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Abstract:

Various extensions of the standard model of elementary particle interactions predict the existence of new particles such as axions, or “‘exotic™
properties of known particles such as neutrino magnetic moments. If these particles are sufficiently light, they emerge in large numbers from the hot
and dense interior of stellar bodies. For appropriate ranges of particle parameters, this “‘invisible” energy loss would lead to observable changes in
the evolution of stars. We review the theoretical methods as well as the observational data that have been employed in order to use stars as “particle
physics laboratories” in the spirit of this argument. The resulting constraints on the properties of axions are systematically explored, and the
application of the general methods to other cases are mentioned and referenced. Cosmological axion bounds and experiments involving galactic or
solar axions are briefly reviewed.

1. Introduction
1.1. Prologue

Fifty years ago, in 1940, Gamow and Schoenberg [1, 2] ushered in the advent of particle astrophysics
when they pointed out that neutrinos, the most elusive of all known particles, must play an important
role in stellar evolution, particularly in the collapse of evolved stars. However, they considered only
nuclear conversions of the type (A, Z)te —(A,Z-1)+v,and (A, Z-1)—>(A,Z)+e +v,, the
“‘urca” reactions which become important only at very high temperatures because of their energy
threshold. In 1958, Feynman and Gell-Mann as well as Sudarshan and Marshak proposed the universal
V-A interaction law which predicted the existence of a direct neutrino—electron interaction with the
strength of the universal Fermi constant. In 1959, Pontecorvo [3] realized almost immediately that this
interaction would allow for the bremsstrahlung radiation of neutrino pairs by electrons, and that the
absence of a threshold renders this process an important energy loss mechanism for stars. In the same
year, Gandel’'man and Pinaev [4] calculated the approximate conditions for which neutrino losses would
“outshine” the photon luminosity of stars and subsequently the neutrino emissivity of stellar plasmas
was calculated by many authors.*’ On the basis of astrophysical evidence, Stothers and his collaborators
[34-42] established in the late 1960’s the existence and approximate magnitude of the direct neutrino—
electron interaction which was experimentally measured [43] in 1976.

While neutrino physics today is an integral part of stellar evolution and supernova theory, new
concepts of particle physics have emerged that could be equally important despite the relatively low
energies available in stellar interiors. In various extensions of the standard model, the spontaneous
breakdown of a symmetry of the Lagrangian of the fundamental interactions by some large vacuum
expectation value of a new field leads to the prediction of massless particles, the Nambu—Goldstone
bosons of the broken symmetry. The most widely discussed example is the axion [44, 45] which arises as
the Nambu-Goldstone boson of the Peccei—-Quinn symmetry which explains the puzzling absence of a

* Immediately after Pontecorvo [3] and GandeI’'man and Pinaev [4] had calculated the neutrino losses by pair-bremsstrahlung, Chiu and Stabler
[5] and Ritus [6] calculated the photoneutrino process, y+e —e  +v, +v,, followed by Adams, Ruderman and Woo [7] who considered the
plasmon decay v, — v,.¥,. The status of the theory of stellar neutrino emission of the mid-1960’s was summarized by Feinberg [8], Ruderman [9] and
Chiu [10], and widely used numerical tables were provided by Beaudet, Petrosian and Salpeter [11]. After the discovery of weak neutral currents,
the modified emission rates were first calculated by Dicus and his collaborators [12, 13], and the status of the theory of the mid-1970's was reviewed
by Barkat [14]. Recently, two groups of authors have provided updated numerical tables [15-17]. A recent discussion of neutrino emission from
nuclear matter was provided by Friman and Maxwell [18]. Neutrino emission by electrons in strong magnetic fields (synchrotron radiation of v
pairs) was first discussed by Landstreet [19] - for other processes in the presence of strong magnetic fields see refs. [20-22]. The process yy— vv was
first discussed by Chiu and Morrison [23] who thought it would substantially contribute to the emission rate, but Gell-Mann [24] showed that it
vanishes identically in the V-A theory. The emergence of the intermediate W-boson hypothesis revived this process [25--28], but gauge-invariant
calculations, especially in the framework of the standard model, yield negligible rates [29-31], even if one allows for small neutrino masses [32]. This
process would be significant if there existed exotic scalar or pseudoscalar weak interactions [33].
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neutron electric dipole moment, i.e., it explains CP-conservation in strong interactions {46, 47]. The
production of axions in stars, like that of neutrinos, is not impeded by threshold effects.

The existence of axions or other Nambu-Goldstone bosons would be a low-energy manifestation of
new physics at energy scales much larger than can be probed in the laboratory. Equally, anomalous
properties of neutrinos such as electromagnetic dipole moments would point to new physics beyond
current laboratory energies. Therefore the physics of neutrinos and Nambu-Goldstone bosons offers a
window to high-energy physics, a window to be explored by astrophysical methods in addition to
laboratory experiments.

In this review I will summarize the recent discussion of the possible role of axions and other
hypothetical particles in astrophysics, and I will review the constraints on the particle properties that
have been obtained. There have been a number of recent reviews on the physics of axions [48-53]
which mention the astrophysical results. The focus of these papers, however, is the particle-physics
aspect of the CP problem or the numerical bounds on the Peccei-Quinn scale, and they offer little
insight into the methods that have been used to derive these results, leaving unclear their significance
and reliability. My review, in contrast, is intended as an overview over the astrophysical methods which
have been used to derive such constraints. Because “invisible axions” are perhaps the most interesting
case of hypothetical low-mass particles, because their properties are particularly well-defined, and
because of a personal choice I use their case as a precedent to illustrate these methods. However, for
each argument discussed I will summarize the results for other particles, especially neutrinos, that have
been derived by the same or similar reasoning.

1.2. The stellar energy loss argument

The main astrophysical method to constrain particle properties that I will explore is the energy loss
argument: novel, low-mass particles or neutrinos with novel properties would be produced in the
interior of stars and, because of their assumed weak interaction with matter and radiation, would
escape almost freely, draining the star of energy and thereby changing the course of stellar evolution
that would be expected otherwise. While the historical emergence of these ideas in the context of
neutrino physics was mentioned above, it should be added that the first application of this argument to
other particles was provided by Sato and Sato [54] in 1975 to derive bounds on the coupling strength of
light Higgs particles.

Subsequently, the lifetime of the Sun and of horizontal branch stars, the white dwarf luminosity
function, bounds on the surface X-ray emission of pulsars, the neutrino signal from SN 1987A, and
other arguments were used to constrain the interaction strength of axions [55-100] and other
Nambu-Goldstone bosons such as majorons [101-114] and familons [115], of light scalar and vector
bosons [116-121], and of light supersymmetric particles [122-129], to constrain anomalous elec-
tromagnetic properties of neutrinos [130-146], neutrino right-handed interactions [92, 129, 147, 148],
Dirac neutrino masses [92, 149-152], and exotic neutrino-photon couplings {153, 154]. Also, the stellar
graviton emission rate was estimated, but naturally it turns out to be too small to have any effect on
stellar evolution (for a review see ref. [155] while more recent papers are refs. {156-158]).

Related to the energy loss argument is the energy transfer argument: if our low-mass particles interact
so strongly that they are produced and reabsorbed or rescattered in the stellar medium, they do not
drain the star of energy, rather they contribute to the energy transfer, again changing the standard
course of evolution. The energy transfer by neutrinos is an integral part of supernova physics (for a
recent review see ref. [159]) while the contribution to the effective opacity in the Sun and horizontal
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branch stars of hypothetical keV-mass scalars has been used to exclude a large range of parameters [160,
161], see chapter 5 and section 7.1.

In order to establish a connection between astronomical observables and the relevant particle physics
model in the framework of the energy loss argument, one generally has to take four distinct steps, each
of which involves its own methods and problems.

1.2.1. Step I: phenomenological interaction law

The questions to be addressed by stellar energy loss arguments typically involve new particle physics
at large energy scales, while the astrophysical methods lend themselves to probe low-energy phenomena
related to these new theories. For invisible axions, the ultimate goal is to identify or constrain the value
of the axion decay constant, f,, which represents the spontaneous breaking of the Peccei—Quinn
symmetry, while the astrophysical methods allow one to derive bounds on the stellar axion emission
rates and hence on the effective coupling strength of axions to photons, electrons, and nucleons. The
Lagrangian for the interaction with photons is*’

&, =—4g, F*"F,a=g E-Ba, (1.1)

where g, is a phenomenological coupling constant of dimension (energy) ', F is the electromagnetic
field-strength tensor, F its dual, and a is the pseudoscalar axion field. For the interaction with a fermion
species j the Lagrangian is

= ~ig, b vsa (1.2)

where g is a dimensionless Yukawa coupling constant. These phenomenological Lagrangians are the
only particle physics ingredients entering the subsequent discussion. In order to establish the precise
connection between g,., g.., 8.n> M,, and f, | review in chapter 2 the physics of invisible axions which
will allow me to establish the connection between the low-energy phenomenology and the fundamental
physical theory.

For neutrinos I will discuss constraints on anomalous electromagnetic properties, especially on
magnetic and electric dipole and transition moments, u,; and ¢;. In this case the phenomenological
Lagrangian which describes the interaction of the neutrino fields, ¢, with the electromagnetic field, F,
is

3
gw = '21 ‘/’1(:“«,‘,' + YSEij)a-p.ijF#V . (1.3)
ij=

*' We always use natural units with %= ¢ = k, = 1. Moreover, we use the rationalized system for the definition of charges and field strengths
where the fine structure constant is o = ¢’/4a ~1/137 so that the electric charge is e =0.30. The energy density of an electromagnetic field is
(E* + B’)/2. In the unrationalized system the definitions of charges and field strengths are such that a = ¢* ~ 1/137 so that e = 0.085 and the energy
density of an electromagnetic field is (E* + B®)/8x. Usually one refers to the two systems as rationalized and unrationalized units, although the
physical units are the same in both cases - for example, using # = ¢ = 1, field strengths can be expressed in eV, cm >, or many other units in both
systems. What is different in the two systems is the definition of what one means with field strength because only the product of charge times field
strength, the force on a test particle, has an operational meaning and is numerically the same in both systems. Still, certain units are always
understood to refer to a certain system. Especially the cgs-unit “Gauss” for magnetic fields is understood to refer to an unrationalized system, while
the MKSA unit “Tesla” is understood to refer to a rationalized system. Thus, while these units are understood to refer to different definitions of
field strength, it is correct to say that a field of 1 T is 10* times stronger than one of 1 G, meaning that the Lorentz force on a moving electron would
be 10* times stronger or that the energy density of the field is 10° times larger, even though it has to be evaluated according to different formulae. A
given field of 1 G corresponds to a field strength of 1.95 x 107 eV if the latter number is understood in a rationalized system (a = e*/47), used
throughout this report, while it corresponds to 6.9 x 107 eV’ in an unrationalized system (a = ¢’). Note that in the particle-physics literature
rationalized units are always used, while in the plasma-physics literature unrationalized units are generally employed.
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However, in this case I do not discuss the connection between the dipole moments and the underlying
nonstandard particle-physics models because this would increase the volume of this review beyond
reason.

1.2.2. Step II: particle emission rates

Once the phenomenological Lagrangian for the interaction between the new particles and matter and
radiation has been established, it may seem like a simple exercise in the evaluation of Feynman graphs
to determine the rate of production of these particles from a stellar plasma. However, in the hot and
dense stellar medium, many-body effects and the collective behavior of the medium render these
calculations much more involved than the corresponding cross-section calculations for laboratory
conditions. Indeed, certain processes such as the plasmon decay into neutrinos, -y, — vv, are possible
only in a medium where photons (“‘plasmons’) have an “effective mass”, while such decays would not
occur in vacuum. Of more relevance to axions, correlation or screening effects substantially reduce the
naive interaction rates, in one important case (the Primakoff effect) by two orders of magnitude. In the
dense medium of neutron stars, the role of many-body effects for axion emission is not fully
understood. The very state of matter at supernuclear densities is not known — the occurrence of new
phases such as a pion-condensate or strange quark matter is possible. Even the vacuum transition
between axions and photons in external magnetic fields is affected by the magnetically induced photon
refractive index. Therefore, naive calculations of emission rates which ignore the presence of the
ambient fields or media can be trusted, at best, as order of magnitude estimates. In chapter 4 we will
discuss the stellar energy loss rates which are to be expected on the basis of the interactions, egs.

(1.1)-(1.3).

1.2.3. Step III: theoretical path of stellar evolution

Next, one has to discuss the evolutionary pattern of stars that is to be expected if axions or other
particles drain energy or contribute to the energy transfer. The effect of energy transfer has been
discussed only for some special cases since typically one is interested in very weakly interacting particles
where the mean free path far exceeds stellar radii. The energy drain by axions or other particles leads to
an acceleration of certain phases of stellar evolution. In order to understand this one has to distinguish
carefully between two broad classes of stars — “active” stars which burn nuclear fuel and “dead” stars
which do not. A typical example for the former class is our Sun and other main-sequence (MS) stars
which burn hydrogen in their center, or horizontal branch (HB) stars which burn helium in their core.
These stars support themselves against their own gravity by thermal pressure, resulting in a close
interplay between pressure, temperature, energy transfer, and the nuclear burning rates, an interplay
which stabilizes the stellar structure: any deviation from equilibrium results in a restoring force.

The energy drain by axions is equivalent to a local energy sink, i.e., at a given density and
temperature the effective energy generation rate is the true nuclear burning rate, ¢,,., reduced by
neutrino and axion losses, €, = ¢,,. — €, — ¢,. Because the effective burning rate, ¢, 1s fixed by the
equilibrium stellar structure, the inclusion of axion losses means that the true burning rate, &, must
be larger than in the absence of axions, requiring an increased temperature because ¢, is a steeply
rising function of 7. Hence a self-consistent stellar structure which includes axion losses is characterized
by an increased internal temperature and an increased nuclear burning rate, trends which can be
analytically understood (chapter 6). The increase of ¢, _leads to an increased consumption of nuclear
fuel, reducing the duration of the relevant phase: the central hydrogen burning phase for MS stars or
the central helium burning phase for HB stars. (The term “axion cooling” which sometimes has been
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used is somewhat of a misnomer because the temperature in “‘active” stars actually increases. If axion
losses were important in the Sun, the increased central temperature would result in an increased flux of
neutrinos, exacerbating the solar neutrino problem.)

When stars run out of nuclear fuel they inevitably must collapse. Depending upon their mass, this
collapse leads to one of three possible end states of stellar evolution: white dwarfs, neutron stars, or
black holes. White dwarfs arise from progenitor stars of up to several solar masses. They are so
compact that the electrons in their interior are degenerate, and it is the electron degeneracy pressure
which supports these objects from further collapse. The structural properties of white dwarfs and their
thermal properties are largely decoupled, the previous interplay between pressure and temperature is
now absent. Moreover, the degenerate electrons transport energy so efficiently that these stars have a
practically isothermal core which is insulated from the surrounding space by a surface layer of
nondegenerate matter. The cooling rate of the interior is governed by the *‘thermal resistance” of this
skin, and neutrino and axion losses could ‘“shorten out” this insulator. It is now fully justified to speak
of “axion cooling” because the energy drain would actually accelerate the speed of white dwarf cooling
(chapter 9).

Neutron stars form after the implosion of more massive stars in type II supernovae leading to the
ejection of their surface layers. Immediately after the collapse a hot and dense “‘proto-neutron star”
forms in the center of the progenitor. The cooling rate of this object is determined by the diffusion time
scale of neutrinos whose mean free path is short compared to the radius of about 50 km of the
supernova core. Axions or other particles which interact more weakly than neutrinos would shorten out
this “thermal resistance” and accelerate the cooling of a nascent neutron star. The weak interaction
cross sections, which keep the neutrinos trapped in a neutron star, scale as E’ so that, as the
temperature drops, the star becomes transparent to neutrinos which dominate the cooling to an age of
~10° yr after formation. Later, photon emission from the surface takes over, and the general picture
becomes similar to a white dwarf: a degenerate, almost isothermal interior, insulated by a nondegener-
ate surface mantle. Bounds from SN 1987A and from late neutron star cooling will be discussed in
chapter 10.

There is one special case where axion emission would lead to an extension rather than an
acceleration of an evolutionary phase. A red giant is a combination between an “active” and a “dead”
star: it consists of a degenerate core, essentially a helium white dwarf, and a nondegenerate extended
hydrogen envelope. At the interface between core and envelope, hydrogen burns in a thin shell, with
no nuclear burning in the core. However, as the burning front moves out, the core mass grows, its
radius shrinks, and it becomes hotter and denser, until helium ignites and the star enters a helium
burning phase: it becomes a horizontal branch star. The emission of axions from the red giant core
lowers the central temperature and delays the ignition of helium, thereby extending the red giant phase.
This argument leads to the most restrictive bound on neutrino dipole moments (section 8.6).

1.2.4. Step 1V: comparison with observations

If axion emission significantly changes the standard picture of stellar evolution or the theoretically
expected durations of certain evolutionary phases, this result in itself does not provide any insight into
axion properties. Only a comparison with observations allows one to arrive at definite conclusions
concerning the range of allowed parameters. There are very few cases where we have direct evidence
for the time scales of stellar evolution. The age of the Sun, 4.5X 10° yr, can be inferred from
radio-chemical dating of terrestrial, lunar, and meteoritic material. Hence we have direct evidence for
the time scale of main-sequence evolution. The measurement of the neutrino burst of SN 1987A gave
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direct evidence for the cooling rate of nascent neutron stars — their binding energy is radiated away in
thermal neutrinos within a few seconds. The historical record of supernova explosions, notably the
famous supernova of 1054 A.D. which gave rise to the Crab nebula and pulsar, yields a direct measure
for the cooling rates of these individual objects if combined with X-ray measurements of their
present-day surface temperature.

Other time scales of evolution such as the white dwarf cooling rate and the helium burning phase of
HB stars must be inferred by statistical means using ensembles of stars. Rather than following the
evolution of individual stars one considers ensembles which contain stars in various stages of evolution,
and from the relative number of stars in different phases one infers their relative duration. Particularly
handy ensembles are the globular clusters which are gravitationally bound groups of coeval stars with
identical chemical composition. The individual stars mostly differ in their mass and hence in the
duration of their hydrogen burning phase. All subsequent phases are so fast that the evolved stars in
these clusters have essentially the same mass and are thus practically identical in their properties. Hence
these stars as an ensemble map out the evolution of an individual star; we observe “the same star™
simultaneously in all advanced stages of evolution such as the red giant and horizontal branch phase.
The relative number of stars observed in different phases then gives us a direct measure of the relative
duration of these phases for an individual star.

1.3. Other methods of stellar particle physics

While we will mostly review the particle results based on the stellar energy-loss argument, it is
worthwhile to briefly mention other methods that can and have been employed to extract useful
information for particle physics and cosmology from the observation of stars or using stars as particle
sources.

1.3.1. Experimentation with stellar particle fluxes

The photon and neutrino fluxes and the possible fluxes of exotic particles produced in stars can be
used for experimentation. The first such discussion was performed by Houtermans and Thirring [162] in
1953 who used the null rate of a Geiger counter to derive a limit on the ionizing power of the calculated
solar neutrino flux and thus found a limit of 2 X 10" ° Bohr magnetons on a possible neutrino magnetic
moment. Since then, neutrino fluxes have been measured from the Sun [163, 164] and from SN 1987A
[165-168]. Especially the SN 1987A neutrino observation was used to investigate the issues of neutrino
oscillations in media [169-180] and to constrain radiative [181-185] or other decays [186, 187]. Many of
these issues have been reviewed in Bahcall’s recent book on neutrino astrophysics [163]. Hypothetical
particles such as axions would also emerge from these sources, and the absence of solar y-rays allows
one to rule out the standard axion [188] and to constrain neutrino radiative decays [189, 190]. Also, one
may attempt to detect exotic particle fluxes from the Sun such as the flux of invisible axions (section
7.4).

The diffuse neutrino flux from all stars, particularly all supernovae in the universe, in connection
with the measured diffuse electromagnetic background spectra, has been used to constrain radiative
neutrino decays [183, 189, 191, 192].

Pulsed signals allow one to measure or constrain dispersion effects. The electromagnetic signals from
pulsars serve to constrain the photon mass (for reviews see refs. [193, 194]) and the photon interaction
with the galactic magnetic field [195]. The absence of “jitter” in the periodic signal of millisecond
pulsars constrains distortions of the space—time metric between the earth and these objects, i.e., the
method of “pulsar timing™ allows one to constrain the cosmic gravitational wave spectrum and thus the
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existence of possible sources such as cosmic strings (see, for example, ref. [196]). The apparent absence
of dispersion of the neutrino burst from SN 1987A has been used to limit the neutrino mass [197-211],
its interaction with background magnetic fields [212], “fifth force” long range fields [213, 214], or
background matter [215], and to constrain various possible deviations from the equivalence principle
[216-221].

1.3.2. Deviation from Coulomb’s and Newton’s law

There have been many speculations about possible variations from the inverse-square behavior of
Coulomb’s and Newton’s law. With some relevance to “stellar particle physics”, the measured spatial
variation of Jupiter’s magnetic dipole has been used to set important limits on the photon mass (for
reviews see refs. [193, 194]). Deviations from Newton’s law occur because of general relativistic
corrections: the motion of planets, binary stars, light bending by the Sun, and other gravitational lens
effects are important tests for general relativity [222, 223]. Also, general relativistic effects must be
considered to compute the structure of neutron stars [224]. The existence of other long-range forces
(““fifth force™) has also been contemplated, forces which are mediated by particles with suitable masses
that they produce substantial effects over terrestrial distances without affecting the post-Newtonian
approximation at larger scales. The effect of such forces on binary star systems was recently discussed
[225], although existing laboratory bounds rule out observable effects.

