difficult to asses, a priori,
when the pendulum approximation proposed in Ref. [2]
should hold.

B. Flavor pendulum of three modes

The coherence of all modes suggests a small number
of underlying degrees of freedom that can be diagnosed
using the Gram matrix Gij =

∫ t2
t1
dtDvi

(t) ·Dvj (t) [4]. It

is calculated for our discrete set of numerical Dvi(t) with
i = 1, . . . , n for a convenient, but arbitrary, time interval.
The rank of G that we call N + 1 reveals the number of
independent functions. The system always has one time-
independent solution in the form of D0 =

∑n
i=1 Dvi(t),

thus N is the number of independent dynamical func-
tions. For our single-crossed examples we always find
N = 2. Hence, we conjecture that single-crossed ELN
spectra provide solutions that are equivalent to two dy-
namical degrees of freedom, equivalent to three discrete
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angle modes.
To study a system of three discrete modes we note

that another way to combine the Dv is to use angular
moments of the v = cos θ distribution defined as

Mn =

∫ +1

−1

dv vnDv . (S9)

Here M0 is the same as D0 and M1 = D1 is the flux.
The EOM is

Ṁn = µMn+1 ×M1 . (S10)

Once more we see immediately that M0 is conserved,
whereas the dipole M1 performs an instantaneous pre-
cession around the second moment and thus its length
M1 = |M1| is conserved. The length of the other mo-
ments is not conserved. The Legendre polynomials (see
Appendix A) are one combination of the moments that
is based on an orthogonal set of functions, whereas the
vn are linearly independent, but not orthogonal.

The EOMs should be discretized to be solved numer-
ically. We will see that the evolution is coherent among
the Dv, meaning that neighboring modes have similar
evolution and do not develop large differences over time.
In this sense, representing the spectrum with a small dis-
crete set of modes vi with i = 1, . . . , N should provide a
good proxy to the true solution. Moreover, in our axially
symmetric case, there are no spurious instabilities [5, 6].

Notice, however, that we need a minimum of three
discrete bins (or “beams”) to obtain nontrivial results.
As in the continuous case, the overall lepton number
D0 =

∑N
i=1 Dvi is conserved and D1 =

∑N
i=1 viDvi has

conserved length. So if N = 2 the only possible solution
is a precession of D1 around D0. For N ≥ 3, there exist
instabilities and pendulum-like solutions.

Next we consider the simplest homogeneous case that
can provide an instability, i.e., the general three-mode
case consisting of three Bloch vectors Dvi with veloci-
ties vi with i = 1, 2 or 3. The corresponding angular
moments are Mn =

∑3
i=1 v

n
i Dvi . In turn, we can ex-

press the three Dvi in terms of the moments. We have
only three Dvi modes, so there are only three linearly
independent moments.

We can express any moment in terms of three others.
We use the lowest ones and close the tower of EOMs with

M3 = v1v2v3M0 + (v1 + v2 + v3)M2

− (v1v2 + v1v3 + v2v3)M1 . (S11)

To find this result, we first expressed the three Dvi in
terms of the first three moments, and then inserted these
expressions in the definition of M3. Then the tower of
EOMs for the moments is

Ṁ0 = 0 , (S12a)

Ṁ1 = µM2 ×M1 , (S12b)

Ṁ2 = µM3 ×M1

= µ
[
v1v2v3M0 + (v1 + v2 + v3)M2

]
×M1 .(S12c)

We see that we can add any multiple of M1 to M2 with-
out changing the second equation. Specifically we use

M ′
2 = M2 − (v1 + v2 + v3)M1

= −(v2 + v3)v1Dv1 − (v1 + v3)v2Dv2

− (v1 + v2)v3Dv3 , (S13)

providing the EOMs

Ṁ0 = 0 , (S14a)

Ṁ1 = µM ′
2 ×M1 , (S14b)

Ṁ ′
2 = µ v1v2v3M0 ×M1 . (S14c)

These are the pendulum equations in the form of Eq.
7 with the identification G = M0 (gravity), R = M1

(pendulum radius), J = M ′
2 (angular momentum), and

the coupling constant γ = µv1v2v3. If v1v2v3 of the cho-
sen beams is negative, we instead identify G = −M0 to
ensure a positive γ.