Of more relevance to this review, non-Newtonian forces could affect stellar structure and solar
oscillations [226~229]. It turns out, however, that within existing limits on the strength of such forces,
no observable effects on stellar structure or helioseismology can be expected apart from small
corrections to stellar lifetimes and oscillation periods. The existence of a fifth force would imply the
emission of the relevant field quanta from stars, but within existing laboratory limits on their coupling
strength, this energy drain from stars has no observable effect, just as the stellar graviton luminosity is
always negligible. If the mass of these particles is so large that the force which they mediate does not
reach far enough to affect other tests of general relativity, the energy loss argument provides the best
constraint on the relevant coupling strength [116, 117].

Finally, the static, long-range field associated with a new force would change the masses of particles

and the values of the fundamental coupling constants in the interior and in the neighborhood of a star
[230].

1.3.3. Heavy particles trapped in stars

While light particles such as neutrinos or various Nambu-Goldstone bosons would escape from
stellar bodies, other exotic objects such as free quarks, magnetic monopoles, or supersymmetric
partners to known particles could be retained and hence could contaminate the normal baryonic
material of the celestial bodies. The presence of these particles could affect stars in several ways.
Fractionally charged particles could attach themselves to nuclei and would severely alter the nuclear
burning rates [231]. Magnetic monopoles in grand unified theories can catalyze baryon decay
(Rubakov-Callan effect) and they can annihilate so that MS stars [232], white dwarfs [233], the earth
(234, 235], the Jovian planets [235, 236], and particularly old neutron stars [237-241] would possess an
efficient new heat source. Also, the high-energy neutrino flux from catalyzed baryon decay in the Sun
can be constrained by terrestrial detectors [242-244]. The presence of magnetic fields in various stellar
bodies constrains the number of accreted monopoles or severely affects their accretion and annihilation
rates [245-248].

Weakly interacting massive particles (“WIMPs”) would contribute to the energy transfer in their
host star [249-253]. Because of their long mean free path, even a very small contamination is sufficient
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to provide the dominant form of energy transfer. While such particles probably would not be entrained
during star formation [249, 254] they would be accreted if they were the dark matter of the universe
[255-261]. Therefore stars can serve as detectors for particle dark matter — the effects on the Sun in the
context of the solar neutrino problem [249, 250, 262-266] and helioseismology [267-269], on stellar
pulsations [270, 271], on general main sequence stars [272], and on horizontal branch stars [273-280]
have been studied. Also, WIMPs trapped in a neutron star could become self-gravitating and form a
black hole [281]. While annihilation can substantially reduce the number of WIMPs trapped in a star
[282], by the same token it can provide a powerful new energy source if the dark matter background is
unusually dense {283], and the high-energy annihilation neutrinos from WIMPs trapped in the Sun will
perhaps allow one to detect particle dark matter [284-295].

The effect on the Sun of more exotic trapped particles have also been discussed [296] as well as that
of a cosmic string loop [297]. Most recently it was argued that hypothetical charged dark matter
particles (““CHAMPs”) would build up in neutron stars and form a black hole, destroying the star on a
short time scale. This argument excludes a large range of CHAMP masses [298].

1.3.4. New phases of nuclear matter

The interior of neutron stars provides a unique environment where the properties of matter at
nuclear and supernuclear densities are of immediate importance. Of particular interest is the possible
occurrence of exotic phases of matter such as superfluid and superconducting states, a pion condensate,
quark matter, or strange quark matter. Among other consequences, the occurrence of such phases
would affect the emission rates of neutrinos or axions. Reviews on the issues of neutron star interiors
were provided by Baym and Pethick [299, 300], in the textbook of Shapiro and Teukolsky [301], and by
Pines [302] who has stressed the role of neutron stars as ‘“hadron physics laboratories”. Many
references can be found in the proceedings of the IAU-Symposium No. 125, ““The origin and evolution
of neutron stars” [303].

2. Axion phenomenology

The experimentally observed absence, or extreme smallness, of a CP violating neutron electric
dipole moment has been a long standing puzzle of particle physics. The most elegant solution to this
problem, proposed by Peccei and Quinn [46, 47], leads to the prediction [44, 45] of a light pseudoscalar
particle: the celebrated axion. For very detailed recent reviews see Peccei [48-50], Kim [51] and Cheng
[52]. The phenomenological properties of axions are closely related to the properties of neutral pions
and are thus well determined. They are essentially characterized by one free model parameter, the
Peccei—Quinn scale or axion decay constant, f,, which may take on any value between f,.,, ~ 250 GeV
and the Planck mass of ~10'"" GeV. We introduce the idea of axions and review their phenomenological
properties which are of importance for their possible role in astrophysics and cosmology.

2.1. Generic features of the Peccei-Quinn mechanism

2.1.1. The strong CP problem and axions

A number of years ago it was shown [304, 305] that the puzzling discrepancy between the pion
masses and the mass of the m meson, the infamous U(1)-problem [306], can be taken as evidence for a
nontrivial topological structure of the ground state of quantum chromodynamics (QCD). Apart from
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the usual color gauge interactions, the effective Lagrangian describing QCD then contains a new term
[307, 308],

Lo = O(a/87)GLG,,, (2.1)

where a, is the fine structure constant of strong interactions, G,” is the color field strength tensor,
Gy, = 3£,,,,G5 its dual, and the summation over b refers to the color degrees of freedom. We
shall usually write GG=G" ”Gb ,- The coefficient @ is a free parameter characterizing the QCD
ground state or ©-vacuum. It can be shown that a transformation ®— @ + 27 maps the @-vacuum
onto itself so that different ground states are characterized by values in the range 0= @ <27.

Under the combined action of charge conjugation and a parity transformation the Lagrangian eq.
(2.1) changes sign. Hence #, violates the CP invariance of QCD and it can be shown that it leads to a
neutron electric dipole moment in the range |d, | = ©](0.04-2.0) x 10™" e cm (see refs. [309~311] and
for a review of more recent calculatlons ref. [52]). The experlmental limit [312, 313], |d, |<
5%x107% e cm, indicates that |@| <107’ ie., CP-violating effects in QCD are extremely small. This
result defies the naive expectation that a dlmensionless free parameter of the theory should be of order
unity.

The situation becomes even more mysterious if weak interactions are included in the discussion. In
the framework of the standard model of weak interactions it is thought that the masses of quarks and
leptons arise from their interaction with a scalar Higgs field which assumes a constant vacuum
expectation value. This interaction is characterized by a generally complex matrix of Yukawa couplings
so that the quark mass matrix, M, is generally complex. By suitable transformations of the quark fields
it can be made real and diagonal. This procedure, however, involves a global chiral phase transforma-
tion which leads to a term in the QCD Lagrangian similar to eq. (2.1) so that the coefficient there
actually is ® =0 +argdet M, and the experimental bounds actually refer to . Since arg det M,
originates in the weak mteract10n sector which is known to violate CP in the K’~K'-meson system, it is
difficult to conceive why 0, arising from a completely different physical origin, should assume a value
such as to let O so nearly vanish. To amphfy this point we note that in the Kobayashi-Maskawa scheme
the CP-Vlolatmg amplitude in the K’-K’ system arises from a phase in the quark mass matrix [314],
8=23.3x 107", This value sets the scale for the expected value for arg det M_ which then has to cancel
with @ to within a precision of about 10™°. Thus a reconciliation of the CP-violating effects of weak
interactions with the absence of such effects in strong interactions requires an unnatural fine-tuning of
the free parameters of the theory.

An elegant solution to this conundrum is provided by a theoretical scheme devised by Peccei and
Quinn [46, 47] in which the CP-violating term %, vanishes dynamically. The Peccei-Quinn mechanism
is constructed such that the numerical coefficient @ can be reinterpreted as a physical field: the axion
field. More precisely, in this scheme one introduces a new scalar field, a, which enters eq. (2.1) by

%o =(0 - alf)(a/87)GG , (2.2)

where f,, having the dimensions of mass or energy, is the Peccei—Quinn scale or axion decay constant.*’
The complete Lagrangian also contains a kinetic term for the axion field, but no potential, i.e., axions

*) There exist different notations and normalization conventions for f, in the literature. We use f, = (£ N kapian, sivivie, cheng = (Fa N i = (Upo/
N)pecces = (fo 2N)greamers- We refer to the papers by Kaplan [315], Sikivie [316], Cheng [52], Peccei [48-50], Kim [51] and Srednicki [317]. It was
stressed, €.g., by Georgi, Kaplan and Randall [318] that a discussion of the generic properties of all axion models does not require the specification
of the model-dependent integer N which can be conveniently absorbed in the definition of f,.
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are constructed to be massless. Therefore the total Lagrangian remains invariant under a global shift,
a— a + a,, apart from changing the interaction term eq. (2.2). This invariance allows one to absorb ®
in the definition of the axion field by the choice a, = 0f,. leading to a complete axion Lagrangian of

¢, =4(3,a)" — (a/87f,)aGG (2.3)

For this Lagrangian to be CP invariant, axions must be intrinsically CP-odd, a— - a, because the
GG term is odd. Thus by construction, axions are pseudoscalar particles, similar to neutral pions. The
Lagrangian eq. (2.3) is the minimal ingredient for any axion model: the aGG coupling is the generic
feature of axions as opposed to other light pseudoscalar particles such as, for example, majorons
[319-321].

The key feature of the Peccei-Quinn mechanism is the observation that axions, although constructed
in eq. (2.3) as massless particles, do not remain massless in an effective low-energy theory. The
axion—gluon interaction allows for transitions to qq states (fig. 2.1). This means physically that there
exists a nonvanishing vacuum transition amplitude between axions and neutral pions, i.e., a and 7" mix
with each other. By virtue of this mixing, axions pick up a small mass which is approximately given by
[318, 322-324]

mfo~m.f.. (2.4)

Thus the mixing angle between a and =" is 6, ~ f./f,. The presence of the mass term means that the
axion Lagrangian, at low energies, contains a potentlal V(a) which to lowest order expands as im_a". In
other Words even if one does not introduce axions, there exists a vacuum energy density V(6)~
10°m 2 +O(@ ). Of course, because of the invariance of %, with respect to @— @ + 2, the
potentlal V(0) is a periodic function with period 27 and consequently V(a) is periodic with 2#f,. In the
Peccei-Quinn scheme, @ is a physical field so that it will settle in its physical ground state at © = 0.
Hence this “parameter” is driven to its CP-conserving value and the CP-violating term eq. (2.1)
vanishes. This dynamical realization of CP-conservation in strong interactions is the main feature of the
Peccei—Quinn mechanism.

Since axions mix with neutral pions they can interact with photons and nucleons through their pion
admixture which fixes the relevant coupling strengths to within factors of order unity. As an example we
consider the interaction of axions with the electromagnetic field which is of the general form eq. (1.1).
This interaction allows for the two photon decay, a— 2vy, with a decay rate [73, 87]

[(a—2y) = g m}/64 . (2.5)

The measured pion radiative width is {325] I' ('rr“—>2«/) 7.66 ¢V, leading to g_ = (40.0 GeV) ™. With
the mixing angle 6, ~f./f, we find g, ~2X10" *If., yielding the radiative decay time 7,_,, ~(m,/

Fig. 2.1. Axion mixing with dq states and thus with =". The curly lines represent gluons. the solid lines quarks.
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ma)srﬁo_,zy =4x10*"s(1eV/m,)’. While in specific axion models this number may vary by factors of
order unity, this generic relationship between mass and lifetime singles out axions from other
hypothetical pseudoscalar particles for which this relationship may be much more arbitrary. The age of
the universe is about 5x 10" s so that axions with m, <25 eV live longer than the universe.

2.1.2. Axions as Nambu-Goldstone bosons of a new chiral symmetry o

The invariance of £, in eq. (2.1) against transformations of the form ©@— @ + 2, and the
corresponding invariance of the axion Lagrangian against transformations a— a + 2xf,, calls for a very
simple interpretation of the axion field as the phase of a new scalar field. This is seen most easily in an
axion model proposed by Kim [326] and independently by Shifman, Vainshtein and Zakharov [327], the
KSVZ axion model. While it is not the most economical model in terms of new fields and particles that
need to be introduced, it provides the clearest insight into the generic structure of all axion models and
allows for a straightforward understanding of the structure of the axion couplings to quarks and leptons.

In the KSVZ-model, one introduces a complex scalar field @ which does not participate in the weak
interactions, i.e., an SU(2) X U(1) singlet. Moreover, one introduces a new fermion field ¥ and
considers the following Lagrangian,

FL=[({/2)¥F¥ +hc]+a, &'a"D - V(|®|) - h[¥, ¥ ® +he], (2.6)

with the usual Kinetic terms, a potential V for the scalar field, and an interaction term, but no explicit
mass term for W. The Yukawa coupling / is chosen to be positive, and ¥, =1(1- y)¥ and
W, = 3(1+ %)V are the usual left- and right-handed projections of ¥. This Lagrangian is invariant
under a chiral phase transformation of the form

P—oed, Yo, ¥ose W (2.7)

where the left- and right-handed fields pick up opposite phases. This chiral symmetry is usually referred
to as the Peccei-Quinn symmetry, Upq(1).

The potential V(|®|) is chosen such that it has an absolute minimum at |@| = f,,/V2 where f,, is
some large energy scale. One may take the usual Mexican hat potential [328] which arises from suitable
self-interactions of @. With this choice for V, the ground state of the Lagrangian eq. (2.6) is
characterized by a nonvanishing vacuum expectation value (@) = (f,,/V2) ¢'* where ¢ is an arbitrary
phase. Hence the ground state is neither unique nor invariant under a transformation of the type eq.
(2.7); it spontaneously breaks the Peccei~Quinn symmetry. It is then appropriate to express @ in terms
of two real fields, p and a, which represent the “radial” and “angular” excitations, respectively,

D =(foo +p) e PoV2. (2.8)
The potential V' provides a large mass term for p, a field which will be of no further interest for our
low-energy considerations. Neglecting all terms involving p, and introducing the notation m = hfoo! V2,
our model Lagrangian is

FL=[(12)¥F¥ +h.c]+ (3,0 — m(¥ ¥ e +hc). (2.9)

Under a Peccei-Quinn transformation, the fermion fields change as in eq. (2.7) while the a field
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transtorms linearly as a—a+ af,,. The invariance of the Lagrangian against such shifts is a
manifestation of the U, (1) symmetry. It implies that a represents a massless particle, the Nambu—
Goldstone boson of the Peccei-Quinn symmetry.

The last term in eq. (2.9) is identical to m¥ ¢"*»o¥. Expanding in powers of a/f,, the zeroth
order term, m¥¥, simply plays the role of a mass term for the fermion field. The remaining
contributions describe the interaction of a with V¥,

Lo = —imifyo)aly, W+ (2.10)

The relevant dimensionless Yukawa coupling, g, = m/f,,, is proportional to the fermion mass. In a
theory with several fermion fields, the a field couples most strongly to the heaviest fermion.

In order to identify the a field with the axion one needs a further ingredient, the coupling of the
fermion ¥ to gluons. Therefore we take ¥ to be some exotic heavy quark with the usual strong
interactions, i.e., it is taken to be an SU_(3) triplet. The lowest order interaction of the a field with
gluons is then given by the triangle graph of fig. 2.2. With the pseudoscalar coupling eq. (2.10) this
graph can be directly evaluated, yielding a finite result with no divergences [328]. In the limit where all
external momenta in the amplitude fig. (2.2) are small compared with the mass m of the fermion in the
triangle loop, one finds an effective coupling to gluons,

%= —(8,/m)(gl132m)aGG . (2.11)

which is precisely of the required form since g,/m =1/f,. _

In more general models, several conventional or exotic quark fields W' may participate in the
Peccei-Quinn scheme. In general, the transformation of each field under a U,,(1) transformation is
characterized by its Peccei-Quinn charge, X, according to

W et (2.12)

This implies that the Yukawa coupling of each of these fields to a is given by g, = X;m /f,, and the
aGG coupling arises from a summation over these terms. Introducing the parameter

N=2 X (2.13)

and using a, = g-/4 for the strong fine-structure constant, the aGG coupling is

g G

G
gs

Fig. 2.2. Triangle loop diagram for the interaction of axions with gluons with the strong coupling constant g, and the Yukawa coupling g, of axions
with the toop fermion. An analogous Feynman graph pertains to the coupling of axions to photons if the fermion is electrically charged (replace g
with the electric charge).
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L6 = ~[a/(87foo/ N)]aGG . (2.14)

With f, = f,/ N we have then found a natural interpretation of the required coupling eq. (2.2) and we
are fully entitled to identify a with the axion field.

The potential V(a) for the axion field is by construction periodic with period 27f, = 27f,o/N.
However, the interpretation of a as the phase of @ implies a periodicity with 27f,, so that N must be a
nonzero integer. This requirement restricts the possible assignment of Peccei—Quinn charges to the
quark fields. It also implies that there remain N different equivalent ground states for the axion field,

each of which satisfies ® =0 and hence solves the CP problem.

2.1.3. Summary

We have now developed a consistent picture of the generic properties of the Peccei—Quinn
mechanism to solve the strong CP problem. Further details can be found in the review papers by Peccei
[48-50], Kim [51], and Cheng [52]. The Peccei-Quinn mechanism is a very simple and generic
extension of the standard theories of strong and electroweak interactions. In summary, it consists of the
following generic ingredients:

e The Lagrangian of the fundamental interactions has an extra global chiral symmetry: the
Peccei-Quinn symmetry, U,,(1). This symmetry is spontaneously broken by the vacuum expectation
value f,/V2 of a complex scalar field, @. The phase of this field, the Nambu-Goldstone field of
Upo(1), is the axion field. .

o Through a triangle loop, axions couple to gluons by (a/87f,)aGG where f, = f,/N is the axion
decay constant and N is a model-dependent integer.

e The aGG coupling breaks the Peccei-Quinn symmetry explicitly because it mixes the axion with
the neutral pion, yielding an effective low-energy axion potential (a small axion mass m, ~m_f. /f,).
This potential forces the axion field into its CP-conserving minimum; CP-conservation in strong
interactions is realized dynamically. The apparent discrepancy between CP-violating effects in the
K’-K"-meson system and the absence of a neutron electric dipole moment vanishes naturally without
fine-tuned parameters of the theory.

« The mixing with =" generates axion couplings to photons and nucleons, apart from possible direct
couplings.

» Axions couple to quarks and leptons, j, through a pseudoscalar (or pseudovector derivative)
coupling with an effective Yukawa coupling (m/f,)(X;/N) with model-dependent Peccei-Quinn
charges, X.

o The axion mass and all interactions scale with f, ', allowing axions to be arbitrarily light and
arbitrarily weakly interacting (““invisible” axions).

The most important question to be answered by experiments, astrophysics, and cosmology is: what is
the Peccei—Quinn scale? While it can take on, in principle, any value between f,_,, ~ 250 GeV scale and
the Planck mass of ~10"° GeV, most of this enormous parameter range can be eliminated by evidence
from these different fields.

2.2. The most common axion models

The axion decay constant, f,, is a free parameter of the models. From a theoretical point of view it is
not satisfying, however, to introduce an arbitrary new energy scale so that one will try to relate f, to
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other important “‘milestones” on the long way from f,,, to the Planck mass. Since axions appear as the
phase of a scalar field @, it is natural to relate @ to the standard Higgs field. In the standard theory, the
would-be Nambu-Goldstone boson from the spontaneous breakdown of SU(2) x U(1) is interpreted as
the third component of the neutral gauge boson, Z', whence there is no space for the axion. Therefore
one needs to introduce two 1ndependent Higgs ﬁelds @, and @,, with vacuum expectation values f,/V2
and f,/V/2 which must obey ( f + f> ) = foenk = (\/_G )~'"* ~ 250 GeV. In this standard axion model
[44-47) @, gives masses to the charge 5 quarks, while @, gives masses to the charge ! quarks and to the
charged leptons. Introducing the ratio x = f,/f, and the number N; of families of quarks, the axion decay
constant is given by

fo= foea N + 170} (2.15)

Since N;=3 one finds f, <42 GeV. The standard axion and related “variant” models [329, 330],
however, are ruled out by overwhelming experimental and astrophysical evidence (for reviews see refs.
[48-52, 331)).

Therefore one is led to introduce an electroweak singlet Higgs field with a vacuum expectation value
fro/V2 which is not related to the weak scale. Taking foo, > f,... the mass of the axion becomes very
small, its interactions very weak. Such models are generically referred to as invisible axion models. The
first of its kind was introduced by Kim [51], and by Shifman, Vainshtein and Zakharov [327] and is
usually referred to as the KSVZ model. It corresponds to the model described in the previous section.
Its simplicity arises from the fact that the Peccei-Quinn mechanism is totally decoupled from the
ordinary particles: at low energies, axions interact with matter and radiation only by virtue of their
two-gluon coupling which is generic for the Peccei—Quinn scheme. The KSVZ model in its simplest
form is determined by only one free parameter, f, = f,, although one is free to introduce N exotic
quarks so that N>1 and f, = f,/N.

Another commonly discussed model was introduced by Dine, Fischler and Srednicki [332}, and
independently and previously by Zhitnitskii [333] and is usually referred to as the DFSZ model. It is a
hybrid between the standard model and the KSVZ model in that it introduces an electroweak singlet
scalar field, @, with vacuum expectation value f,,/V'2 and two electroweak doublet fields, @, and @, as
above. There is no need, however, for exotic heavy quarks: only the known fermions carry Peccei-
Quinn charges. In this model, f, = f,o/N; so that, in the standard picture with three families, the
number of degenerate vacua is N = N, =3. Apart from N,, the free parameters of this model are f,,
and x =f,/f, which determines the relanve coupling strength to fundamental fermlons Another
common parametrization of this ratio is by an angle, 8, which is related to x through cos B=xY(x"+1)
or equivalently by x = cot B.

Since foo > fi.. 1N these models by assumption, it is quite natural to identify f,, with the grand
unification scale [334, 335], f;,+ = 10'° GeV. Such models have quickly fallen into disfavor because the
cosmological bounds seemed to indicate that f, must be much smaller. A careful reconsideration of
these arguments reveals, however, that a rigorous cosmological bound exists only in the absence of
inflation, while no rigorous bound can be derived in general inflationary universe scenarios (chapter 3).

There exist numerous other axion models, and many attempts to identify the Peccei—Quinn scale
with other scales (for a review see ref. [51]). We take the phenomenological approach that the
Peccei-Quinn scale is a free parameter to be determined by experimental, astrophysical, and cos-
mological methods.
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Table 2.1
Axion mass and coupling constants. The quark mass ratios z and w were given in eq. (2.16). E and N are the model-dependent coefficients of the
electromagnetic and color anomalies. Note that & =0.75 corresponds to E/N=8/3, which is characteristic of GUT models. The effective
Peccei~Quinn charges ¢, are model-dependent numbers of order unity except for hadronic axion models where ¢, <1. Also, f,=f,/10" GeV and
my=m/fleV

Numerical expressions in terms of

Axion property General expression 1 m,
[y z )” (0.60 x 107 GeV)
Mass =g ((1+z+w)(1+z) 7. v :
Coupling to photons 8., = —(al27f)&; ~(0.87 x 107%f,)¢ ~(1.45% 10"/ GeV)ém,,
_E 24+42z+w _ & _E/IN-192=0.08

where &= -3 T w T T T o
Lifetime 7, =64mig. m’ 8.1x 107 s(f3/€%) 6.3 X 107 s/&°m,
Coupling to electrons 8. = (mtf,)e, (5.11 x 107* GeVif,)c, 8.5% 10 e m,,
Coupling to nucleons 8an = (Mylf,)en (0.939 GeV/f,)cy 1.56 X 10 e,

2.3. Fine points of axion properties

2.3.1. The axion mass at low and high temperatures

The methods of current algebra allow one to derive a more precise expression for the axion mass
which arises from its mixing with the neutral pion [317, 318, 322-324], see table 2.1, where the quark
mass ratios are [336]

z=m,/m,;=0.568%0.042, w=m,/m =0.0290 £ 0.0043 . (2.16)

Aside from the uncertainties in z and w, there are higher-order corrections to the current algebra result
for m, which have not been estimated in the literature. Using m_= 135MeV for the pion mass and
f. =93 MeV for the pion decay constant we find the numerical results given in table 2.1.

At high temperatures, T > Aq¢p,, Where Aqp, = (100-250) MeV characterizes the chiral QCD phase
transition, pions do not exist so that axions cannot obtain a mass by a pion admixture. However,
instantons, i.e., topologically nontrivial color gauge field configurations, interact with axions through
eq. (2.3), leading to a nonvanishing axion mass which has been estimated in the dilute instanton gas
approximation to be [337-340]

_ -2 (AQCDmumdms)”z ( aT )(AQa))4
m, (T)~2x10 - 91n Aoeg/\ 7T ) (2.17)

The light quark masses have been estimated to be [336] m, = (5.1 = 1.5)MeV, m,=(8.9+2.6) MeV,
and m_ = (175 = 55) MeV. At high temperatures the axion mass approaches asymptotically zero. Then,
indeed, physics is invariant against arbitrary shifts a— a + a, of the axion field.

2.3.2. Axion—photon coupling
By means of their generic coupling to gluons, axions necessarily mix with pions and hence couple to
photons. In axion models where the quarks and leptons which carry Peccei-Quinn charges also carry
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electric charges, there is an additional contribution from a triangle loop diagram as in fig. 2.2, replacing
the strong coupling constant, g , with the electric charge of the lepton. The total coupling to photons is
given by eq. (1.1) where the coupling strength, g, . is given in table 2.1 according to refs. [315, 317].
The coefficient of the electromagnetic anomaly is

E=22X0D,. (2.18)

where Q) is the electric charge of the fermion in the loop in units of e, D, = 3 for color triplets (quarks),
and D, =1 for color singlets (charged leptons).

In grand unified models the quarks and leptons of a given family are members of one multiplet which
represents the unification group and then one has E/N =8/3. Neglecting w, the GUT axion-photon
coupling is

a 2z
guy:_?fa 1+Z (219)
However, one may equally consider models where £/N =2 so that
gy = ~(a/2mf )(0.08 £ 0.08) . (2.20)

In such models, the axion-photon coupling is strongly suppressed [315], and may actually vanish.

2.3.3. Pseudoscalar versus derivative interaction

There has been considerable confusion in the literature concerning the proper structure for the
coupling of axions to fermions. We recall that the interpretation of the axion field as the Nambu-
Goldstone boson of the Peccei—-Quinn symmetry (section 2.1.2) led to the interaction Lagrangian

£ =[({/2)PF¥ +h.c]- m¥ ¥, e " +hec], (2.21)
where ¥ is a fermion field with mass m. Expanding in powers of a/f, led to

<

int

= —i(m/fo,)a¥y, ¥ + (m/2f po)a" VW + - (2.22)

This Lagrangian contains an infinite series of terms. The complications associated with the higher-order
terms can be avoided if one redefines the fermion field by virtue of a local transformation,

l//[l — C’i(l"zfp()lyl‘ . wR = 6“1”2/3)()11/}{ . (223)

The last term in eq. (2.21) is then simply myny and plays the role of a mass term. The interaction
between  and a now arises from the kinetic ¥ term in eq. (2.21),

fé)im = (1/2fpo)lzf')’u ’Y,il//a#a . (224)

This interaction is of derivative nature, and it is linear in a with no higher-order terms.
In order to calculate processes such as the nucleon bremsstrahlung emission of axions, NN— NNa, a
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pseudoscalar coupling of the type eq. (2.22) was exclusively used in the literature until it became
apparent that, in some cases, it leads to incorrect results. The relevant type of error is easiest explained
if one considers the scattering process a+e —e  +a. We first calculate the usual scattering matrix
element if the interaction is taken to be purely pseudoscalar, i.e., only the first term in eq. (2.22) is
used. Taking p_ and p, for the electron four-momenta before and after the interaction, « and u’ for the
electron Dirac spinors, and p_ and p, for the axion four momenta, we find

el e

Then we calculate the same matrix element, using the derivative coupling eq. (2.24),

M= 1<fPo) (pi)a pi)a_%>u' (2.26)

These two expressions differ by a term which arises from the second term in the expansion eq. (2.22).
In order to obtain the correct result one either has to use the derivative coupling eq. (2.24), or one has
to include this second term as was first emphasized by Raffelt and Seckel [92]. One is fully entitled, of
course, to consider hypothetical particles with a purely pseudoscalar coupling, excluding the second
term in eq. (2.22). Such particles, however, are not the Nambu-Goldstone bosons of a symmetry and
have nothing to do with axions. The Nambu-Goldstone nature of axions is most apparent in the
Lagrangian eq. (2.24) where the derivative coupling clearly shows the invariance against transforma-
tions of the type a—a + a,. A purely pseudoscalar Lagrangian does not possess this symmetry.

As an immediate application of this discussion we consider the refractive index for the propagation
of axions in a medium. This is of importance, e.g., for the oscillation of the axion field in the early
universe. The refractive index in a medium of electrons is computed from the forward scattering
amplitude [341] of the processa+e —e +a. Thus we have touse p.=p_, u' = u, and p.=p, in the
matrix elements above. The purely pseudoscalar case, eq. (2.25), yields .# —1m/f po» leading to a
refractive index similar to that for photons: apart from a numerical factor, one simply has to replace the
electron charge, e, by the axion-electron Yukawa coupling, g =m/f,,. The case of a derivative
coupling, eq. (2.26), yields .# = 0 so that axions do not experience refractive effects in a medium. This is
an important difference between Nambu-Goldstone bosons and particles with a purely pseudoscalar
coupling. On the basis of more general arguments, Flynn and Randall [342] showed that the derivative
nature of the Nambu—Goldstone coupling protects such bosons from developing an effective mass in a
medium. Hence, at finite temperature and density, the axion mass is solely given by the expressions in
section 2.3.1 above with no additional refractive contributions.

In our discussion of the generic axion properties we have stressed the close relationship between
axions and neutral pions. Pions play the role of Nambu~Goldstone bosons of a spontaneously broken
U(2), _g symmetry of QCD so that their interaction with nucleons should be of derivative rather than of
pseudoscalar structure. Considering, for example, the scattering process m’ + p—>p + 7 would allow
one to distinguish between the two cases. Equally, one may consider the bremsstrahlung process
p+p—p+p+7 because the interaction between the protons proceeds predominantly by pion
exchange. Choi, K. Kang and Kim [62] pointed out that existing experimental data for this process
allow one to distinguish between the pseudoscalar and derivative couplings, and a detailed investigation
by Turner, H.-S. Kang and Steigman [98] confirmed that the derivative coupling is appropriate.
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Iwamoto [78] also clarified the relationship between the pseudoscalar and the derivative interaction
structure.
Following Carena and Peccei [60], the interaction of pions with nucleons is described by the
Lagrangian
4

(o = 8NV VTN -0 7+ fL Ny TN 6 X m (2.27)
where g =f/m_~1/m_ and f_ =1/2f are the relevant coupling constants with the pion mass,
m_ = 135MeV, and the pion decay constant, f_ =93 MeV. Also, 7 is a vector of Pauli isospin matrices,
and mr is the isovector of the neutral and charged pion fields, while N is the isodoublet of neutron and
proton. Thus there appears an extra six-dimensional term which is not present in our above axion
example, eq. (2.24), where only one Nambu-Goldstone boson was present as opposed to the pion
isotriplet. As shown by Carena and Peccei, this additional term does not contribute to the brems-
strahlung process in the limit of nonrelativistic nuclei and the analyses of Choi et al. [62] and Turner et
al. [98] remain valid.

In order to compute the nucleon bremsstrahlung of axions, NN— NNa, one must include axions and
pions in the discussion. Again, using pseudoscalar couplings for both axions and pions leads to
erroneous results, and it is the discrepancy between the original correct result of Iwamoto [77] and the
subsequent erroneous result of Pantziris and Kang [86] which led Raffelt and Seckel [92] to discover the
practical importance of distinguishing carefully between the pseudoscalar and derivative couplings. Such
problems are to be expected in any amplitude where two Nambu-Goldstone bosons are attached to one
fermion line. However, when two Nambu-Goldstone bosons are attached to one fermion line, it is
sufficient to use a derivative coupling for one of them. For the bremsstrahlung production of axions this
means that one may use a pseudoscalar coupling for the axions as long as one uses a derivative coupling
for the pions.

We stress that for other bremsstrahlung processes such ase ¢ —e e a, where the particles interact
through a virtual photon rather than a virtual pion, no problems arise because only one Nambu-—
Goldstone boson, the axion, is attached to a fermion line, while the other particle is a photon with the
usual gauge coupling. Similarly, for the Compton process, ye —e a4, one may use either the
pseudoscalar or the derivative axion coupling: both yield the same result.

2.3.4. Model dependent axion—fermion coupling

The interpretation of the axion field as the phase of a new scalar field gave, in section 2.1.2, the
general exponential interaction Lagrangian of axions with quarks and leptons. To lowest order it is
equivalent to the pseudoscalar interaction,

F=—im X lfoo) b ystha . (2.28)

where m;, is the mass of the fermion field ¢; which carries the Peccei-Quinn charge X;. The Yukawa
coupling constant and the corresponding axionic fine structure constant are given by

go=mXlfoo, @ =g,l4T, (2.29)

so that we recover eq. (1.2). Various axion models differ in their assignment of Peccei-Quinn charges.
However, in all models N=1%_, . X;is a nonzero integer. The assignment of Peccei-Quinn charges at
high energies is not maintained in the low-energy sector because the spontaneous breakdown of the
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weak SU, (2) X U,(1) symmetry at the scale f,.,, ~250 GeV mixes the axion field with the would-be
Nambu-Goldstone boson which becomes the longitudinal component of the Z gauge boson. Hence the
Peccei—Quinn charges must be shifted such that the physical axion does not mix with the Z", and these
shifted values are denoted as X i Also, below the QCD scale of Aqcp ~200MeV, free quarks do not
exist, and one needs to consider the effective coupling to nucleons which arises from the direct axion
coupling to quarks and from the mixing with =’ and . Thus one introduces Peccei—Quinn charges X,
and X for protons and neutrons. It is useful, moreover, to define effective Peccei—Quinn charges by

¢, =X/IN. (2.30)
Then the Yukawa couplings eq. (2.29) are
g, = (m/if,)c; . (2.31)

Noting that the axion decay constant, f,, is uniquely related to the axion mass we may write the
couplings to electrons and nucleons as given in table 2.1.

In the DFSZ model [332, 333], the low-energy Peccei—-Quinn charge for the electron is written as
X! = cos’8 (conventions of Kaplan [315]), or X! =2 cos’8 (conventions of Srednicki [317]) where the
parameter 3 reflects the ratio of the vacuum expectation values of two Higgs fields, x = f,/f,, through
cos’8 = x"/(x* + 1) or x = cot B. Therefore one has

DFSZ: ¢, = X!/N=cos’B/N,, (2.32)

where N, =3 is the number of families of quarks. For three families, N =3 and N = 6 in Kaplan’s and
Srednicki’s convention, respectively, while always N, =3. In the KSVZ axion model [326, 327], and in
all models where the axions do not couple to light quarks and leptons (‘*hadronic axions”), X_ =0 at
tree level, although there are radiatively induced, higher-order axion—-electron couplings [317].

The nucleon interactions in general axion models were investigated by Kaplan [315] and by Srednicki
[317]. Most recently, they were revisited by Mayle et al. [80, 81] whence we find

AR VA S
CP_<C“ ey LU (¥ prprasy LU U sy ESR

SIS D
C“_<c“ 1+z+w Ad+ (¢ 1+z+w Aut\c 1+z+w As,

where the quark mass ratios, z and w, were given in eq. (2.16). For a given quark flavor, ¢ =u, d, or s,
the interaction strength with protons depends on the proton spin content carried by this particular
quark flavor, §, Ag= (p|cjy# v,q|p) where §,, is the proton spin. Similar expressions pertain to the
coupling with neutrons, and the two sets of expressions are related by isospin invariance. One
combination of the parameters is fixed by neutron B-decay, Au — Ad = g, = 1.25. Another combination
is fixed by hyperon B-decay data and flavor SU(3) symmetry for the baryon octet and leads to
Au+ Ad -2 As =0.682 so that Au = As + 0.966 and Ad = As — 0.284. In the DFSZ model, ¢, = c, = c,,
¢, +¢,=1/N,, and ¢, — ¢, = —cos’B/N,, leading to c, =sin’8/N, and ¢, = ¢, = ¢, =cos’B/N,. In the
KSVZ model, and in other hadronic axion models, ¢, = ¢, = ¢, =0. Thus, taking N; =3, we find the
results given in table 2.2.

Until recently it was thought that strange quarks would not contribute to the proton or neutron spin,

(2.33)
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Table 2.2
Effective Peccei-Quinn charges for protons (c¢,) and neutrons (c,) as discussed in the text
KSVZ DFSZ (N,=3)
General case <, —0.504 - As —0.182 = § As + § cos’B (As ~ 1.25)
c, -0.166 — Ay —-0.261 -  As + } cos’B (As + 1.25)
NQM (As =0) ¢, -0.50 —0.18 - 0.42 cos’B
¢, -0.17 ~0.26 + 0.42 cosB
EMC (As = -0.257) ¢, ~0.25 ~0.01 - 0.50 cos’B
¢ +0.09 =0.09 +0.33 cos’B
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Fig. 2.3, DFSZ-axion coupling to protons, ¢,. and neutrons. c,, for the NQM and EMC cases according to the results given in table 2.2.

As =0. Mayle et al. [80, 81] refer to this case as the “naive quark model” (NQM) for which one obtains
Au=+0.966, Ad = —0.284, and As =0, yielding the relevant entries in table 2.2. (The results there
correspond to Mayle et al.’s values noting that their C,, and C,, are given by 12¢, and 12¢,
respectively.) However, recent measurements indicate that As #0, i.e., that a considerable fraction of
the proton spin is carried by strange quarks. One result is based on the spin-dependent muo-production
structure function, measured by the European Muon Collaboration (EMC) [343]. Ellis, Flores and Ritz
found [344] As = —0.257. This result is supported by the analyses of elastic neutrino proton scattering
[345, 346], which yield As = —0.15 £ 0.09. Following Mayle et al. [80, 81] we use the EMC value, i.e.,
Au=+0.709, Ad = —0.541, and As = —0.257 yielding the EMC entries in table 2.2. It is interesting that
the value As = —0.15 of refs. [345, 346] would lead to a near cancellation of the KSVZ axion-neutron
coupling. For the DFSZ-model we have plotted, in fig. 2.3, the B-dependence of ¢, and ¢, for the NQM
and the EMC cases.

In the DFSZ-case with N, =3, the couplings to protons and neutrons are equal for cos’g = 0.095,
i.e., B=72° independently of As. They would simultaneously vanish for As = —0.348. This value is
outside of the range of what is experimentally measured so that in neither class of models do the
couplings seem to vanish simultaneously.

3. Axion cosmology

While questions of particle cosmology are not the major focus of this review, we briefly consider the
cosmological constraints on axions because the original discussions of this subject [338-340] have
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recently received severe qualifications. In the framework of a broad class of inflationary scenarios,
axions would probably dominate the mass density of the universe, but no rigorous bound on f, can be
derived. In the absence of inflation, or if the universe reheated beyond f, after inflation, cosmic strings
appear which efficiently radiate axions. The resulting mass density in axions is so large that f =<
10" GeV according to Davis and Shellard [347, 348] or f, < 10'* GeV according to Harari and Sikivie
[349]. In addition, primordial axions are produced by thermal processes. In a small mass range around a
few eV, thermally produced axions may be detectable by their two-photon decay which would produce a
characteristic line feature in the “glow of the night sky”. If axions are the dark matter, galactic axions
with a mass around 107> eV are detectable in laboratory experiments which already have produced
interesting upper limits.

3.1. Inflationary scenario

The interpretation of axions as the phase of new scalar field, @, allows one to follow the axion field
through its cosmic evolution. When the temperature of the universe falls below the Peccei—Quinn scale,
the scalar field develops a vacuum expectation value (@) = ( f,o/V?2) e'’Po where the value of the
phase, a/f,, will generally vary with location. Since T > A, the potential V(a) is vanishingly small
so that there is no energetic difference between regions of the universe with different values of the
axion field in the range 0 < a <2#f,. However, because of the enormous exponential growth factor
during inflation which we assume to occur after this epoch, only a small bubble of the initially chaotic
universe will become our observable region of space—time [350-353]. Then for us, only one specific
initial value 0 < a, =27f, of the axion field pertains while other regions of the universe, not observable
to us, are characterized by other values.

As the universe expands and cools to temperatures near A, cp,, the potential V(a) begins to develop
and the axion field begins to follow the force which drives it toward the equilibrium value at a =0.
When the axion mass, m,(T), becomes larger than the cosmic expansion rate, H(T), the axion field
begins to oscillate freely around the minimum of the potential V(a) with a frequency m (7). At
temperatures below Aqcp,, the axion mass takes on the fixed value given in table 2.1 which then
determines the oscillation frequency. Quantum mechanically, these coherent field oscillations are
interpreted as highly occupied states with vanishing momentum, i.e., axions are created as a zero-
momentum Bose condensate. Thus axions are nonrelativistic from the very moment of their creation
which renders them [354] a cold dark matter [355] candidate.

A detailed investigation of this mechanism leads to an estimate of the expected cosmic mass density
in axions [338-340, 356],

02,=02x10%"°(£/10" GeV)'"" 7y "'h *(a/27f) , (3.1)

where (2, is in units of the critical density, p,,;, = h* x 1.88 x 107*° gcm ™, which is necessary to close
the universe, 4 is the present-day Hubble expansion parameter in units of 100 km Mpc ™' s™', and y is
the ratio of the entropy per comoving volume now to that at the time when the axion field started to
oscillate. The uncertainty in the numerical coefficient reflects various theoretical uncertainties. In an
inflationary scenario, the universe is flat so that the total energy density equals the critical density,
2 =1. Since ), <=1, the right-hand side of this equation is constrained to be less than unity.

In a flat universe, {2 =1, the cosmic time and the instantaneous Hubble parameter are related by
[357) t=3H '=0.65%10" yr h~". The current age of our universe certainly exceeds 10'° yr allowing
us to take h = 0.40-0.65. If we neglect the possibility of late entropy production, y = 1, we find for our
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universe,
. 0.6 12 1.175 2
02, =13%x10°°(£,/10" GeV)"(a/27f,)" . (3.2)

Assuming that axions are the dark matter, {2, ~ 1, this equation establishes a relationship between f,
and the value for g, of that particular primordial domain that evolved into our universe. The parameter
a/27f, can take on any value in the interval [0, 1] with equal a priori probability. On the basis of this
observation and on the basis of eq. (3.2) it was argued that a constraint on f, could be derived. For
example, with a chance of 99% one has a,/27f, >0.01 leading one to argue that f, <3 X 10'° GeV at a
99% confidence level.

It was first pointed out by Pi [358] that this type of probabilistic argument is not a rigorous bound
since it is possible that we live in a bubble of the universe with a relatively unlikely initial value of the
axion field. Moreover, as stressed by Linde [359], proponents of this argument implicitly assume that
the a priori probability of a certain value of g, is identical with the conditional probability of us
observing such a value. A universe with “forbidden” values of a; and f, is still legitimate, only it could
not evolve into the universe that we observe. In such a universe, the ratio of axionic dark matter to
baryonic material and photons would differ from ours, leading to a different epoch of matter—radiation
equality, and it is not assured that all such universes could produce observers. It is well possible that,
taking the GUT-scale f, ~3 X 10" GeV as an example, the probability of producing observers is a
function of a, which sharply peaks around 0.01. Thus we would observe this value in spite of its small a
priori probability because values much different from this would not produce anybody to bear witness
to this scenario. However, Dowrick and McDougall [360], who have attempted to make this anthropic
argument more precise, found no contradiction between the “forbidden” values of f, and a, and the
existence of possible observers.