These results imply λ2 = v1v2v3M0M1 for the square
of the natural pendulum frequency, whereas the spin is
S = Jz = M2 − (v1 + v2 + v3)M1, where we use M2 =
Mz

2 |t=0, recalling that the length of M2 is not conserved.
The condition for instability is S2 < 4λ2 or explicitly[

M2 − (v1 + v2 + v3)M1

]2
< 4|v1v2v3M0M1| . (S15)

So none of vi must vanish and, of course, the lepton
number M0 and lepton-number flux M1 both must be
nonzero. To have three modes in the first place, all three
Dz

vi must be nonzero, so all six parameters of our model
must be nonzero. The quantity representing the angu-
lar momentum is complicated and does not suggest any
simple extension to a continuous spectrum.

For given pendulum parameters we can find an equiva-
lent three-mode system. The reverse transformation ap-
plied to the initial configuration provides

gv1 =
S + v1M1 + v2v3M0

(v1 − v2)(v1 − v3)
, (S16a)

gv2
=
S + v2M1 + v1v3M0

(v2 − v1)(v2 − v3)
, (S16b)

gv3 =
S + v3M1 + v1v2M0

(v3 − v1)(v3 − v2)
, (S16c)

where we have used Jz = S and the spectrum of discrete
modes is gvi = Dz

vi |t=0.
As discussed in the main text, from a single-crossed

spectrum gv we can obtain the pendulum parameters σ
and λ and thus the corresponding spin S = 2σλ as well as
the coupling parameter γ, defined to be positive, and we
have M0 =

∫
dvgv and M1 =

∫
dvvgv. In this way, four

of the six parameters are given that determine a three-
mode realization of the same pendular motion. The nat-
ural pendulum frequency (in units of µ) is given by λ2 =
ω2

P + Γ2 and in our three-mode case λ2 = v1v2v3M0M1,
implying v1v2v3 = (ω2

P + Γ2)/(M0M1). On the l.h.s.,
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|v1v2v3| < 1, suggesting that ω2
P + Γ2 < |M0M1|. In our

numerical examples this condition is certainly fulfilled,
but it is not mathematically obvious if this is generally
true for any single-crossed spectrum that exhibits an in-
stability. If it were not the case, a three-mode realization
of the motion would not be possible.

Assuming this to be the case for a given gv we can
choose the three-mode representation such that v1 = −1,
v3 = +1, and v2 = u with −1 < u < +1. Then the
equivalent three-mode system is given by

S = 2ωP and u = −ω
2
P + Γ2

M0M1
(S17)

and

gv=−1 =
S −M1 + uM0

2(1 + u)
, (S18a)

gv=u =
−S − uM1 +M0

1− u2
, (S18b)

gv=+1 =
S +M1 − uM0

2(1− u)
. (S18c)

In summary, we have found that three discrete modes
behave like a stable or unstable flavor pendulum, the lat-
ter being described by only two parameters, the natural
frequency λ and spin S. Conversely, for a given pendulum
with these parameters we can identify a two-parameter
family of three-mode realizations.

C. Explicit solution for continuous spectrum

If a single-crossed spectrum gv produces a coherent
pendulum-like solution, we have seen that the motion of
D1(t) can be understood as a pendulum with parame-
ters that can be extracted from gv without solving the
EOMs. We have also seen that in this case the Bloch
vectors Dv(t) are functions that one should be able to
express as linear combinations of only three independent
functions. We have seen in Supplement B that we can
identify three functions that we now call Pvi(t) that re-
produce the same pendulum with D1(t) = P1(t). (In the
corresponding discussion for slow modes these functions
were called “carrier modes” [4].) These three functions
solve the EOM

Ṗvi = µ viPvi × P1 . (S19)

We now transform the three functions to produce a
continuous spectrum by virtue of

P̄v =

3∏
i=1

(vi − v)

3∑
i=1

viPvi

vi − v
. (S20)

The first factor was included to avoid a singularity when v
equals one of the discrete velocities. These new functions
fulfill the original EOM

∂tP̄v = µ vP̄v × P1 (S21)

as one can easily verify by inserting the definition of P̄v

and using Eq. (S19). We may further define the unit
vectors

pv = ± P̄v

|P̄v|
(S22)

with a possible sign change such that pzv|t=0 = 1. There-
fore, the solutions for the original modes are simply
Dv(t) = gvpv(t).