All of these arguments are based on treating the Higgs and axion fields on a classical level. Very
recently Goldberg [361] has questioned the validity of this approach and has argued that one may not
ignore the effects of “second quantization”, i.e., the quantum properties of the field amplitudes. He
argued that an initial state with a definite value for a4, was a highly unlikely configuration. More
typically, the field would be initially “smeared out” around the Mexican hat, and the dependence of (2,
on the initial value @, vanishes. Hence, according to Goldberg, the bound f, < 10" GeV applies without
any dependence on initial conditions. The validity of this line of argument is still being discussed.

3.2. Topological structures

If the universe never underwent inflation, or if it reheated after inflation beyond the Peccei—Quinn
scale, the evolution of the cosmic axion field differs markedly from the simple picture outlined in the
previous section. This was most clearly discussed by Davis and Shellard [348]. At a cosmic temperature
around f,, the axion field settles somewhere in the “brim”™ of the Mexican hat potential, with different
values a,(x) in different regions of space. In contrast with the inflationary scenario where only a small
domain with approximately constant g, developed into our universe, these different regions now remain
causally connected whence g, varies over several periods in such a region of space. Since only values in
the range 0 <a, <27f, correspond to physically different states, this means that topological defects
must form, cosmic strings, around which the axion field varies by one period. The energy per unit
length stored in a straight string at rest is given by u ~27f 2In R/6 where R is some large radius and 8
is a lower cutoff from the string core.
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Because of the large tension in these strings, they will rapidly oscillate, the major damping
mechanism being axionic radiation until one straight string remains per horizon volume. This radiation
is the dominant source for cosmic axions as was first pointed out by Davis [347]. String radiation
continues until the QCD phase transition occurs when all previously produced axions develop a mass
and begin to contribute to the matter density of the universe. Also, at this time the explicit breaking of
the Peccei-Quinn symmetry causes the axion field around strings to collapse into domain walls, the
strings and walls then colliding among themselves and breaking up [362] although the axions produced
in this event alone would not lead to a cosmic energy density problem. However, if there are N
different, degenerate ground states as, for example, in the DFSZ model, several domain walls are
attached to one string, leading to a more complicated scenario. Indeed, the importance of domain walls
in models with N >1 was the first instance where the importance of topological defects for the axion
cosmology was recognized by Sikivie [363]; in such models the energy density in domain walls would be
so large that noninflationary scenarios would require N = 1.

Following Davis and Shellard [348] we stress that in this noninflationary scenario the axion
production by cosmic string radiation is not an additional source for axions beyond the coherent field
oscillations discussed above, rather it is the only source. Therefore the original discussions of the
coherent process [338-340] are meaningless for the noninflationary scenario, and attempts to calculate
the cosmic axion density from coherent oscillations with some averaged value for a, [356] are
ill-conceived.

In order to compute the expected energy density in axions, Davis and Shellard [348] modelled the
primordial axion string network as a Brownian system with a single step length, &(¢), where the scaling
with cosmic time, ¢, is taken as £(¢) = £t and £ is some dimensionless coefficient of order unity. They
found for the axionic density in units of the critical density,

1.175 P
_ £0.5 fa ) -1 ,2<4ln(§t/5) ﬂ)
ﬂaMM0<W§5 y~'h —?—;n, (3.3)

where { is the time near the QCD phase transition when the axion mass is sufficiently large that
zero-momentum modes begin to oscillate freely, & ~ 1/f,, is the core radius of axionic strings, and ¢, is
the fraction of power which strings radiate into the harmonic of order n. The first part of this result
corresponds to the first part of eq. (3.1). Noting that £ 4° <1.1 [356] yields the constraint

10 l gn -0.85
ﬁﬁwaWfZ—) . (3.4)
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Davis and Shellard believe that this bound is conservative because it neglects the string kinetic energy,
string structure within the horizon such as kinks and loops, and because the effects of the QCD phase
transition have been ignored except for giving the previously produced axions a mass.

It is not obvious, however, what one has to choose for the parameters £ and &,. While causality limits
¢ <1, Davis and Shellard [348] argue that £ should not be much smaller than unity. They also argue, on
the ba51s of numerical simulations, that most of the energy is radiated into the lowest harmonics.
Therefore they claim a bound

Davis and Shellard [348]: m, =107 eV (3.5)

for the axion mass.
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Harari and Sikivie [349], however, claim that the energy spectrum of the radiated axions would not
dominantly go into the lowest modes, rather they expect a 1/w frequency spectrum. This radiation
spectrum is also of importance for the possible observation of string radiated “‘omions” which can
oscillate into photons in intergalactic magnetic fields [364]. Harari and Sikivie’s treatment implies a
bound,

Harari and Sikivie [349]: m, =10 eV, (3.6)

which is about two orders of magnitude less restrictive than Davis and Shellard’s bound. A very recent
analysis of axion radiation from strings by Dabholkar and Quashnock [365] supports Davis and
Shellard’s view, while a still unpublished numerical investigation by Hagmann and Sikivie [366]
supports Harari and Sikivie's claim. The present author is in no position to decide between these
opposing views.

3.3. Thermally produced axions

For sufficiently large values of f,, axions never were in thermal equilibrium in the early universe and
their cosmic abundance is solely determined by the effects discussed in sections 3.1 and 3.2 above.
However, axions do interact with the hot and dense primordial plasma so that, for sufficiently small
values of f,, the interaction is so large that axions were in thermal equilibrium at a certain epoch. In this
case there are about as many axions in the universe as there are microwave photons, and the axionic
mass density is obtained by multiplying this number with m_. Turner [367] estimated, on the basis of
interaction processes such as the Primakoff effect, that this is the case for f, < 10" GeV (m 30 GeV)'"?
where m is the mass of the heaviest quark with which axions interact. In the DFSZ-model this is the
mass of the top-quark which is known to exceed ~30 GeV, while in the KSVZ-model m  may be much
larger. Turner [367] found for the density in thermally produced axions,

0,=8x107"(£,/10" GeV) 'h (60/g.) (3.7)

where g, is the effective number of thermally excited degrees of freedom in the early universe at the
time of the axion freeze-out. After this epoch, axions still decay, a— +yy, with a rate given in table 2.1 so
that £ must be multiplied by e "™ where ¢, = (10-20) X 10” yr is the age of the universe.

We illustrate this mass contribution for a typical choice of parameters. We use an intermediate age of
the universe, t, ~5x 10'"s, and we take g, = 60. We consider a noninflationary scenario with Davis
and Shellard’s [348] mass density where we use y = 1 and the term in brackets in eq. (3.3) is taken to be
3% 10° ie., we use 2.4 =600 (/10" GeV)"'”. For the axion lifetime we use the GUT-result eq.
(2.20), which is explicitly 7, =6.3x 10" s(1eV/m,)’ Finally, we also consider the axion-photon
coupling for the case E/N =2, see eq. (2.21), which is represented as a dashed line in fig. 3.1 where we
show the axion density as a function of m,.

3.4. Decaying axions and a glow of the night sky
In the previous section we showed that thermally produced axions with masses of a few eV would

contribute substantially to the mass density of the universe. In this case, however, the photons from the
radiative decay a—yy may be detectable as a spectral signature in the visible or near-visible (uv)
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regime, an effect first discussed by Kephart and Weiler [368]. Existing measurements of the brightness
of the night sky already require [367]

m <5eV, (3.8)

a bound which improves to m, <2 eV if axions cluster in the haloes of galaxies or in galactic clusters. In
this case one would expect a characteristic line feature in the optical spectra of these systems. For
masses much larger than these values, all primordial axions would have decayed by today, see fig. 3.1
for the remaining mass density, and the decay photons would contribute to the diffuse electromagnetic
background radiations. If axions have masses just below the limit eq. (3.8) they are not rigorously
excluded by stellar evolution constraints, and an actual experiment to search for line features in the
night sky is under way [369].

3.5. Experimental search for galactic axions

If the early universe never underwent inflation, or if it reheated after inflation beyond the
Peccei—-Quinn scale, the remaining parameter space for the existence of axions is very narrow if not
absent (section 11.2). However, in an inflationary scenario of the early universe, axions could
contribute to the dark matter of the universe. Because of their production as a Bose condensate in the
zero-momentum mode they would have been nonrelativistic since their creation and thus are a cold
dark matter candidate. In this case one would expect that the local galactic dark matter density of about
[356] 5x 107* gem  is provided by axions.

Sikivie [370] pointed out that the two-photon coupling of axions allows for transitions between axions
and photons in the presence of an external magnetic field (section 4.9.4). For nonrelativistic axions
from the galactic halo with a mass ~107> eV the emerging photon has a frequency in the GHz regime.
The transition rate can be resonantly enhanced if one uses a high-Q microwave cavity which is placed in
an external magnetic field, i.e., one considers the transition between axions and electromagnetic
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Fig. 3.1. Axionic mass density in a non-inflationary universe, taking Fig. 3.2. Axion parameters which are excluded, at the 95% CL, by
thermally produced and string-produced axions into account, and the Rochester-Brookhaven-Fermilab (RBF) Axion Search Experi-
allowing for axion decay. For the string-produced contribution we use ment [375, 376] and by the University of Florida (UF) Cosmic Axion
Davis and Shellard’s [348] value. The dashed line refers to the Search [378], assuming axions are the dark matter in the galactic halo.
E/N =2 type photon coupling of eq. (2.20) where we used the face The local dark matter density is taken to be 5.3x 10 gem ™ =

value g, = —0.08a/27f,. 300 MeV em . The “axion-line” is for the GUT-case, E/N =8/3.
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excitations of the fundamental mode of the cavity. The transition rates have been calculated by a
number of authors [370-374]. Of course, in order to search for axions with a given mass, the cavity has
to be tuned to the corresponding frequency. Therefore, in a search experiment, one pays for the
enhanced transition rate with the need to scan in narrow bins over the interesting interval of masses.

Two experiments of this type have produced first results, the Rochester-Brookhaven-Fermilab
(RBF) Axion Search Experiment [375, 376], and the University of Florida (UF) Cosmic Axion Search
[377, 378], excluding the cross-hatched regime of m, and g, in fig. 3.2 under the assumption that the
galactic dark matter halo is made of axions. It is very difficult, but perhaps not impossible, to enhance
the experimental sensitivity to a point where, for a given m,, the excluded regime actually touches the
“axion line”” in fig. 3.2. Another similar experimental effort is also in progress [379].

4. Emission rates from stellar plasmas

We review the emission rates of axions from stellar plasmas for various conditions and processes. For
axions which couple to electrons (DFSZ-type), the dominant emission process in low-mass stars (the
Sun, other main-sequence stars, red giants, horizontal branch stars, and white dwarfs) is the Compton-
process, ye —e¢ a, and bremsstrahlung, e (A, Z)— (A, Z) e a. In very low-mass stars, free—bound
transitions are also important (*‘axio-recombination’”). For hadronic axions, the only relevant process is

the Primakoff effect, y— a, which proceeds in the presence of the fluctuating electric field of the plasma
by virtue of the ayy coupling. In neutron star matter, the most important emission process is nucleon
bremsstrahlung, NN— NNa, for both types of axions. We also discuss plasmon decay into neutrinos,
Yo = V.

4.1. General discussion of the emission rates

When calculating the energy loss of a star by neutrino or axion emission, one is concerned with a
system where all particles (nuclei, electrons, photons) are in thermal equilibrium while the neutrinos or
axions can freely escape. Hence the production rate of these particles must be computed from detailed
microscopic processes and cannot be based on general thermodynamic arguments. A typical example
for an emission process is the Compton reaction, ye — e vy, for neutrino emission or the correspond-
ing process, ye —e¢ a, for axions. A general expression for the volume emission rate (in ergem s ')
18,
d3p

1= 1EN 5

fE )H] E(1+])

2E(2 )

S M (Ep, le, n). (4.1

polarizations

,--.szg_f

X

where N is the number of initial-state particles, N' that of final-state particles except for the axion
whose energy and four-momentum are E, and p,, respectively, N, is the number of identical particles
of one species in the initial state, and N, in the final state. There are several such factors if there are
several species of identical particles. The phase-space occupation numbers, f;, are the usual Bose—
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Einstein or Fermi-Dirac functions, normalized such that the density of a given particle species is
n=J d3pj f(E)! (27)’. For the final-state occupation factors, the plus sign applies to bosons (stimu-
lated emission), while the minus sign must be used for fermions (Pauli blocking). The final-state
occupation factor for the axions, f, (not to be confused with the axion decay constant!), is usually
neglected because the individual modes have less-than-thermal occupation numbers. The usual energy
loss per unit mass is e = Q/p (in ergg™'s ™).

Besides the stimulation and blocking factors, the presence of the plasma changes the dispersion
relation of the participating particles, leading to modified normalizations for initial- and final-state wave
functions, to modified propagators for the intermediate states, and to a modified law of energy-
momentum conservation. Moreover, excitations (‘‘particles’) such as longitudinal plasmons exist which
do not occur in vacuum. The presence of the plasma generally also changes the interaction vertices
between particles, an effect which is of crucial importance for the plasmon decay, y,— vv. Finally,
every particle simultaneously interacts with many targets. In the Compton process of axion production,
for example, the initial photon scatters on many electrons simultaneously, and the total axion
production rate arises from the interference of the scattering amplitudes off individual electrons. Since
the motion of the electrons is correlated because of their interaction, the interference terms do not
average to zero; the emission rates are modified by these correlation effects.

4.2. Absorption rates

Axion bounds which are derived on the basis of stellar energy losses are valid only if these particles
freely stream out of stars, i.e., if their optical depth is less than ~1. A general expression for the
absorption rate of axions, I'(E,), is analogous to eq. (4.1), summed over all relevant processes. For
relativistic particles the absorption rate is identical to the inverse mean free path, I'(E,) = A '(E,). If
the absorption rate is so large that axions are in thermal equilibrium with the surrounding heat bath, the
principle of detailed balance tells us that

I(E,) = (dQ . /dE,)(d%,/dE,) ™", (4.2)
where
d€/dE, = (127 E(@E" T - 1) (4.3)

is the differential energy density of a thermal axion field at temperature T, and Q,_, is the volume
emission rate, summed over all processes.
If axions are not in thermal equilibrium, the above expression is still a valid order-of-magnitude

estimate so that a typical absorption rate is given by

tot

Ir~9./%,, (4.4)

where €, is the total energy density of a thermal population of axions. For massless scalars or
pseudoscalars,

&, =(m’130)T", (4.5)
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while for photons an extra factor of 2 appears to count the polarization degrees of freedom. For massive
(pseudo-)scalars with m_ > T, we find

& =(T""mI2m)" e ™", (4.6)
If absorption is an important effect, axions contribute to the transfer of energy (chapter 5).
4.3. Many-body effects in stellar plasmas

4.3.1. General remarks on dispersion effects
The propagation of particles is governed by a wave equation which can be expressed in terms of
plane-wave components, V¥, as

G (o, p)¥(w, p)=0, (4.7)

where w and p are the frequency and wave vector of the plane wave, respectively, and G is the Green’s
function or propagator. For scalar or pseudoscalar particles the inverse vacuum propagator is simply the
Klein~Gordon operator, G '(w, p)= 0’ — |p|* — m*. For spin-} fermions, ¥ is the relevant Dirac
spinor and for photons it is the vector potential, A, so that G is a matrix. The wave equation (4.7) has
nonvanishing solutions only if det(G ') =0, a condition which relates  and p: the dispersion relation.
For isotropic media, it is usually written as*’

|pl=nw, (4.8)

where n is the refractive index. It may also be written as

~

w/:miff+|p|2» (4.9)

although the “effective mass™, like the refractive index, is a function of w and p, and m’, may even be
negative. In vacuum, m,; = m, the particle rest mass, so that the vacuum refractive index is
n,..=(1—mYw®)"". The dispersion relation may have several branches, i.e., for a given wave number
different frequencies may be allowed.

The procedure of second quantization is such that the energy associated with one quantum of an
excitation is E =#Aw so that the thermal phase-space occupation is given by the usual Fermi-Dirac or
Bose-Einstein formula. The corresponding wavenumber, p, given by the dispersion relation, appears in
the law of energy-momentum conservation, although this wavenumber, or ‘‘pseudomomentum”,
should not be confused with the physical momentum of the corresponding excitation.**’ The dispersion
relation for photons has been discussed, for example, in refs. [382-387], for charged fermions in ref.

*! Alternatively, one sometimes uses p = np, .. a definition which renders the vacuum index equal to unity. Also, in nonisotropic media, » is
then a matrix.

**) As a wave propagates through a medium, e.g., a laser beam in water, part of the momentum flow which enters at the surface is carried by
the medium. There was a long-standing dispute about the momentum flow carried by the beam, a dispute which was resolved in a paper by Peierls
[380] who clarified this question for the case of a classical electromagnetic wave, correcting various errors in the literature, including his own.
Experimentally, the question was addressed by sending a powerful laser beam vertically through water and observing the water—air interface. The
change in momentum carried by the beam appears as a force on the water surface, causing a visible deformation [381].
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[388], and for neutrinos in refs. 389, 390]. The question of the effective nucleon mass in nuclear matter
was addressed in refs. [391, 392], and the absence of a medium-induced refractive index for axions in
section 2.3.3.

4.3.2. Dispersion relation for plasma modes
The propagation of electromagnetic fields in an isotropic medium is governed by a Green’s function
which can be written in Feynman gauge as [386]

P,u.v . Qp.v
er(@o’ — g’ e(q@)q’

G, (q)= - (4.10)

where g = (w, ¢) is the energy momentum four-vector of the wave, e; and ¢_are the transverse and
longitudinal dielectric permittivities, respectively, and the transverse and longitudinal projection
operators are given by

AA,
P;LV:g/Lu_qp.qv/qz_Qp,y ’ Q}LV:-W ? )\:(lq|2’ wq) (411)

Propagating modes are characterized by det(G ') =0 or equivalently by the poles of the Green’s
function. From eq. (4.10) it is clear that the dispersion relation for transverse modes in a plasma is
given by e.(q)o’ — |g|> =0 and the refractive index for these modes is n = [e(q)]'"”. For longitudinal
modes it is given by £, (¢)g° = 0. These modes exist only in the presence of the plasma, they correspond
to oscillations of the negative against the positive charges, and they are characterized by an electric field
vector along the direction of propagation with no magnetic field. Transverse plasmons are essentially
identical with photons whose dispersion relation is modified by the presence of the plasma.

In order to discuss the plasmon dispersion relation, we introduce a relativistic generalization of the
usual plasma frequency [383]

w,=dman,/E, = (4a/37)py/E; (4.12)

which reduces, in the nonrelativistic limit with E.— m_, to the usual result. The dispersion relation for
transverse plasmons is given by

w0’ =w,+ g (4.13)

if the electrons are nondegenerate and nonrelativistic, and if the plasmon energy is small compared with
the electron mass, w <m,. For a degenerate electron gas, the dispersion relation is [384, 387]

, _Jeot (1 +1vp)lgl® for [q]<w,

= 414
(1+ fvp)wy + g for |q|> w,, (419

where vp=p /E, is the velocity at the Fermi surface. Finally, if the plasma is relativistic and
nondegenerate, i.e., if T>m_ and T> E,, electrons and positrons contribute equally, and the
dispersion relation is [386],
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. | 4maT?+ ¢8|q)* for |g|<eT/3,
w = 5 , (4.15)
¢maT +|q|° for |q|>eT/3.

For @ >2m_, these waves are damped by pair production, otherwise they are not damped at all to this
order in «. Damping occurs only by scattering on electrons which introduces an imaginary part to the
refractive index of higher order.

The dispersion relation of longitudinal plasmons is given, for a nondegenerate, nonrelativistic plasma
by [387]

o’ =w;+(3T/m)|q|". (4.16)

For these waves the phase velocity, w/|q|, is less than the speed of light, whence electric charges can
“surf” in longitudinal waves, leading to damping to lowest order in a (Landau damping). For |¢| = k5,
this damping is large and longitudinal modes are no longer stable. For degenerate electrons, the
dispersion relation is [387],

© = wy+ tvlql, (4.17)

applicable for vp|q| < w,. In the opposite limit, vg|g|> w,, the spectrum of longitudinal oscillations
reduces to two-particle excitations of an electron-hole [387]. For a relativistic, nondegenerate plasma,
one has [386]

, [$maT’+1q|? for |g| <eT/3,
{ (4.18)

[1+4exp(—6lq|/4maT?)]|q|" for |q|>eT/3.

These oscillations are stable since the phase velocity, again, exceeds the speed of light.

In the presence of magnetic fields, the dispersion relations are, in general, much more complicated.
For the axion problem, photon dispersion in the strong magnetic fields near pulsars is of some interest,
and can be expressed in simple terms if w <m_. In the presence of a magnetic field, B, which is
transverse to the photon direction of propagation, we consider two linear polarization states with the
electric field vector parallel (||) and perpendicular (L) to the external magnetic field. The indices of
refraction for these two modes are [393, 394]

n =1+ $a’Bim, nH=1+%asz/m:, (4.19)

where we have used a rationalized definition of the field strengths (see footnote in subsection 1.2.1). If
the magnetic field is not transverse, only the transverse component enters, and the L polarization state
is the one with the electric field vector perpendicular to both, k and B.