To summarize, if the spectrum gv reveals, in the lin-
ear regime, an instability we can construct the nonlinear
solution for D1(t) in the form of a pendulum, obtain
three modes that produce the same pendulum motion,
and construct the explicit solution for Dv(t) and any
other Bloch vector that follows the same EOM as Dv(t).
In other words, the pendulum solution suggested by the
information from the linear equations indeed fulfills the
original EOMs also in the nonlinear regime.

D. Normal-mode analysis

In the main text, we have briefly sketched the normal-
mode analysis in the homogeneous case, leading to an
eigenvalue equation that is very simple. However, it is
also instructive to arrive at this result beginning with the
inhomogeneous equations and taking the homogeneous
limit in the end. The final result is the same, but it
is nevertheless reassuring that there is no hidden issue
of non-commuting limits. In principle, of course, this is
just a step-by-step account of what can be found in the
literature in various forms.

Our starting point is the two-flavor EOM, assuming
axial symmetry, before taking the homogeneous limit:

i (∂t + v∂z)Dv = µ[D0,Dv]− µ[D1, vDv] . (S23)

Here D0 =
∫
dvDv and D1 =

∫
dv vDv and we use the

notation
∫
dv =

∫ +1

−1
dv as in the main text. We here keep

explicitly the first term on the r.h.s. without going to a
co-rotating frame because we are interested in the real
part of the dispersion relation that should be carefully
distinguished from the overall precession caused by this
neutrino-neutrino matter term which we follow carefully.

We recall that, in terms of the Bloch vector compo-
nents, the lepton-number density matrices are

Dv =
1

2

(
Dz

v Dxy
v

Dyx
v −Dz

v

)
=
gv
2

(
sv Sv

S∗v −sv

)
, (S24)

where Dxy
v = Dx

v +iDy
v and the complex conjugate Dyx

v =
Dx

v − iDy
v . The ELN spectrum is the initial gv = Dz

v |t=0

and is assumed not to depend on space. In other words,
we assume the initial setup to be homogeneous, but the
solutions are allowed to be inhomogeneous. The diagonal
and off-diagonal normalized components sv and Sv follow
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our older notation and are not related to the particle-
number matrices.

The linear regime consists of the off-diagonal elements
being small compared with the diagonal ones, in normal-
ized form meaning that |Sv| � 1 and the expansion is in
powers of Sv. Taking the z-components at their initial
value, the off-diagonal EOM is[
i (∂t + v∂z)− (Λ0− vΛ1)

]
Sv = −µ

∫
du gu

(
Su− vuSu

)
,

(S25)
where Λ0 = µD0 and Λ1 = µD1 = µDz

1 |t=0.
For a normal-mode analysis we seek plane-wave solu-

tions of the form Sv(t, z) = Qv e
−i(Ωt−Kz), where Qv de-

pends on the wave vector (Ω,K) and K is the wavevector
in the z direction. The EOM in Fourier space thus is[

(Ω− Λ0︸ ︷︷ ︸
ω

)− v(K − Λ1︸ ︷︷ ︸
k

)
]
Qv = −µ

∫
du gu

(
Qu − vuQu

)
.

(S26)
In the absence of interactions (µ = 0) the only solutions
are ω = vk, which are “under the light cone” defined by
ω = k, and have eigenfunctions Qv = δ(ω − vk). For
nonzero µ, these non-collective modes continue to exist
with a more complicated singular Qv [7].

In addition, collective modes appear which either have
a real ω > k or a complex ω without restrictions on k.
As a function of v, the r.h.s. of Eq. (S26) has the form
a − bv, where a and b are numbers that depend on the
spectrum and on the solution, but not on v. Therefore,
the eigenfunction is of the form

Qv =
a− bv
ω − vk , (S27)

implying

a− bv = −
∫
duGu

a− bu− vu(a− bu)

ω − uk , (S28)

where we have now absorbed µ in Gv = µ gv.
This equation must be true for all v, so we have two

equations that can be written as(
I0 + 1 −I1
−I1 I2 − 1

)
︸ ︷︷ ︸

Π

(
a
b

)
= 0. (S29)