4.3.3. Nucleon dispersion in dense nuclear matter

In a dense nuclear medium, the effective nucleon mass, my;, deviates substantially from the vacuum
value, my = 939 MeV. At several times nuclear density, values which are believed to occur in the core of
supernovae, the effective mass may be as low as m{=0.5m,, strongly affecting the phase-space
distribution of the nuclei. A calculation of m}, has to rely on an effective theory which describes the
interaction of nucleons and mesons. Renormalizable, relativistic theories of this type (“‘quantum hadron
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Fig. 4.1. Effective nucleon mass in an extended nuclear medium according to a relativistic Brueckner calculation including vacuum fluctuations
[392]. The solid curve is for a nuclear medium with equal numbers of protons and neutrons, the dashed curve is for neutron matter. In both cases p;.
is the Fermi momentum of the nucleons: p, = 280 MeV corresponds to nuclear density, and p. =400 MeV to three times this density.

dynamics”, QHD) have only recently been developed. A typical result [391, 392] for the nucleon
effective mass from a self-consistent relativistic Brueckner calculation including vacuum fluctuations is
shown in fig. 4.1. A relativistic Hartree calculation yields a similar result. The parameters chosen for
this calculation yield nuclear saturation at a density which corresponds to a nucleon Fermi momentum
of pp =280 MeV, and three times this density corresponds to p. =400 MeV, about the upper limit of
what might be expected for a supernova core.

4.3.4. Screening of electric fields

In order to discuss the behavior of static electric fields in a plasma, we begin with the general
electromagnetic propagator, eq. (4.10). In the static limit, @ =0, only the following components
contribute,

Gyo(0, g) = —1/¢,(0, Q)'qlz ) Gij(O’ q) = (1/’q|2)(_8ij + qiqj'/quZ) . (4.20)

This means, in particular, that the radial variation of the electrostatic potential of a point charge is
given by the Fourier transform of G,. In a sufficiently dilute plasma, the static longitudinal permittivity
is of the form

e(0, @) =1+k/lql”. (4.21)

Therefore G,, = —(|q|>+ k)" and the electrostatic potential of a point charge varies as r~' e *s'
rendering kg a screening wave number and its inverse a screening radius.

In order to derive the screening scale for a neutral plasma we imagine that a point charge is added to
the system. The field of this charge will be screened because the plasma will be polarized. We first
consider a ‘“‘one-component plasma” where one species of particles is thought to provide a homo-
geneous, neutralizing background and only the other species can move and contribute to the
polarization. We first take the electrons as the particles which are allowed to move, take them to be.
degenerate, and use a Thomas-Fermi model in the potential of the extra charge. One finds kg = k.
where the Thomas-Fermi wavenumber is [395],

b
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kop=(4apEgm)' " (4.22)
The Fermi momentum and Fermi energy are related to the electron density by
pr=0C7n)"?,  E.=(prt+m)*. (4.23)

With our relativistic definition of E, the nonrelativistic case is characterized by E.— m,.

If the electrons are nondegenerate, one considers the “‘law of atmospheres” in the potential of the
extra charge, taking a self-consistent, screened potential, i.e., one solves the Boltzmann—Poisson
equation to lowest order. This leads to k, = k, with the Debye-Hiickel wavenumber [396],

kp=(4man/T)"". (4.24)

The plasma can be viewed as degenerate if k. < k,, which translates, for the nonrelativistic case, into
(37/2)T <p;i2m,.

A realistic case of a one-component plasma is a medium where the electrons are degenerate while
the nuclei are not as in a red giant core. We take first the hypothetical case of a degenerate hydrogen
plasma. The screening scale of the electrons is given by k., while that for the protons is given by &,
and since k, > k.. because of the assumed degeneracy, our test charge will be screened dominantly by
the protons. This confirms the naive picture that a degenerate electron gas is much “stiffer”” than the
nondegenerate nuclei gas. Therefore the degenerate electrons, indeed, provide an approximately
homogeneous background of a neutralizing charge distribution. If the nuclei have charge Z > 1, their
screening length is given by eq. (4.24) with n,— Z’n_,.. If there are several species of nuclei, the
screening contribution of the ions is given by

i

2

4 2
kions = (—;T"g i%s Zi_ni) . (425)

If the electrons are nondegenerate, the total screening wavenumber is given by

2

kS = (kzD + kl()ns)“2 ’ (426)

a result which applies for the conditions in the solar interior or in the center of horizontal branch stars.

4.3.5. General remarks on correlation effects

In order to appreciate the importance of correlation effects, we consider as an example the Compton
production of a massless scalar particle, ye — e x. In vacuum, the differential cross-section is given by
do/d =|f(q)|* where g is the energy-momentum transfer between v and x, and f is the scattering
amplitude to be determined by the usual Feynman rules. For simplicity we consider the electron mass to
be large compared to the photon energy, m, > w, whence the energy of the outgoing scalar is identical
to that of the incoming photon, and we consider the electron to be at rest. Taking N electrons at fixed
locations with relative separations r,;, the total scattering amplitude is the sum of that on the individual
electrons. Hence the differential scattering cross-section of the ensemble is

N

| A0, @) 2 cos(q-r,). (4.27)

ij=1

doy

a0 -
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In a stellar plasma we are interested in a physical situation where the photons interact with many
different random ensembles of electrons, leading to a statistical average of this expression. Then all
scattering centers are equivalent, and we may express the average scattering cross section on one
electron as

do/d02 = (0, ¢)|°S(0, q),

where S(0, g) is the static structure factor for the electrons. The average scattering cross section on N
electrons is now simply given by do,/df2 = N do/d{2 because the structure factor accounts for the
thermal average of the interference terms. Comparing with eq. (4.27) gives

N
S0, )= }Llill <N_1 > cos(q- r,.].)>therma] . (4.28)

ij=1

If the coordinates of the electrons were completely uncorrelated as in an ideal Boltzmann gas, the terms
with i # j would not contribute, and S(0, ¢) = 1. Physically this means that the interference terms from
scattering on different electrons vanish on average, and the total scattering rate is simply the sum of the
individual rates.

In a real plasma, however, the mutual interaction between charged particles correlates their motion
and locations; if an electron is known to be at position r, the probability of finding another electron
near the same location is less than average, while the probability of finding a proton is larger than
average. Hence the static structure factor is a nontrivial function of the plasma properties. More
generally, one must also allow for the motion and recoil effects of the targets so that the scattered
particles need not have the same energy as the incoming ones, leading to the definition of a dynamic
structure factor, S(q). The complete particle emission rate from a stellar plasma requires inclusion of
S(q) in the integrand of eq. (4.1). In the context of axion emission where the nonrelativistic scattering
amplitude depends on the electron spin coordinates, one also has to consider the spin—spin correlation
between electrons.

4.3.6. Static structure factors

The screening of electric fields in a plasma is closely related to the correlation of the positions and
motions of the charged particles. If an electron is known to be in a certain position, the probability of
finding another electron in the immediate neighborhood is less than average, while the probability of
finding a nucleus is larger than average. If we consider one particle of a given species to be the origin of
a coordinate system, and if the average density of that species is 7, the deviation of the actual density
from average is

S(r)=8°(r) + nh(r), (4.29)

where h measures the correlation between these particles. In an ideal Boltzmann gas, of course, & = 0.
The Fourier transform,

S(@)= [ drsye (430)

is the static structure factor. In the absence of correlations, 4 = 0, we naturally have S(q) =1, and the
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scattering cross sections remain unchanged. A typical example for the role of the structure factor is
Thomson scattering of photons on electrons. If one measures the scattering of radio waves in ionized
layers of the atmosphere, the correct cross section is da,,,(q)/d2 = S (q) do,, (¢)/d{2 where q is the
momentum transfer [397]. Also, Thomson scattering on electrons in stellar plasmas is an important
contribution to the opacities, and the inclusion of §_ substantially reduces the scattering rate, an effect
which was recently revisited [398].

In order to illuminate the relationship between correlations and screening more clearly, we consider
a one-component plasma where the mobile particles have charge e. In this case the static structure
factor for the mobile particles is related to the longitudinal dielectric permittivity by virtue of the

fluctuation dissipation theorem by {387, 399],

S(q) = (|qi7k5)[1 —1/e.(q)], (4.31)

where the Debye screening length was defined in eq. (4.24). For a sufficiently dilute plasma, we have
e, (q) =1+ k3,/|q|%, corresponding to a Yukawa form of the screened potential. In this case one finds

So(a)=1ql/(lql* + k) - (4.32)

Of course, if the mobile particles have charge Ze, one simply has to replace n,— Z ’n_,.in eq. (4.24).

If the plasma is sufficiently cold, the screening will not be of Yukawa type, and the structure factor
will deviate from the simple Debye formula. The plasma can be considered cold if the average Coulomb
interaction energy between ions is much larger than typical thermal energies. To quantify this measure,
one introduces the ion-sphere radius, a, by virtue of n = (47a’/3)”" where n is the number density of
the mobile particle species. Hence a measure for the Coulomb interaction energy is Z’a/a, assuming
the ions have charge Ze. One usually introduces the parameter

Ir'=aZaT, (4.33)

as a measure for how strongly the plasma is coupled. For I" <1 it is weakly coupled and approaches an
ideal Boltzmann gas. Since kia’ = 3T, the weak-coupling structure factor eq. (4.32) can be written as

aq|* +3I) . (4.34)

So(4) = lag|'/(

This result applies even for large I if |ag| < 1. For I'>1, the plasma is strongly coupled, and for
I’ = 168 the ions will arrange themselves in a body-centered cubic lattice [400, 401]. In fig. 4.2 we show
S and S, as functions of |ag| for I'=2, 10, and 100. The emerging periodicity for a strongly coupled
plasma is quite apparent. It is also clear that for I' <1 the Debye formula gives a fair representation of
the structure factor while for a strongly coupled plasma it is completely misleading. The interior of
white dwarfs is typically in the regime of large I', and old white dwarfs are believed to crystallize.

In order to compute emission rates from nondegenerate objects like the Sun or other main sequence
stars, we need to consider a two-component plasma where particles of positive and negative charges
contribute to screening. The structure factor for a two-component plasma is quite different from the
case of only one component. If the electrons are mobile on the background of a uniform positive charge
distribution, their structure factor is given by eq. (4.24), assuming weak coupling of the plasma. If the
ions are also mobile, it is given by [404]
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Fig. 4.2. Static structure factor for a one-component plasma according to numerical calculations [402, 403] (solid lines). The dashed lines correspond
to the Debye structure factor eq. (4.34).

S.(9)= (gl + ko) /(1 q” + Koony + K3) (4.35)

where the ionic contribution was defined by eq. (4.25). This structure factor must be used, for example,
if one wishes to calculate the emission of some weakly interacting scalar or vector particle, x, which is
produced in the Sun by the Compton process, ye —e x. If there is only one species of ions with
charge Ze, the small-g-value is S.(0) = Z/(1 + Z) whence the corrections are always relatively small. In
a one-component plasma, S,(0) =0.

We now consider a scattering process for which the scattering amplitude is proportional to the
electric charge of the target. An example is neutrino scattering by virtue of an anomalous magnetic
dipole moment, v, +(A, Z)—> (A, Z)+ vy, and also Primakoff production of axions, v+
(A, Z)— (A, Z) +a, by virtue of the ayy vertex. In this case one is not interested in the correlation
between the positions of particles of a given species, rather one needs to consider the charge
correlation. Given a charge Ze at the origin, the deviation from the average charge distribution is
ZeS(r) with S(r) = 6°(r) + h(r) where now h is a function that integrates to —1 because of global charge
neutrality of the plasma. With this definition of S, the static structure factor is found to be [87]
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S(q)=ql/(lql* + ki, + k7).

where, of course, weak coupling of the plasma was assumed.

(4.36)

4.3.7. State of the plasma in stellar interiors

When calculating the axion emission rates one may consider, in principle, all possible combinations
of temperatures and densities. In practice, only very specific conditions are encountered, leading to a
much simpler discussion. Also, for any given set of conditions, typically only one process dominates so
that one may focus on relatively few cases when embarking on a detailed calculation. In order to briefly
discuss the plasma conditions relevant for astrophysical particle bounds it is convenient to introduce the
usual chemical composition parameters, X, Y, X,,, etc., which characterize the mass fractions of the
elements 'H, *He, '*C, etc. so that the number density of a species with mass fraction X, atomic weight
A, and charge Ze is given by

5

n=(pm)X./A,, 4.37)
/ u ] /

where m, =1.66 X 10 ** g is the atomic mass unit and p is the mass density. The number density of
electrons is given by

XZ
n, = 2 Zn, = mi > (4.38)
]

~ A

u j

One sometimes uses the “mean molecular weight”, u,, for the electrons, i.e., the atomic mass units of
the plasma per electron, so that n, = p/u.m, . Also, Y, = u " is sometimes used for the mean number
of electrons per baryon. In table 4.1 we give an overview over the plasma conditions that we are going
to encounter when deriving astrophysical particle bounds.

Table 4.1
Plasma characteristics for typical conditions encountered in various astrophysical sites which are important to derive particle constraints

Center of Red giant core
standard just before
solar model Core of HB stars helium flash White dwarf Supernova core
Characteristic nondegenerate, nondegenerate, degenerate, degenerate, relativistic
nonrelativistic nonrelativistic weakly coupled strongly coupled
Temperature 1.55% 107 K=1.3keV ~10° K = 8.6 keV ~10"K =8.6 keV (10°-10"y K (20-60) MeV
=(0.09-0.86) keV
Density 156 ~10* ~10° 1.8 10° ~10"
[gem ] (center for
M=0.66M)
Composition X =035 ‘He, °C, "0 ‘He "C, 0 Y, ~0.30
(r.=2) (k. =2) (1. =2)
Electron density 6.3%10" 3.0 x 107 3.0 x 10% 5.3x10% 1.8x 10"
fem 7]
Fermi momentum 243 keV 88 keV 409 keV 495 keV 345 MeV
Fermi energy 0.58 keV 7.6 keV 144 keV 200 kevV 344 MeV
(petm)=m,
Plasma coupling I'=0.07 0.12 0.57 433-433
Plasma frequency 0.3 keV 2.0keV 18 keV 23 keV 19 MeV
Screening Debye Debye Debye strong
ke=(k3 + k00" ko=(k+ k.07 Koo = 222keV

=9.1keV

=27keV
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4.4. Compton process

We begin our detailed investigation of the axion emission rates with Compton production,
ve —e a, see fig. 4.3. This process was first considered by Sato and Sato for the emission of scalar
Higgs particles from stars. The most general discussion of the matrix element and cross section was
provided in refs. [61, 405]. A detailed discussion of the emission rates was provided in refs. [74, 86].
Electron spin correlation, which is important in a degenerate plasma, was never taken into account, and
the effect of a finite plasmon mass has only been estimated.

For our discussion of the Compton effect we use the pseudoscalar interaction Lagrangian eq. (1.2)
with a Yukawa coupling, g,, for the electrons, and with the corresponding axionic fine structure
constant, @, = g2/4sr. The invariant matrix element is found to be [74]

2 2
> =Ty ey (4.39)
spins Ss—m m,—Uu

pins e €
polarizations

where the axion mass and the plasma frequency have been neglected, and the Mandelstam variables are
2 2 - . el

s=(p.+k,) and u=(p, — k,)" with p, the four-momentum of the initial-state electron, and k_ and k,

the four-momenta of the photon and axion, respectively. The full expression with nonvanishing 7, and

w, was derived in ref. [61] — it is extremely complicated and not needed for our purposes. The total

scattering cross-section for massless photons and axions is found to be

log(s/m’ 3s—m§) (4.40)
O = aa,H(_‘) - , .
o T s—m’ 2s°

a result shown in fig. 4.4. For scalar or vector particle production, the cross section is not suppressed at

low CM energies. This suppression is an effect of the derivative nature of the pseudoscalar coupling
(section 2.3.3).

We are mostly interested in a nonrelativistic plasma where p,~ (m,,0) and the photon energy
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Fig. 4.3. Feynman graph for the Compton production of axions, or Fig. 4.4. Cross section for the Compton production of massless axions
for the Compton absorption, if read in the reverse direction. The as a function of the CM energy, s = (p, + ky)z. The suppression at low
second graph with the axion and photon vertex interchanged is not energies arises from the derivative coupling of axions and would be

shown. : absent for scalar (as opposed to pseudoscalar) particles.
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w <m,. In this case one readily finds [87]
4 2y 2,2
oc = sm(aa,/m.)w/m; . (4.41)
In this limit, the energy of the outgoing axion is identical with that of the incoming photon, and the
energy loss rate is simply found by folding o with the electron density, n,, and the black-body photon
flux at temperature T,

dn/de = (1/im*)e (e - 1). (4.42)

In the non-degenerate limit, the lowest-order relativistic correction was analytically calculated by
Fukugita, Watamura and Yoshimura [74], yielding a volume energy loss rate

_160¢(6)aa, n,T® 364(7) - 144(6) T 5y
c- p m: (1 - £(6) —m_c +O(T /me)> ) (4.43)

where ¢ is the Riemann zeta function. Fukugita et al. have numerically calculated correction factors to
the lowest-order result, taking into account relativistic and degeneracy effects. It is worth noting that
the effect of degeneracy is to enhance the emission rate: for a fixed temperature and increasing density,
the emission rate increases slightly faster than the trivial n, factor of eq. (4.43). This occurs because
with increasing degeneracy, electrons occupy states of larger momentum, increasing the CM scattering
cross-section which is suppressed for low energies (fig. 4.3). This increased cross-section slightly
overcomes the effect of Pauli blocking of final states.

Fukugita et al.’s [74] correction factors, however, do not take into account the finite value of the
plasmon frequency, which should be a small correction for w, =< T, but is important in the cores of red
giant stars. They also ignore the correlation between the electron targets. From our discussion in
section 4.1.3 we conclude that, if axions were scalar (as opposed to pseudoscalar) particles, one would
have to include the structure factor S,, similar to the case of Thomson scattering. Axions, however,
couple to the electron spin and the structure of the scattering amplitude implies that its sign depends on
the spin of the initial electron. If we consider scattering from an ensemble, the interference between the
amplitudes of two given electrons will be destructive or constructive, depending on the relative spin
orientation of the electrons. Therefore, in an ensemble with no correlation between the spins, the
interference terms average to zero. Therefore we believe that for the Compton production of
pseudoscalars from a nondegenerate plasma, the structure factor S,, which expresses the correlation
between locations but not spins, should not appear and the result eq. (4.43) remains valid. For
degenerate electrons, the spins are correlated; the Pauli exclusion principle states that it is less likely
than average to find an electron with the same spin near a given electron that one of opposite spin.
Hence for degenerate electrons, a spin correlation factor should appear in eq. (4.43).

Compton production is important for axion emission from the Sun and from horizontal branch stars,
environments which are essentially nondegenerate, allowing one to use eq. (4.43). In horizontal branch
stars with T~ 10° K = 8.6 keV, the relativistic correction in eq. (4.43) is a reduction by ~40%. An
important axion constraint, however, was derived using red giants before the helium flash [63, 93]
where axion emission occurs from a degenerate plasma. While in this context the spin correlation of
electrons and the finite value of the plasma frequency are of crucial importance, the Compton effect is
less important than bremsstrahlung in this environment so that there is no need for a precise Compton
rate.
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Compton emission from a very degenerate and relativistic plasma was also considered in the context
of axion emission from SN 1987A in ref. [75], correcting previous results in ref. [70]. A crude estimate
yields

Qc~ (2aa,/3m) T’ In(2QE T/ml) . (4.44)

Numerical details were given in ref. [75], but for these conditions nucleon bremsstrahlung by far
dominates so that a detailed knowledge of the Compton rates is not warranted.

The emission of pseudoscalars with a large mass, m, > T, from a nondegenerate, nonrelativistic
plasma is of some interest. The axion energy is then very close to threshold, E, ~m,, and one may
consider the Compton production of nonrelativistic axions from electrons at rest, yielding [161]

Oc =2 %aa,/myn (m) > T Imlye T (4.45)
to lowest order.
4.5. Electron—positron annihilation

The process € "¢~ — vya (fig. 4.5) is never of practical importance because positrons are only present
in sufficient numbers at high temperatures, conditions for which other processes such as nucleon
bremsstrahlung become more important. For completeness we quote the result for the emission rate,
valid for nondegenerate, nonrelativistic conditions where 7 <m_ [74, 86],

0...=(aa /7 )ym:T> e 27T (4.46)

This result does not depend on the electron density because the electron and positron distributions are
characterized by equal but opposite chemical potentials which cancel each other. For very relativistic
and degenerate conditions as are encountered in supernova explosions, we have estimated the rate to
be

3 32 —EQ/T 2

Q. ~(aa/6m")E T e 5 In(9E T/2m?). (4.47)
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Fig. 4.5. Feynman graph for the e¢’e” annihilation process. The Fig. 4.6. Feynman graph for the bremsstrahlung production of axions,
second graph with the axion and photon vertex interchanged is not or for the absorption by inverse bremsstrahlung, if read in the reverse
shown. direction. The double line represents either a nucleus of charge Ze, or

another electron. The outgoing axion may also be attached to the
incoming electron line, and if the double line represents an electron,
also to the incoming and outgoing double line. Thus there are two
Feynman amplitudes for the electron-nucleus process, and eight
amplitudes for the e "¢~ process, because the axion can be attached to
four different fermion “legs”, and each such graph has an exchange
graph with the outgoing (or incoming) electron labels interchanged.
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4.6. Bremsstrahlung by electrons

4.6.1. Nondegenerate plasma

In stellar interiors, three-body processes frequently are more important than two-body reactions. If
one replaces the photon in the Compton process, fig. 4.3, by a virtual photon, i.e., if this photon is
replaced by the Coulomb field of a charged particle, one arrives at the corresponding three-body
process: bremsstrahlung emission, fig. 4.6. Simply put, this process competes with the Compton
reaction because there are more charged particles in a stellar plasma than free photons. In the solar
center, for example, the electron density is 7, = 6 X 10> cm ~*, while the density of black-body photons
at a temperature T=13keV is n, = 2((3)T 7> =6x 10" cm . More rigorously speaking, the
electron which radiates an axion must interact with the ambient electromagnetic field in order to
conserve energy and momentum. Compton emission corresponds to the interaction with the transverse
modes of the electromagnetic field, while bremsstrahlung corresponds to the interaction with the
longitudinal modes. The relative importance of these processes depends on the relative power in
transverse and longitudinal electromagnetic field fluctuations.

The process e (A, Z)— (A, Z) e a was first discussed by Krauss, Moody and Wilczek {79], while
Raffelt [87] included the process e ¢ —¢ ¢ a and corrected a minor algebraic error of the previous
calculation. The bremsstrahlung of photons by electrons, e ¢ —e e v is suppressed to lowest order
because two particles of equal mass as they move under the influence of their Coulomb interaction do
not produce a time-varying electric dipole moment; this reaction is suppressed because of the El
structure of the photon emission. Axion radiation, on the contrary, compares to M1 transitions because
of its “spin-flip” nature so that the e ¢  process is not suppressed relative to the e p process.
Moreover, the relevant nuclei in stars are of low charge so that the coherent Z* enhancement is of little
importance, allowing the e ¢ process to compete.

The calculation of the emission rate in a nondegenerate, nonrelativistic plasma is straightforward. In
order to estimate the importance of screening, the Coulomb propagator, |g| >, is replaced by
(lq]*+ «*)"" where « is a screening scale, approximately given by the Debye scale. A rigorous
treatment of screening has not been performed; it would involve specifying the appropriate ion
structure factor for the combined system of electrons and nuclei in a situation where this structure is
probed by an electron. Our previous discussion of these structure factors does not rigorously apply
because of the identity of the probing electrons with the electrons of the plasma. For all situations of
practical interest, screening turns out to be a relatively minor correction. To lowest order in «, the
volume emissivity (ergem s ') was found to be [87]

5

5/ 5k’ Z; 5 k°
_ 172, 2 5i2 2 ] _ -
Qbrems - %(2/77) ((1 aa/me)(T/me) n’c 2 n]|:Z]<1 o Z ch> F <1 2 mLT>:| ’ (448)

where the sum is extended over all nuclear species. The quadratic term in Z; corresponds to
electron—-nucleon bremsstrahlung, while the linear term represents the e e~ process (note that the
electron density is given by n, = L, Z;n;). For later comparison it is also instructive to derive the specific
emissivity, £ = Q/p, if there is only one species of nuclei with charge Z and atomic weight A, neglecting
the effect of screening and the contribution of the electron targets,

142 ZZ 2 ‘ TS/Z 3
_ 128 (2) Zaa, I PpPg (4.49)
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where we have expressed the electron density in terms of the Fermi momentum, n, = = pi/37°, and the
atomic mass unit is m, =1.661x 107" g.

4.6.2. Degenerate plasma

Bremsstrahlung is a particularly important effect in white dwarfs and the cores of red giants before
the helium flash, i.e., under conditions of degeneracy. In this case we neglect completely the e e~
process which is more strongly suppressed by degeneracy than the electron—nucleus process. For the
latter we take the target nuclei to be static and heavy. Then one finds for the volume emissivity (93]

4aa

0, = sz,def(TE)deu AT, E,)]

dﬂ d@, |pllplE; < zplpz—me+pa(pz—p1)+2_p1pa_pzpa
4T g — (P, p)(P2P.) PP PiPs

where the index 1 refers to the incoming, 2 to the outgoing electron, f(T, E) is the electron phase space
distribution, f= (" "%'T +1)7" for the degenerate case, ¢ = p, — p, — p, is the momentum transfer to
the nucleus, and the axion energy is E, = E, — E,. If the electrons are very degenerate, the energy
integrals can be done analytically. Moreover, all electron momenta are close to the Fermi surface,
|p,| ~|p,| ~ pe. Using the notation B, = p./E; and c,, for the cosine of the angle between p, and p,,
etc., and considering only one nuclear species, one finds for the specific emissivity, e, = Q,/p [84, 85,
88, 93],

) o (4.50)

2 2 4
nt Za'a, T
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T T A wim, F, Y
F= mi J' d, [df, 2(1-cp,) = (¢, — CZa)2 ﬁ (4.52)
) A ) A B )0 - Brea) Tl |

In a degenerate plasma, the electric fields of the nuclei are screened because of the polarizability of
the degenerate electron gas. Hence the Coulomb propagator, |¢| %, must be replaced by (|q|* + k3p)
approprlate for an exponentlally screened electric field with the Thomas-Fermi screening scale

= (4apE./m)""”. Moreover, the scattering amplitudes from different nuclei interfere, and one must
1nclude the static ion structure factor, S, (¢), leading to

ions

b

Ulgl'= Sion(@) /(g + K3p) . (4.53)

The correction factor, F, must be separately determined for various conditions.

We begin with a nonrelativistic, weakly coupled plasma as appropriate for the cores of red giant stars
before the helium flash. In this case the structure factor is given by the Debye formula, eq. (4.32). To
simplify further we note that the forward divergence of the Coulomb denominator is mostly cut off by
the ion correlation effect because the Debye screening scale, k., . =4wZ’an_, /T, far exceeds kTF so
that we may neglect ke entirely. Also, the momentum transfer can be approx1mated by |q|* ~
|p, = p,I> ~2p2(1— c,,). Finally we consider a nonrelativistic approximation where we may use ;. = 0



44 G.G. Ruffelt, Astrophysical methods to constrain axions and other novel particle phenomena
in eq. (4.52), leading to [93]

F = [mgl(m + pr)]3 In[(8py + kiga)/ Kions] (4.54)
An exact calculation would only slightly change the argument of the logarithm. For a helium plasma
with p=10°gem  and T=10°K, we find p, = 409 keV and k., =222keV so that F=1.4.

It is instructive to compare the degenerate result with that for nondegenerate conditions, eq. (4.49),

9 4 1/2 T 3/2 419T 3/2
iz_w_@) <_"2"_) F:<___2'”c) F (4.55)
ey 12802/ \ 7,2 2

For the plasma conditions of a red giant core, p = 10° gem ™ and T = 10° K, this ratio is 0.05, revealing
that the nondegenerate rates would overestimate the true emission rate by a factor of ~20.

For a strongly coupled, degenerate plasma typical for white dwarfs the factor F was calculated
numerically by Nakagawa et al. [84, 85] for a '*C plasma. For densities in the range (10*-10°) gcm ™
and temperatures of (10°~107) K, it is found that F = 1.0 within ~20% so that for practical calculations
this value is a satisfactory approximation.

Iwamoto [77] considered the emission from the crust of a neutron star where the electrons are very
relativistic. According to Nakagawa et al. [84], Iwamoto’s analytic result is slightly in error. In contrast
with the nonrelativistic conditions of white dwarfs, ion correlations are now an important effect,
suppressing Iwamoto’s result by 1-2 orders of magnitude. In refs. [84, 85], numerical results for F in
neutron star matter were given for a wide range of densities.

4.7. Axio-recombination and the axio-electric effect

Another possible source for stellar axions arises from free-bound transitions where a bare nucleus
captures an electron to form an ion with a K-shell electron: “axio-recombination” [66]. In the Sun, this
process contributes about 4% of the total axion flux which is mostly due to bremsstrahlung. The energy
loss rate is o« T°">, while bremsstrahlung is = T°", and the Compton effect is = T° In other words,
axio-recombination is of importance mostly in low-mass stars which have much lower internal
temperatures than the Sun; it would dominate in main sequence stars with M <0.2M [66]. Because
stars with such low masses live much longer than the age of the universe, all such stars presently
observed are far from the end of their main-sequence evolution. Therefore, even if axion emission was
to be important in these objects, no observable effect has been proposed in the literature that would
allow one to identify these axion losses or to derive interesting bounds.

Of more practical interest is the inverse process where an axion incident on an atom unbinds an
electron; the ‘““axio-electric effect” [67, 68]. Because of the M1 nature of the axion coupling to
nonrelativistic electrons, the axio-electric cross section is obtained from the photo-electric one by
multiplication with the usual spin-flip factor, apart from a reduced coupling strength,

O = (@) @)(| P, 2m,) 0, (4.56)
Thus one can obtain this cross section by a simple scaling of tabulated values. This effect serves to
constrain the solar axion flux which could produce keV electrons in a Ge spectrometer designed to
search for double-B decay (section 7.2).
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4.8. Bremsstrahlung by nucleons

4.8.1. The matrix element

The axion coupling to nucleons allows for processes similar to those involving electrons, an example
being the proton Compton process, yp— pa. Generically, the Yukawa coupling to a fermion is given by
g, = m/f,, apart from a factor of order unity, so that axions couple about 2000 times stronger to protons
than to electrons. However, the Compton cross section is proportional to g2/m" so that it varies with
the fermion mass as m°, and the proton Compton effect is still much weaker than the electron effect in
the nonrelativistic regime. This is not necessarily the case in supernovae with temperatures as high as
50 MeV where the electron Compton cross section is on the “right side” of the maximum in fig. 4.4
while the proton cross section is on the “left side”. However, under such conditions the bremsstrahlung
emission of axions by nucleons is more efficient than two-body reactions involving photons.

Bremsstrahlung emission by nucleons (fig. 4.7), NN— NNa, was first calculated by Iwamoto [77] on
the basis of Friman and Maxwell’s [18] results for the corresponding bremsstrahlung process emitting
neutrino pairs. It is interesting to note that for nonrelativistic nucleons only the axial coupling of the
neutrino current to the nucleon current contributes so that the relevant Lagrangian has the Dirac
structure N}gyﬂNJ’;eumno. The derivative form of the axion coupling has the structure Ny;y, No"a so
that the nuclear matrix elements for both processes are the same, while the emission rate is different
because of the different final-state phase space. We stress that the derivative structure of the axion
interaction is the more fundamental form (section 2.3.3) so that the results of Pantziris and Kang [86],
based on a naive application of the pseudoscalar coupling, are incorrect. Another problem relates to the
use of the one-pion exchange approximation to model the nuclear forces, a method which was the
major advance of the work of Friman and Maxwell over previous calculations of the neutrino emission
rates. As discussed in section 2.3.3, the one-pion exchange approximation accounts well for the cross
section of the related process, NN— NN, which has been experimentally studied so that we trust it
gives a good estimate of the emission rates.

The matrix element for the nn—nna process was first calculated by Iwamoto [77] assuming
degenerate nucleons, while Brinkmann and Turner [57] provided a detailed discussion of all processes
and degeneracy conditions. Taking the nucleons to be nonrelativistic, the squared matrix element is
always of the form*’

t"a
NI - T J;D_Ns
|
1T
1
]
Ny—— N,

Fig. 4.7. Feynman graph for the nucleon bremsstrahlung production of axions, or for the absorption by inverse bremsstrahlung, if read in the
reverse direction. The outgoing axion may also be attached to any of the other nucleon lines. Thus there are eight Feynman amplitudes because of
the exchange of the outgoing (or incoming) nucleon labels. The exchange graphs of the np process involve intermediate charged pions.

*'In the axion literature, the pion—nucleon coupling was generally expressed in terms of f/m_ with f ~ 1 so that even in expressions where the
pion mass had been neglected in intermediate states, it appeared explicitly in the final result. Moreover, the dependence of the emission rates on the
value of the effective nucleon mass was obscured. Therefore we prefer to express the coupling in terms of the “pion fine-structure constant’,
a, ~15, which is related to f by (f/im_)’ =4ma_/(2m,)’.
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2 16(4m)" e, [ |k’ .
Sp%g |t |* = : p-; <(|k|2 Py + similar terms) , (4.57)

where a_ ~ 15 is the ““pion—nucleon fine-structure constant”, and k is the momentum transfer carried by
the intermediate pion. The expression in brackets is generally very complicated, in particular for the np
process where various interference terms between direct and exchange graphs appear. (An expression
for the complete matrix element was given in the appendix of ref. [98].) Moreover, in a dense nuclear
medium correlation and polarization effects further complicate this expression [71]. Therefore we begin
our discussion by taking the expression in brackets to be a constant (3 for the degenerate nn or pp
process), and lump all other effects into a set of unknown “form factors™, F;.

4.8.2. Degenerate and nondegenerate emission rates

In order to express the emission rates in a compact form, it is convenient to define a number of
“fine-structure constants” in terms of the Yukawa couplings, g,, and g, , to neutrons and protons,
respectively,

a, =g /4, aPEgip/élﬂ' ,
(4.58)
0= (84 T 8,p) 1167 oy = (g5, +83,)/87.

For equal couplings, g, =g,, = g,,. all of these terms are the same and equal to «a, = g./4m. The
volume emissivity for degenerate nucleons is [57, 77]

_ 317’ 321

00 =555

Tﬁ F F + 8 F 20 F (pf1+p12)>”2< |pfn_p;2)|>
a.p, n+aPpP p (§a1 1+T(12 2) 2 _m ’

(4.59)

where p, and p are the Fermi momenta of the nucleons. If the matrix element is taken to be a
constant, F, = F = F, = F, =1, while in general these factors depend on the Fermi momenta. If in
addition g, =g, =g,, and p.=p =p_, the term in square brackets is 34a, pi/3 =11.33a, p;. For
nondegenerate and nonrelativistic conditions one finds the corresponding result [57]

5

128 ol T . . ] -
Onp = 5w i m [a,poF, + a,poF, + (3o, F, + o, F,)p,p.] . (4.60)

Taking equal Fermi momenta and couplings, and taking all F; =1, the ratio between the degenerate
and nondegenerate emission rates is

E=0,/ 0w = 3%7713/2(mNT/p12r)5/2 . (4.61)

The *“‘crossover temperature” between degenerate and nondegenerate conditions, defined as the
temperature at which £ =1, is

Tcmss = 0140pi/mN . (462)
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Taking the vacuum nucleon mass, m, =939 MeV, and a typical Fermi momentum for a supernova core,
pr=380MeV, thisis T, . =22MeV [57, 58]. This result would indicate that generally the nondegener-
ate rates were more appropriate [57]. However, in all of the emission rates one should use the effective
nucleon mass, my, rather than the vacuum value. A typical value relevant for supernova conditions is
mf=0.5m, (fig. 4.1). Hence the borderline between the emission rates is shifted to much larger
temperatures so that in a supernova core with T = (20-60) MeV neither asymptotic expression for the
emission rate is a good approximation. Hence, in a numerical investigation of a supernova collapse
including axion emission, one should use the analytic approximations of Brinkmann and Turner [57]
which are valid for all degrees of degeneracy (see below), in conjunction with an appropriate value for
the effective nucleon mass (see section 4.8.4 below). Of course, in order to discuss the cooling of old
neutron stars by axion emission, the degenerate emission rates are a good approximation.

4.8.3. Analytic approximation for the intermediate regime

Brinkmann and Turner [57] have provided a convenient analytic approximation for the emission
rates,

Q= (2567 a T Im ), F L ¥y, ¥0) + @ F I(yys v0) + G Fy + R aF)I(y,, 3,)] . (4.63)

The integral expression I(y,, y;) is analytically approximated

e Vte™\ 1.73x10° 6.92x10° 1.73x10°]"
+ /2 + + 2
A

*

Iy(y;, y;) = [2.39 X 105<e‘yi*"f + |
(4.64)

where y,=1+ |y, +y,|. The quantities y, (i=n or p) are defined to be u,/T where g, is the
nonrelativistic chemical potential; for extreme degeneracy, u = E.— my~ pi/2m,. The Fermi
momentum, number density, and chemical potential for a given species are related by

n=py/37° =2 m)(mT) *g(y), (4.65)
{ 17! ¢" for y<—1 (nondegenerate) ,

2312 (4.66)

r 1/2
u
=|du 75— =
8 Of e ~+1 13y for y> +1 (degenerate) .

For intermediate values, a good fit is provided by the Taylor expansion
gi(¥) =0.678 +0.536y + 0.1685y” + 0.0175y° — 3.24 x 10 °y* | (4.67)

which is good to better than 1% for —1 <y <5.

4.8.4. The factors F, and many-body effects

The main uncertainty in all of these expressions is the actual value of the factors F;, which are
complicated functions of the nucleon Fermi momenta and such parameters as the pion mass. If one
models the nucleon-nucleon interaction by a one-pion exchange potential, and if one neglects the pion
mass, m_ =0, explicit results for various degrees of degeneracy are given in table 4.2 according to ref.
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Table 4.2
Form factors F, according to ref. [57] if the pion mass is neglected, m, =0, for varying
degrees of degeneracy, characterized by B as defined in the text

Degenerate Nondegenerate
General expression (B=0) (B =1.0845)
F..F, -1 1 0.639
F, 1-3B 1 0.277
F, 1- %8 1 0.855

[57]. The remaining parameter is 8 = 3{(k - I)*) where k and [ are the momentum transfers in the direct
and exchange graphs, respectively, and the average is with regard to the directions of the axion
emission. For degenerate conditions and a nonvanishing pion mass some of the form factors were
evaluated by Ishizuka and Yoshimura [76], yielding exceedingly complicated results.

More importantly, many-body effects have not been rigorously taken into account although
undoubtedly they would change the matrix element. The most detailed discussion of this issue was
performed by Ericson and Mathiot [71] who claimed that correlation and polarization effects would
reduce the emission rates by an additional factor of about 1/2. These authors also claimed that p
exchange would lead to a further reduction by a factor of about 1/6. However, this effect would also
appear in nucleon—nucleon bremsstrahlung emission of pions in laboratory experiments for which the
one-pion approximation was found to be a good approximation [98, 62] if a pseudovector pion
interaction is used (section 2.3.3), and we shall ignore this factor.

We now collect the following effects that reduce the F, factors from their initially assumed unit
values. Nondegeneracy reduces them by a few tens of percent. (F, is reduced much more, see table 4.2.
However, it has a much smaller overall coefficient than the dominant F, term, and may be even less
important because of destructive interference between the neutron and proton coupling. Hence the
precise treatment of this term will never make much of a difference.) The effect of a finite pion mass
also reduces F; by a similar amount so that, taken together, a reduction by ~1/2 seems realistic.
Correlation effects probably reduce the rates by a further factor of ~1/2. This effect, however, may not
yet be fully understood, and it may be prudent to allow also for the possibility of an enhancement by a
similar amount. Hence it appears realistic to adopt

F=(1/2)" (4.68)

as a choice for F,, including a crude estimate of the uncertainty, a choice to be used in the intermediate
regime between degeneracy and nondegeneracy relevant for supernova cores.

Next, the effective coupling constants also change. However, Turner et al. argue [98], on the basis of
the nonlinear sigma model, that the combination of parameters, a’a,/my, should remain approximate-
ly constant at high densities. Mayle et al. [81] similarly find that, at three times nuclear density,

(ala,/my)*(a’a,/my) ' ~03-15. (4.69)

Therefore it appears realistic to multiply the emission rates with a further factor 0.7 x (1/2)" to
account for this effect.

If a’a/my stays approximately constant at varying density, the changes caused by using the
effective nucleon mass are best understood by considering the quantity m>Q(my, pg, T) for “nuclear
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Fig. 4.8. Change of the axion emission rate when using the effective nucleon mass, assuming that a_ a,/m>, remains constant, taking equal numbers
of protons and neutrons with identical Fermi momentum, p,., and equal axion couplings to n and p. We used the effective nucleon mass given by the
solid line in fig. 4.1, and the Brinkmann-Turner rates, eq. (4.63), with unit form factors. The curves are for T = (10-60) MeV in steps of 10 MeV.

matter”, i.e., for equal numbers of protons and neutrons, and with equal axion couplings. We have
calculated this quantity on the basis of the Brinkmann-Turner expression eq. (4.63) with unit form
factors, using the effective nucleon mass, mj( p;.), corresponding to the solid line in fig. 4.1, and have
divided it by the same quantity, taken with the vacuum nucleon mass. This ratio, [myQ(my, p, T)]*/
[msQ(my, pg, T)], is shown in fig. 4.8 as a function of p, for several temperatures. For large p,, this
ratio is unity because for the degenerate rates m3 Q is independent of the nucleon mass. For very low
Dg, it is unity because the effective and vacuum nucleon masses approach each other. In the
intermediate regime, relevant for SN cores, the emission rate increases by as much as a factor of ~3 if
one uses the effective nucleon mass.

In summary, the emission rates of the previous section, taking F, =1, must be multiplied by an
overall factor

Foore~0.3% (1/2)"? (4.70)

to account for the finite value of the pion mass, correlation effects, and the density variation of the
coupling constants. Moreover, the effective nucleon mass must be used in all expressions except in the
term @’ a,/m;, which should be kept fixed.

4.9. Primakoff effect and axion—photon mixing

4.9.1. Primakoff effect versus Compton scattering

If a pseudoscalar particle couples to electrons with a Yukawa coupling, g,., it necessarily also couples
to photons by virtue of a triangle-loop amplitude analogous to that shown in fig. 2.2. So long as all the
energies of the external particles (axion and photons) are far below the electron mass, the loop can be
integrated [328] to give an effective Lagrangian for the coupling of axions to photons of the form eq.
(1.1) with g, = —ag, /mm_. Of course, if the axion couples to other charged leptons or to quarks, this
expression will change, and even destructive interference between different amplitudes is possible, a
fact which constitutes the major uncertainty of axion bounds based on the photon coupling. For now we
assume that the electron coupling is the only axion interaction.

We may now consider the production of axions in the electromagnetic field of a charged particle (fig.
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Z

Fig. 4.9. Feynman graph for the Primakoff effect where a photon transforms into an axion in the electromagnetic field of a nucleus with charge Ze.