Here the “moments” are

In(ω, k) =

∫
duGu

un

ω − uk . (S30)

The dispersion relation follows from

det Π = (I0 + 1)(I2 − 1)− I2
1 = 0. (S31)

Once we have found ω(k) we can determine the eigen-
function up to an overall factor, i.e., for a chosen a we
can find b or the other way around.
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FIG. S2. Same as Fig. 2, but for the evolution of the trans-
verse components (flavor direction) of the lepton-number flux,

|Dxy
1 | =

√
(Dx

1 )2 + (Dy
1 )2 for the unstable cases B–D.

There is a nontrivial relation between the moments
defined in Eq. (S30) as can be seen by the following ma-
nipulations:

Λ0 =

∫
duGu =

∫
duGu

ω − uk
ω − uk = ωI0 − kI1 (S32)

and likewise

Λ1 =

∫
duGu u = ωI1 − kI2. (S33)

Therefore, two of I0, I1 and I2 can be eliminated from
the determinant condition Eq. (S31) which thus can be
written in three alternative forms in terms of only one of
them. One case is

I0(ω, k) =
Λ0(ω + Λ0) + k(k + Λ1)

ω(ω + Λ0)− k(k + Λ1)
. (S34)

The physically homogeneous case K = 0 implies that k =
−Λ1. Therefore, the determinant condition simplifies to

ωI0(ω,−Λ1) = Λ0 (S35a)

and with Eqs. (S32) and (S33) implies

I1(ω,−Λ1) = 0, (S35b)

I2(ω,−Λ1) = 1. (S35c)

If we insert these results in Eq. (S29) we see that the
second equation is fulfilled for any a and b, whereas the
first equation requires a = 0. Therefore, we conclude that
in the physically homogeneous case, the eigenfunction
has a = 0 and thus is proportional to v with an arbitrary
coefficient b 6= 0.

We thus recover the result derived in the main text
where we started directly from the homogeneous EOM.
In terms of physical variables, the eigenvalue is deter-
mined by (Ω−Λ0)I0(Ω−Λ0,−Λ1) = Λ0. Here as always
going to the co-moving frame in flavor space amounts to
absorbing Λ0 in Ω→ ω = Ω−Λ0 and not setting Λ0 = 0.
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TABLE I. Solutions for the complex eigenfrequencies of our
benchmark ELN configurations A–D (see main text).

Case Λ0 Λ1 ω± = ωP ± iΓ σ cosϑmin

[µ/100] [µ/100] [µ/100]
A −1.2666 −4.2666 stable — —
B +0.7334 −4.2666 0.1828± 0.1291 i 0.817 +0.335
C +0.7388 −3.2728 0.2047± 0.0584 i 0.962 +0.849
D +4.7334 −5.2665 1.0743± 1.1121 i 0.694 −0.034

E. Further analysis of our numerical examples

The solutions for the complex eigenfrequencies for our
examples A–D (see main text) are summarized in Ta-
ble I. The analytical results are in excellent agreement
with the numerical ones, as was already shown in Fig. 2
in the main text. In Fig. S2, we show the evolution of the
xy component that grows exponentially until the nonlin-
ear regime is reached. The “wiggles” around the lowest
points reflect the initial conditions (the small seeds) that
excite all modes, but only the unstable one subsequently
grows exponentially.

In order to highlight the periodic nature of the motion,
we show in the upper panel of Fig. S3 a phase diagram
(ϑ̇, ϑ) derived from our solutions ϑ(t) and ϑ̇(t). The mo-
tions continue to trace out their respective tracks.

To illustrate the pendulum motion quantitatively, we
show ϑ̇2 as a function of ϑ in the bottom panel, once
more derived from the numerical solutions ϑ(t) and ϑ̇(t).
From Eq. 8b we glean that the motion is equivalent to a
mass point with kinetic energy ϑ̇2 that moves in a poten-
tial which is the negative of the r.h.s., so the numerically
found ϑ̇2 as a function of ϑ maps out the potential given
on the r.h.s. of Eq. 8b. With the pendulum parame-
ters shown in Table I, the predicted curves are plotted
as dashed lines, once more confirming the perfect agree-
ment.
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