4.9), a process usually called the “Primakoff effect” after the analogous reaction involving neutral pions
which was originally used to measure the pion—photon interaction strength. One readily finds for the
differential cross-section on a particle with charge Ze and “infinite” mass,

dop/d) = (g5 Z a/8m)|k x p|*/ |k - p|*, (4.71)

where k is the initial-state photon momentum, and p is the final-state axion momentum. Taking
massless axions, assuming that the photon coupling arises solely from an electron triangle loop, and
taking a singly charged target, Z =1, this is

do,/dQ = (’a, /87°m>)(1 + cos 9) /(1 —cos ), (4.72)

where @ is the scattering angle, and a,, = g../47. In order to understand why one would want to
consider this higher-order process, we quote the corresponding low-energy Compton scattering cross
section (fig. 4.3),

do/df) = (aa, /4m>)(w/m, ) (1 —cos &), (4.73)

where  is the photon (or axion) energy. If the target for both reactions consists of electrons, there is, in
principle, an interference term. However, because the Compton effect involves a spin flip of the
electron, while the Primakoff effect does not, the low-energy amplitudes do not interfere. The
Compton effect, because of its spin-flip nature, is suppressed by a (w/m,)’ factor, while the Primakoff
effect, being of higher order, is suppressed by «”. In the solar interior, typical energies are of the order
w~ T=13keV so that w/m_~1/400, somewhat smaller than a =1/137 so that one may reasonably
expect that the Primakoff effect, in spite of being higher-order, is of great importance for axion
emission in stars.

However, apart from axion models where the direct coupling to electrons vanishes (and the coupling
to photons is due to the axion—pion mixing), the Primakoff effect turns out to be negligible compared to
the Compton effect if one properly takes account of the correlation effects in the presence of a stellar
plasma which strongly modify the vacuum cross section. This must be expected because the total
vacuum Primakoff cross-section diverges logarithmically, and this Coulomb logarithm is cut off, in a
plasma, by screening effects. For massive axions or pions, even the vacuum Primakoff cross-section is
finite because the particle mass provides a cutoff as one can easily derive from the general expression
eq. (4.71). However, for invisible axions with masses much smaller than the temperatures in a typical
stellar plasma, the screening or correlation effects are the dominant effect to moderate the Coulomb
divergence.

4.9.2. Primakoff emission rate
The Primakoff effect as an axion emission process in stellar plasmas was first considered by Dicus et
al. [64] for the case of standard axions where the dominant cutoff of the Coulomb divergence is
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provided by the axion mass of ~100 keV. A subsequent calculation by Fukugita et al. [74] for invisible
axions incorrectly used the “plasma mass” of the photons as the dominant cutoff. Later, Raffelt [87]
gave a correct derivation, using the appropriate ion structure factor, and subsequently gave a second
derivation, considering the fluctuating B - E term in the plasma as a random source for the axion field
[91]. Later, the Primakoff effect was calculated again by Pantziris and Kang [86], producing the
previous incorrect result with the plasma frequency as a cutoff. Similarly, Chanda, Nieves and Pal [61],
apparently not being aware of the previous work, calculated the emission rate on the basis of a
sophisticated but erroneous analysis, again finding the plasma frequency as the relevant cutoff scale.
The correct cutoff scale, of course, is the Debye screening length. This is physically obvious because it
is the finite reach of the Coulomb field of a given charge in a plasma which cuts off far-field effects.

Formally, the Primakoff cross section on a target Ze in a plasma is found by including the structure
factor, eq. (4.36), so that (do,/df2) = (dop/d2) S(k — p), leading to

plasma vacuum

(dop/d0) p1agma = (82,270 /87) [k X | |k — p|*(|k — p|* + &), (4.74)

an expression which does not diverge in the forward direction. The screening scale is

d7a
ions + kf) = T ioEr;s Z?nj : (475)

electrons

242
k' =k

The differential transition rate is found by summing over all targets so that

Ly DSl
- = n\——~ = .
d2 5 NdQ/pasma 3277 |k pl*([k - p|* + &%)

electrons

(4.76)

Therefore the ratio of the differential transition rate with screening over that without screening is
simply |k — p|%(Jk — p|* + k). Taking the solar interior as an example, a typical momentum transfer is
characterized by the temperature, 7 = 1.3 keV, while x ~9 keV, leading to a substantial suppression of
the emission rate. Without screening, the total rate diverges logarithmically, while our expression can
be integrated to yield the transition rate of a photon of energy o into axions,

I(w) = (82, Te’132m)[(1 + k*/40”) In(1 + 40™/k*) - 1] . (4.77)

This expression was averaged over photon polarizations so that the axion absorption rate in the same
medium is twice as large. In the limit of small frequencies, w <, the transition rate expands as
I.= gfwsz/ 167, completely independently of « and the density. However, while T < k in the Sun or
red giants, the major contribution of the emission rate comes from a region of the photon black-body
spectrum where k ~ w and we may not use this approximation.

The actual emission rate is obtained by folding I(w) with the black-body photon spectrum.
Assuming that the plasma frequency can be neglected, w, < T, one finds for the volume emissivity [87]

Op = (&,/4n)T'EA(EY), €=«I2T, (4.78)

X

fe)= ziﬂfdx [ + € In(1+ x7€%) = x'] == (4.79)
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Fig. 4.10. Function £°f(£°) as defined in eq. (4.79).

We show &°f(£%) in fig. 4.10. In the entire Sun, &° = 12 with a variation of at most ~15%. For a pure
helium red giant with p = 10" gem ™ and T=10"K it is £* =2.5. For a degenerate configuration with
arbitrary plasma frequency, the emission rate was calculated in ref. [89] where a tabulated form for the
relevant parameter range was given. In fig. 8.6 we show &, = Q,/p at T = 10° K as a function of density.

4.9.3. Primakoff effect versus plasmon decay

There has been considerable confusion in the literature about the possibility of a plasmon decay
process {74, 82, 86], y,,— ay. In ref. [91] it was pointed out that one must carefully specify the nature of
the participating excitations, i.e., whether they are transverse plasmons, v,, or longitudinal ones, vy,. In
a nonrelativistic, nondegenerate plasma, transverse plasmons propagate like massive particles with a
mass equivalent to the plasma frequency, w,, so that energy-momentum conservation prohibits such
processes as vy, —ay,, 2y,—a, or a—2y,. However, the plasmon decay and plasmon coalescence
processes, y,—ay, and vy<y,—a, are permitted because of the peculiar form of the longitudinal
dispersion relation.

We recall, however, that longitudinal plasmons are the result of coherent fluctuations of the electric
charge density. If w, < T, these modes are highly occupied and can be viewed as classical electric field
conEﬁgurations so that the process y,—a with v, in the initial or final state can be viewed as a transition
v,—a where E represents a classical electric field configuration. In other words, the electric field of a
longitudinal plasmon is but a specific superposition of the Coulomb fields of the charged particles in the
plasma. Hence these plasma processes are to be viewed as the Primakoff effect on a specific subset of
all possible charge configurations in the plasma. In the static limit, all electric field fluctuations are
contained in the static structure factor, S(¢q), which we used to derive the Primakoff emission rate which
thus already includes the plasma decay and coalescence process. This was discussed in detail in ref. [91]
where the Primakoff emission rate was rederived by considering the fluctuating, classical E - B term in
the plasma as a source for the axion field.

4.9.4. Axio-electrodynamics and axion—photon mixing

This discussion of the Primakoff effect and plasma processes indicates that one can get substantial
insight into the question of axion—photon transitions by considering the classical field equations for the
combined system of electromagnetism and axions (‘‘axio-electrodynamics’). The Lagrangian density is
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__1 w1 ) 2.2 1 v
L.=—iF, F"+30,a0"a-ma’)- 38, F, F"a, (4.80)
leading to the vacuum equations of motion [370, 406]

V-E=-g BVa, VxE=-3B, V-B=0,

4.81
VXxB=9JE+g, (BoatVaxE), (—af+V2)a=m§a+gayE-B. (4.81)

Thus the time-varying, random E - B term in a plasma is a source for the axion field. Also, a laser beam
propagating in an external static magnetic field is an axion source [407-413], axions propagating in
external fields are a photon source [83, 370, 414], and photons interacting with static axion field
configurations experience a nontrivial refractive effect [415, 416].

It is interesting that the transitions between axions and photons in an external field can be viewed as
a mixing phenomenon. While this applies to all such transitions including the galactic axion search
experiments (section 3.5) where one considers transitions between plane wave axion states and the
electromagnetic excitations of a microwave cavity, the mixing formalism is particularly illuminating for
transitions between plane wave states as, for example, in the propagation of a laser beam or solar
axions in an external magnetic field. Raffelt and Stodolsky [411] have derived a linearized wave
equation for the propagation of a plane wave in the z-direction with a frequency w in the presence of a
transverse magnetic field, B,

4éw 0 0

1 AL
w+ 2 0 7¢w g,B —1d, A||>=0, (4.82)
0 g.B -miw a

where A | represents the electromagnetic vector potential for the photon component with an electric
field vector perpendicular to the direction of propagation and the external B field, A represents the
orthogonal polarization state, and a is the axion component. The linearized equation is valid if all
entries in the mixing matrix are <w. The photon birefringence in external fields was derived from the
Euler-Heisenberg Lagrangian, not contained in eq. (4.80), and leads to the refractive indices eq.
(4.19), i.e., ¢ =(4a’/45)(B*m?). Equation (4.82) allows one to discuss axion—photon transitions
entirely along the lines of neutrino-mixing phenomena. In particular, if the magnetic field is as strong as
those believed to exist near pulsars, the photon terms in the mixing matrix exceed the axion term and
axion-photon transitions are strongly suppressed (section 10.7).

In a medium, the photon entries must be replaced by 4éw—2w(n, —1) and 7éw—2w(n; — 1),
representing the total refractive indices. If photon refraction is dominated by the plasma mass, w,, as
for X-rays in a low-Z gas such as hydrogen or helium, the mixing equation is

[mi( B ga”Bw)—iaz]<‘1")=o. (4.83)

20 \g, Bo -m’

One can choose the plasma frequency by adjusting the gas pressure such that w,= m,, allowing for
strongly enhanced transition rates in a solar axion detector [414]. Also, if the gas density varies in space
or time so that an adiabatic crossover between the axion mass and the plasma frequency occurs, one
may expect resonant transitions in the spirit of the MSW effect [411-413].
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4.10. Plasmon decay rate

We will discuss astrophysical bounds on neutrino magnetic and electric dipole and transition
moments in some detail. These moments w, and ¢, respectively, couple neutrinos directly to the
electromagnetic field by means of the effective Lagrangian eq. (1.3). This interaction allows for the
radiative decay, v,— vy, if m; <m, with a rate [417]

I(v;— vy) = (1U8m)(| ] + e, ) )m][1 = (m,/m )] . (4.84)

More importantly for our purposes, it allows for the “photon decay”, y, — v,v, (fig. 4.11), if the photon
dispersion relation in the ambient medium is such that this decay is kinematically allowed. We will only
use stars where the plasma is nonrelativistic and either nondegenerate (HB stars) or degenerate (core of
red giants before the helium flash, white dwarfs) so that the relevant dispersion relations are given by
eqs. (4.14)—(4.17). We will only consider the decay of transverse plasmons because the contribution of
longitudinal excitations is typically smaller, and at most of the same order as that of transverse
excitations [11]. Hence, neglecting longitudinal plasmons will render our bounds slightly more conserva-
tive without introducing a large error. For transverse plasmons we will always use the dispersion
relation

o =0, +|q (4.85)

with the plasma frequency eq. (4.12). This relation is a fair approximation to eqs. (4.13) and (4.14) if
we note that in white dwarfs and red giant cores v./5 ~ 0.13 where we have used the data given in table
4.1. With this simplification we can treat transverse plasmons kinematically like particles of mass w,,
allowing for a simple analytic result for the plasmon decay rate [130, 132]

Iy, =)= (py/24m) oy, (4.86)

3
o= Zl (gl + e, (4.87)

ij=

assuming that all neutrinos are sufficiently light. If neutrinos are Majorana particles, this summation
double-counts final states and a factor 1/2 must appear on the rhs. Also, for Majorana neutrinos, the
diagonal components vanish identically, u, = ¢, =0.

The resulting energy loss rate because of plasmon decay is

0, = (u/24mwyN, (4.88)

<
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Fig. 4.11. Feynman graph for plasmon decay into a neutrino pair.
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“
is the number density of thermal photons, or rather of transverse plasmons.
Even in the absence of anomalous dipole moments neutrinos couple to photons in the presence of a
plasma because of an amplitude involving real electrons in the intermediate state. The energy loss rate
from the decay of transverse plasmons is found to be [11]

Qstandard = FU(G}2:/487TZQ)0)8NY . (490)
The overall factor is
F,=[(1+4sin’0,)" + n(1 —4sin’6, )], (4.91)

where n is the number of neutrino families other than v, which are light enough to be emitted. For v,
the rate is so large (the first term above) because charged and neutral currents contribute. If the weak
mixing angle were exactly sin°@, = 1/4, only b, v, pairs would be emitted and F, = 1. Taking sin’6), =
0.23 and n =2 we find F, =0.925.

The ratio between the rates is

0,/ Q. andgara = 0-30u7,F, ' (10 keV/w,)’ , (4.92)

where g, = u,/10""*u, with the Bohr magneton, p, = ¢/2m,. Hence, in a red giant, these rates are
about equal for g, ~2 X 107 u,.

For completeness we also give the total electromagnetic scattering cross section of ultrarelativistic
neutrinos, v, + (Ze)— (Ze) + v; on a particle with charge Ze which is found to be [418, 419]

Uij = I/‘Li/' + £ij|222a[1n(tmax/tmin) - (S - mfarget)/sl ’ (493)
where s and ¢ are the usual Mandelstam variables. The minus sign applies if the initial-state neutrino
was left-handed (implying that the final-state is right-handed), and the plus sign in the opposite case
[420]. If neutrinos are Dirac particles, and if the CP-symmetry is conserved, there is no relative phase
between u,; and ¢, allowing for destructive interference in some experiments [420]. If neutrinos are

Dirac particles, the flipped states are noninteracting with respect to weak interactions, allowing one to
use the SN 1987A cooling argument (section 10.3).

5. Energy transfer

If axions or other particles interact so strongly that they cannot freely stream out of stars, they
contribute to the radiative transfer of energy. We review the general expression for the radiative opacity
of massive bosons, and give explicit expressions focussing on the Compton scattering process for axions.
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5.1. Radiative transfer by massive bosons

Following closely refs. {160, 161] we begin this discussion by deriving a general expression for the
radiative transfer by massive bosons. For a sufficiently short mean free path, /, of these particles in the
stellar medium, the radiation field can be taken to be approximately isotropic locally. The local energy
flux density is then given by F, = —(,/3)l, Ve, , where the index w indicates that this equation refers
to specific quantmes the total flux is obtained by integrating over energies. The velocity is
B, =[1-(m/w)]"" As before we use natural units with # = ¢ = k; = 1. Writing the mean free path
at frequency wasl, =(xk,p)" (mass density p) defines the opac1ty, , usually expressed in units of
em’g . In local thermal equilibrium the specific energy density for massive bosons is

£, = Bpn@ (0" —m2)! 227" 1), (5.1)

where g . is the number of polarization degrees of freedom. The total energy flux carried by our
particles is found by integrating over all frequencies,

=TT [ g Pute. (5.2)

where we have used Ve, = (d¢e,/dT)VT =¢, VT. For photons, one usually writes F = —VaT Y3k P
where aT" is the total energy density in photons (a = w7/15). This equation defines the Rosseland mean
opacity, .. For other bosons we define a corresponding quantity,

x

KaE4aT3<j dw E:’(-E—“)I : (5.3)

w

my,

In the stellar evolution equations one must substitute
-1 —1y-1
Kk, (K, +r,) (5.4)

in order to obtain the total magnitude of radiative transfer. In the large-mass limit, m, > T, one finds to
lowest order,

w2 () e[ o o) 9

where we have used y = Bima/ 2T so that the energy of nonrelativistic bosons is given by w = m_ + yT.

5.2. Opacity contribution of massive pseudoscalars

The radiative transfer by massive particles has been discussed in detail only for pseudoscalars which
couple to electrons with a Yukawa coupling, g,, corresponding to a fine-structure constant a, = ga/ 4.
While the mean free path for these particles is determined by various processes such as inverse
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bremsstrahlung, Compton absorption, Primakoff effect, and decay, a rough estimate for the conditions
in a main-sequence star is obtained by focussing on the Compton effect. The Compton absorption rate,
ae —e v, for massive pseudoscalars is found to be, if T <m, <m_,

4 2
L= M —9.5%10°s™ aa(

m 2 p#;l
3 (56)

1keV lgem™

where u, is the “mean molecular weight for the electrons”, defined such that n, = p/u.m, with the
atomic mass unit m, =1.661 X 107** g. With the mass fraction of hydrogen, X, this is ,ue_l =(1+ X)/2.
With (k,p) ' =1, =B, /T, this leads to an explicit expression

k,p=[2m) 445 (T/m )" ™' T, . (5.7)
Numerically, this is
k,=4.4x107 em® g o, 1] ' (m,/1keV) " (T/1keV)* 7 e™' T, (5.8)

to be compared with the standard Rosseland photon opacity, for example at the solar center of
2 -1
k,=llem"g .

6. Exotic energy loss of low-mass stars; analytic treatment

An analytic treatment of the effect of exotic energy losses (e.g., axion losses) on low-mass stars yields
several general resuts. The nuclear burning rate increases, shortening the stellar lifetime. If the energy
transfer in the star proceeds by radiation, the surface photon luminosity increases compared with a
standard star. For a convective structure, the surface luminosity decreases.

6.1. The equations of stellar structure

In chapter 1 we gave a general overview of how stars react to the energy drain imposed by the
emission of light particles such as axions or neutrinos. Compact stars such as white dwarfs or neutron
stars have no nuclear energy sources and are supported by the pressure of degenerate fermions. They
have a limited amount of thermal energy so that axions simply shorten the duration of the star’s cooling
phase. For “active” stars such as our Sun which support themselves by thermal pressure, essentially
being in virial equilibrium, this equilibrium is maintained by the self-regulation between pressure,
temperature, nuclear burning, and energy loss. The particle emission perturbs this intricate but stable
interplay, and the nonlinearity of the stellar structure equations requires a more subtle treatment to
understand the effect of energy losses. Simply put, such stars react by contraction, increasing the depth
of the average gravitational potential. By the virial theorem this corresponds to raising the average
kinetic energy of the nuclei, thus the temperature, and hence the nuclear burning rate, so that the axion
losses are compensated for. Assuming that the temperature and density dependence of the nuclear
burning rates is steeper than that of the axion losses, the structure of the star changes very little to
accommodate axion losses, even if these losses have a magnitude of the overall photon luminosity.

These qualitative considerations have been cast into a rigorous analytic treatment by Frieman,
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Dimopoulos and Turner [72], whose line of argument we shall closely follow. The structure and
evolution of a star is governed by the condition of hydrostatic equilibrium,

dp/dr=—-GM pir’, (6.1)

where p is the local pressure, G is Newton’s constant, p the local mass density, and M, is the total mass
interior to the radius r. The main assumption entering this equation is that of spherical symmetry,
neglecting such effects as rotation of the star, binary motion, or magnetic field contributions to the
pressure. Secondly, one invokes the principle of thermal equilibrium,

dL,/dr=4mr’ep (6.2)

where L, is the net flux of energy through a spherical surface at radius r, and ¢ is the effective nuclear
burning rate, in ergg 's ', so that gp is the volume energy generation rate in ergcm s . The
effective burning rate, i.e., the actual energy deposition to the local thermal heat bath is given by
€= Chue — & T Ex ’ (63)
where ¢, is the actual energy liberated in nuclear reactions, ¢, is the standard neutrino emission rate,
and ¢ represents a nonstandard energy drain such as axion losses or anomalous electromagnetic
neutrino production. The energy flux, L,, is driven by the large temperature gradient from the center to
the stellar surface. The relationship between L, and d7/dr is generally nonlinear, especially if
convection is the dominant form of transfer. However, for low-mass stars like the Sun it is believed that

the transfer of energy proceeds by radiation and conduction, in which case we have a linear equation of
energy transfer,

L,=—47r’(1/3xp) d(aT*)/dr (6.4)

where aT" is the energy density stored in the radiation field (in natural units @ = 7°/15) and « is the
opacity. It is generally given by

Uk =1/k, + 1k +1/k,, (6.5)

where «, is the radiative opacity, k, arises from electron conduction which dominates, e.g., in white
dwarfs, and «, accounts for exotic contributions such as that from “strongly” interacting bosons
discussed in chapter 5, or the conductive transfer of WIMPs or cosmions mentioned in chapter 1. Note
that («, p)~', having the dimension of length, is the Rosseland average of the photon mean free path.

6.2. Homologous changes

In order to study the effect of exotic energy losses on stellar evolution, we begin with the standard
case where ¢, =0 and 1/k, =0, and assume that a star of given mass and chemical composition has
established an equilibrium configuration. Then we imagine that axion losses are slowly “‘switched on”
and we ask how the previous equilibrium structure changes in reaction to these losses. In order to study
the new structure perturbatively, Frieman et al. [72] assumed that the new ‘“‘axionic configuration”
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arises from the standard configuration by virtue of a homology transformation, i.e., “the distance
between any two points is altered in the same way as the radius of the configuration”. Thus, if the new
radius of the star is given by R’ = yR with a dimensionless scaling factor y, then every point in the star is
mapped to a new position r' = yr. The mass interior to the new radius is identical with that interior to
the old location, M'(r') = M(r), and the chemical composition at r' is the same as that at r. The density
is transformed by p’(r') =y ’p(r), and from eq. (6.1) one finds that the pressure scales as p'(r') =
y*p(r). The equation of state for a nondegenerate, low-mass star is with good approximation given by
the ideal-gas law, p = R pT/u, where p is the average molecular weight of the electrons and nuclei and
R, is the ideal-gas constant. Since u'(r’) = u(r) by assumption, the temperature is found to scale as
T'(r') =y 'T(r), and the temperature gradient as d7’(r')/dr’ = y~> dT(r)/dr. Thus, under a homology
transformation, the density, pressure, and temperature profiles are unchanged aside from a global
rescaling.

The assumption that the star reacts to axion emission by a homologous contraction imposes
restrictions on the constitutive relations for the effective energy generation rate and the opacity. In
particular, for a chemically homogeneous star it implies that

exp"T", kxp'T? . (6.6)

For the opacity, Frieman et al. [72] took the Kramers law with s = 1 and p = —3.5, which is found to be
an accurate interpolation formula throughout most lower main-sequence interiors. Hence the local
energy flux scales as

L'(r)y=y ""L(r). (6.7)

The hydrogen burning rate, €., also has the required form with n =1, and for the pp-chain » = 4-6.
For now we shall assume that the energy loss rate, ¢ , follows the same proportionality, and we shall
ignore the standard neutrino losses, &,, which are small on the lower main sequence*’ so that

e=(1-6)¢e,,., (6.8)

where 8, <1 is a number which depends on the interaction strength of the new particles. From eq. (6.2)
we conclude that

L'(ry=y "™ (1= 8)L(r), (6.9)
leading to
y=(1_6x)l/(u+5/2)‘ (6.10)

Assuming 8, <1, Frieman et al. [72] then found for the fractional changes of the stellar radius,
luminosity, and interior temperature,

SRIR=-8/(v+5/2), BLIL=+8/(2v+5), OST/IT=+8/(v+5/2). (6.11)

*) Following general conventions we may equally imagine that'the standard neutrino losses are included in €, so that e = ¢, — &,.
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In other words, the star contracts, becomes hotter, and the surface photon luminosity increases, i.e.,
the star “overcompensates” for the new losses. Moreover, even if axion losses are as large as the
surface photon luminosity, 6, =1/2, the overall changes in the stellar structure remain moderate.
Hence, the predominant effect is an increased consumption of nuclear fuel at almost unchanged stellar
structure, leading to a decrease of the duration of the main-sequence burning phase of

drir~ -85, . (6.12)

The “standard Sun” is halfway through its main-sequence evolution so that a conservative constraint is
8 <1/2.

In general, the exotic losses do not have the same temperature and density dependence as the
nuclear burning rate, implying a breakdown of the homology condition. However, to lowest order these
results will remain valid if we interpret §, as a suitable average, i.e., §, = (¢ /¢, . )., For the pp-chain,
the temperature dependence of ¢,,. is not very steep, and since the stellar structure changes only very
little, &, can be computed from the unperturbed stellar model.

For a convective structure as is appropriate for main sequence stars with masses M < 0.3M_, or for
the cores of helium burning stars, a similar treatment leads to

SRIR=-8/(v+11/2), SLIL=-55/2v+11), ST/T=+8/(v+11/2). (6.13)

These stars also contract, and the internal temperature increases, but the surface luminosity decreases.

7. Axions from the Sun

The age of the Sun is directly established from radiochemical dating of terrestrial, lunar, and
meteoritic material, allowing one to derive first constraints on light particle emission. Its radius and
luminosity constrain the efficiency of any new contribution to the transfer of energy. The Sun may serve
as a source for terrestrial axion experiments which look for the appearance of X-rays in a strong
magnetic field. An existing germanium spectrometer, built to search for double-g decay, sets limits on
the solar axion flux. The absence of solar y-rays constrains the decay rate of particles produced in the
Sun.

7.1. Energy loss and energy transfer in the Sun; first constraints

The observed properties of the Sun allow one to constrain the interaction strength of axions and
other light particles [74, 87, 160, 161]. We stress that the constraints from other arguments that will be
discussed in the following chapters are generally much more restrictive so that the solar bounds are of
little practical interest. Still, in order to illustrate the general methods it is worthwhile to consider
particle emission from the Sun. We focus on the simple case of pseudoscalar particles with a mass, m,,
which couple only to electrons with an “axionic” fine-structure constant, a, = g-/4, where g, is the
Yukawa coupling for the pseudoscalar interaction. These particles can be produced by the Compton
process, ye —¢ a, by bremsstrahlung emission, ¢ (Z, A)—(Z, A)e a, and through a triangle loop
diagram by the Primakoft process (section 4.9). They can be absorbed by the inverse of these processes
and by their decay, a—~yy. However, since we are only interested in a simple estimate and an
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illustration of the arguments, we follow Carlson and Salati [160] and Raffelt and Starkman [161], and
focus on the Compton process and its inverse.

If these particles can freely escape, they drain the Sun of energy and cause its radius to shrink and its
surface luminosity to rise. However, these effects can be compensated for by a small change of the
initial helium abundance, a quantity which is not known and rather must be inferred from solar
evolution calculations. Hence, the observed luminosity and radius cannot serve to constrain solar axion
losses. In principle, a measurement of the solar neutrino flux would show any discrepancy between the
effective nuclear burning rate, e, which is related to the surface photon luminosity, and the actual
nuclear burning rate, g,,.. However, existing and future experiments are sensitive mostly to electron
neutrinos which can oscillate into other flavor states on their way from the solar center to the earth
[163] so that the measured v,-flux is not a reliable measure of €.

The only remaining criterion is the solar age of 4.5 X 10° yr which was established by radiochemical
dating of terrestrial, lunar, and meteoritic material (for a summary see refs. [421, 422]). This age is
about half the standard main-sequence lifetime of the Sun, and following chapter 6 we conclude that the
nuclear fuel consumption cannot exceed twice its standard value, i.e., an approximate constraint is
g, < £ where the effective burning rate in the solar center is e ~10ergg™'s '. The Compton volume
emission rate was given in eq. (4.43) for massless axions. The physical parameters of the solar core
were given in table 4.1 and one easily finds that the condition ¢, < ¢ leads to a, <107*". Including
bremsstrahlung emission and integrating over a standard solar model yields the axion luminosity [87]

L,=6.0x10"La, . (7.1)
Demanding L, < L, leads to a more restrictive constraint, , <1.7 X 10", For particle masses much in
excess of the internal temperature of ~1keV, the emission rate eq. (4.45) applies, and our simple
criterion yields [160, 161]

log a, < —19—4.5log(m,/keV) + 0.32(m,/keV) . (7.2)

These results are shown as the lower solid line in fig. 7.1.
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Fig. 7.1. Effects of massive, pseudoscalar particles on the Sun, taking only the Compton effect into account. Above the dashed line, the particles
would contribute to the radiative energy transfer, below they would freely escape and drain the Sun of energy. The cross-hatched region of
parameters is excluded by this simple argument. (Adapted from ref. [161].)
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If the particles are so “‘strongly” interacting that they do not freely escape, they contribute to the
radiative transfer of energy as discussed in chapter 5. In particular, the opacity contribution due to the
Compton process was given in eq. (5.8). The observed radius and luminosity of the Sun confirm the
standard value of the opacmes at least to within a factor of a few cm®/g so that a nomlnal criterion to
constrain axions is k' < «, . A typical value for the radiative opacities is x, ~ 1.1 cm” ’/g, leading to
the constraint [160, 161]

log a, 22.3-0.32(m,/keV) + 0.5log(m_/keV) . (7.3)

This line is the upper solid curve in fig. 7.1. The division line between the regime of free escape and the
“trapped’ regime is also easily obtained and is shown as a dashed line. Of course, for parameters near
the dashed line, neither the concept of energy transfer nor that of free escape do rigorously apply. Of
course, this part of the parameter range is in the middle of the excluded regime and thus of no further
interest.

7.2. Results from a germanium spectrometer

The sun can also serve as a source for axions or other pseudoscalars which one can attempt to
measure in a terrestrial detector. If axions couple to electrons as in our above example, they would
interact with the electrons in a germanium spectrometer which was designed to detect neutrinoless
double-B decays [423]. On the basis of our discussion section 4.6.1 one can easily calculate the axion
spectrum from bremsstrahlung emission, which is the dominant process, and on the basis of section 4.4
the Compton contribution. The absorption in the detector is due to the axio-electric effect (bound-free
absorption) discussed in section 4.7. Assuming that axion emission is only a minor perturbation of the
Sun one can compute the solar axion flux at the earth on the basis of a standard solar model. From the
absence of a signal in their germanium spectrometer, Avignone et al. [423] found a bound on the
axionic fine-structure constant of e, <0.8 X 10™*". Of course, if axions would saturate this bound, axion
emission would be a major energy drain of the Sun, excluding this parameter range (section 7.1).
Moreover, the axion bounds to be discussed in the following chapters are much more restrictive:
a,=0.7x 107°" In other words, the possibility of detecting solar axions by this method is excluded by
many orders of magnitude.

7.3. A magnetic conversion experiment

If axions or other (pseudo-) scalar particles do not couple to electrons such as hadronic axions, the
bounds on the electron coupling do not apply. In this case axions are produced in the Sun only by the
Primakoff process (section 4.9), i.e., the axion—photon coupling eq. (1.1) allows photons to transform
into axions in the fluctuating electric fields of the solar plasma. The transition rate was given in eq
(4.77). The lifetime of helium burning stars (horizontal branch stars) sets a bound g, =10~ " Gev !
the axion-photon coupling (chapter 8), leading us to deﬁne 810= 8y X 10" GeV. The axionic energy
drain of the Sun is found to be [87] L, =1.7X 10" LC g7, so that axion emission is known to be only a
small perturbation of the Sun. An analytlc approximation to the differential axion flux at the earth,
obtained from integrating over a standard solar model, is found to be [414]

do  , 4.02x10" (E/keV)’
d—E“:g”’ cm’skeV el 108KV

(7.4)
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The total number flux at the earth is ®, =g}, 3.54x 10" cm™*s™', with an average energy (E,) =
4.2 keV.

Following the original work of Sikivie who discussed the possibility of detecting solar axions by
conversion into X-rays in the presence of a strong magnetic field, i.e., the inverse of the Primakoff
production process in the Sun, Van Bibber et al. [414] proposed a practical design for such a detector,
involving a large superconducting magnet such as that of the decommissioned Fermilab bubble
chamber. The most important feature of that proposal is to fill the conversion volume with a low-Z gas
such as H, or He which causes the photons to propagate like massive particles. If one adjusts the gas
pressure such as to match the effective photon and axion masses, the conversion probability can be
resonantly enhanced (section 4.9.4). In refs. [411, 414], photon—-axion oscillations in the presence of a
medium, with or without absorption, were discussed in detail. According to ref. [414], the solar axion
flux would be detectable over about a decade in g, values above the HB star bound. While this
experiment is not currently pursued in the U.S., there appears to be a new effort to perform this kind of
experiment in the Soviet Union [424].

It is interesting that the range of parameters that can be probed with this experiment is not excluded,
at least not rigorously excluded, by any other method. Especially the range of parameters excluded by
SN 1987A (chapter 10) does not seem to reach to such low values of the Peccei—Quinn scale because of
axion trapping (section 10.6), i.e., there appears to be a window of allowed values for the axion mass or
Peccei—Quinn scale between the HB star bound (chapter 8) and the SN 1987A bound. Of course, such a
window can only exist for hadronic axions which do not couple to electrons.

7.4. Radiative particle decays and solar y-rays

If elementary particles produced in the Sun are radiatively unstable, their decay photons will
contribute to the solar X- and vy-ray spectrum. This argument allows one, for example, to derive a
bound on the radiative decay time of electron neutrinos of , /m, >7 x 10" s/eV [189, 190], about eight
orders of magnitude more restrictive than direct laboratory bounds. Equally, one can constrain the
radiative decays of axions produced in the Sun. Of course, the decay width of very light axions is so
small that no useful results can be extracted. For axion masses above ~10keV the plasma production
processes are seriously suppressed, but axions are still produced by nuclear reactions. A particularly
useful case is d + p— *He + y(5.5 MeV) which is part of the standard pp reaction chain in the Sun and
is therefore known to occur at a total rate of 1.7 x 10**s™" in the Sun. The final-state photon can be
replaced by an axion or other boson in a certain fraction of all cases. This method among others was
used to rule out the standard axion [188].

8. Red giants and horizontal branch stars

The evolutionary pattern of low-mass stars is well understood, and supported by detailed observa-
tional data, notably by the color-magnitude diagrams of open and globular clusters. Excessive energy
losses by particle emission from red giants could suppress helium ignition, contrary to the observed
existence of horizontal branch (HB) stars. Even if helium ignites, the helium burning lifetime would be
shortened, a quantity that is measured by the observed number of HB stars in open and globular
clusters relative to stars in other phases of evolution. Also, a delay of helium ignition would lead to an
increased luminosity at the tip of the red giant branch (RGB), a quantity that can be directly measured.
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These considerations lead to some of the most powerful bounds on axion couplings and neutrino
electromagnetic properties.

8.1. The general agenda

One of the most sensitive tests of stellar evolution theory is provided by the color-magnitude
diagrams of stellar clusters, notably of globular clusters, an example of which is shown in fig. 8.1. In our
galaxy, 131 globular clusters are known [425], each of which consists of many stars, in some cases tens
of thousands, providing a rich sample of coeval stars with approximately equal chemical composition.
Globular clusters are the oldest objects in the galaxy and hence formed at least 10 Gyr ago, with age
estimates derived from their intrinsic properties varying between about 12 and 18 Gyr. The lifetime of
stars depends mostly on their mass with lower-mass stars living longer, a crude scaling being ¢, . <M
[426]. Therefore the stars in globular clusters which are still actively burning have masses M < 0.80M,,
where M =2X 10% g is the solar mass unit. In other words, we have detailed and statistically
significant information on the evolution of low-mass stars, which are therefore ideal to test variations of
stellar evolution theory that would be caused by “exotic” particle emission.
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Fig. 8.1. Color-magnitude diagram of the globular cluster M3 according to ref. [460], based on the photometric data of 10 637 stars. According to
ref. [427], the following classification has been adopted for the various evolutionary stages. MS (main sequence): core hydrogen burning. BS (blue
stragglers). TO {main sequence turn-off): central hydrogen is exhausted. SGB (subgiant branch): hydrogen burning in a thick shell. RGB (red giant
branch): hydrogen burning in a thin shell with a growing core until helium ignites. HB (horizontal branch): helium burning in the core and hydrogen
burning in a shell. AGB (asymptotic giant branch): helium and hydrogen shell burning. P-AGB (post-asymptotic giant branch): final evolution from
the AGB to the white dwarf stage. Note that on the horizontal axis, the color, the surface temperature increases to the left. The brightness measure
on the vertical axis are “'visual magnitudes”, i.e., they measure the logarithmic luminosity in the visual spectrum. The HB bends down toward the
left, i.e., towards hotter stars. This decrease in visual brightness of hotter HB stars reflects that more and more energy is emitted in the ultraviolet
spectrum. In “bolometric magnitudes™, i.e., after correcting for the finite window of the photographically observed spectrum, the HB turns out to
be truly horizontal: all stars have the same total luminosity within a narrow range. (I thank A. Renzini for providing me with an original for this
figure.)
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The neutrino, axion, and other particle emission rates are generally steeply rising functions of
temperature and density so that one may think that their effect would be much more pronounced in
stellar objects with hotter and denser interiors than the relatively modest conditions encountered in
low-mass stars. Under more extreme conditions, however, the standard neutrino luminosity is im-
portant which, at high temperatures and densities, typically is an even steeper function of these
parameters so that it is more difficult, e.g., for axions to compete. Evolved low-mass stars, i.e., red
giants, horizontal branch stars, and white dwarfs, are objects which emit most of their energy in
photons, but are at the borderline where standard neutrino emission becomes important. For example,
standard neutrino losses are thought to delay the helium flash, but only by an amount on the borderline
of being detectable in the color-magnitude diagrams of globular clusters. In other words, evolved
low-mass stars are objects where axion emission is most likely to make an observable difference relative
to the standard evolution picture.

This reasoning breaks down when the conditions are so extreme as in the core of a collapsing star
where neutrinos are actually trapped. In this case, again, axion emission can make a difference precisely
if axions are more weakly interacting than neutrinos, and very useful constraints were derived from
SN 1987A (chapter 10). In summary, the most interesting cases are not the conditions where axion
emission is largest, the most interesting cases are where axion emission makes the largest difference in
astronomical observables.

8.2. The evolution of low-mass stars

The evolution of low-mass stars [427, 428] consists of several physically distinct phases with
characteristic surface properties (luminosity, temperature, and radius). When these stars form, they
contract until their interior is so hot that hydrogen burning ignites, replenishing the thermal energy
which the star constantly loses because of its surface radiation. At this point, the star reaches an
equilibrium state which is largely governed by the virial theorem. This means that further contraction
would lead to further heating, increased nuclear burning, further heating and pressure increase, and
hence expansion. Expansion away from the equilibrium position would lead to cooling, a drop in the
burning rates, a further loss in temperature and pressure and hence to contraction. This subtle interplay
is described by the stellar structure equations discussed in chapter 7. It is clear that stars with a larger
mass have a larger average gravitational potential, hence a larger internal temperature because of the
virial theorem and hence larger burning rates and a larger luminosity. A crude scaling is given by
Lo M* [426].

It is customary to discuss the surface properties of stars by means of the Hertzsprung—Russell
diagram, or its observational counterpart, the color-magnitude diagram. On the vertical axis one shows
luminosity (or brightness), on the horizontal axis surface temperature (color) with the temperature
decreasing to the right. In such a diagram, the hydrogen burning stars occupy a diagonal band, the
main-sequence (MS) shown in fig. 8.1. Different loci on the main-sequence are occupied by stars with
different mass. In fig. 8.2 we show the evolutionary track of a low-mass star (M = 0.8M,,) as well as its
luminosity evolution. During the MS evolution, the luminosity and surface temperature stay approxi-
mately constant, so that a star of fixed mass will approximately stay at its location on the MS for the
entire hydrogen burning phase. The inner structure of the Sun as an example for a MS star is shown in
fig. 8.3a.

Once the hydrogen in the center is exhausted, a helium core begins to form which is supported by
electron degeneracy pressure, while hydrogen burns in a shell. This development is accompanied by
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expansion of the surface layers, leading to a reduced surface temperature at approximately the same
luminosity, i.e., the evolutionary track turns right (fig. 8.2). Stars in this phase are known as subgiants
(SG). Such stars are characterized by two opposing trends: a contracting inner core which becomes
more and more degenerate, and an expanding envelope.

As the degenerate helium core grows in mass (which means that its radius actually shrinks), the
gravitational potential at its surface will be dominated by its mass, not by the total mass of the star; the
contribution of the extended envelope becomes less and less important. Above the degenerate helium
core, however, the medium still supports itself by thermal pressure against the gravity of the core which
thus determines the temperature and hence the hydrogen burning rate. Thus, as the core mass grows,
the core temperature and hydrogen luminosity increase while the envelope further expands with
decreasing surface temperature; the star moves up the red giant branch (RGB), see figs. 8.1 and 8.2.
Thus, while the conditions at the center of a MS star are determined by the global properties (the total
mass) of the star, the red giant properties are determined by the core mass, so that different loci on the
RGB are determined by the core mass while being largely independent of the total mass. Different stars
along the RGB in fig. 8.1 are stars with slightly different total mass which determined their MS lifetime
and hence the starting time of their red giant evolution, but because their properties are mostly
determined by their core mass, they can be viewed as tracing out the evolutionary track of a single star,
yielding a close correspondence with the single-star evolutionary track in fig. 8.2.

Eventually, when the core mass has reached a value ~0.5M, the density and temperature are so
high (p ~10°gem™ and T~ 10°K) that the triple alpha reaction, 3 ‘He— ">C, becomes more and
more important. The rate for this reaction is extremely sensitive to density and temperature,
approximately &, «p’T*, so that one may actually speak of a very specific “ignition” point. The
pressure, however, is still dominated by degenerate electrons so that the energy produced by helium
burning does not, at first, lead to cooling as the core begins to expand; the nuclear reactions run away,
an event called the “helium flash”.

A self-regulating equilibrium is achieved only after the core has expanded to a density of
~10* gcm ™, although it remains essentially at the same temperature, 10° K. The core is now very
similar to a MS star, except that helium burns in its center rather than hydrogen, and that the burning
rate is governed by the core mass which plays the role of the total mass in a MS star. Hydrogen still
burns in a shell, and the envelope is still expanded, so that the luminosity of the shell source is still
determined by the core mass. Because of the core expansion during the helium flash, the gravitational
potential is smaller, and hydrogen burning correspondingly smaller, although it still dominates the total
luminosity of a helium burning star (fig. 8.3b). Helium ignition, therefore, leads to a dramatic reduction
of the total luminosity and hence to a sudden break of the RGB which is thus characterized by a fixed
maximum luminosity at its tip. We note that a helium flash occurs only for stars with M <2.2M
because more massive stars never develop a fully degenerate helium core.

The ability of the envelope to transport energy depends on its opacity, which in turn is a sensitive
function of the “metallicity”, i.e., the abundance by mass, Z, of all elements heavier than helium. For
the Sun, Z =0.02, while for typical globular clusters, which belong to an older generation of stars
(population 1), Z ~107>°~10"* Moreover, stars lose mass along the RGB so that typical total masses
of globular cluster stars after the helium flash are ~(0.65-0.70)M,. For such conditions the radius of
the envelope of helium burning stars and hence their surface temperature is extremely sensitive to the
total mass of the envelope, its metallicity, and the luminosity which it has to carry. These stars,
therefore, occupy a horizontal band in the Hertzsprung—Russell diagram, called the horizontal branch
(HB), see fig. 8.1. For stars in open clusters which are of a more contemporary generation (population
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I) like our Sun, the helium burning stars do not spread out in surface temperature and are thus all
contained in a “clump” in the Hertzsprung—Russell diagram. Apart from a higher metallicity and larger
total mass, these “clump giants” are physically equivalent to HB stars.

During the HB evolution, the hydrogen burning shell moves further out, and the core grows.
However, because it is not degenerate, its radius also grows, and the hydrogen source actually
decreases with time. Conversely, the central helium source increases, and the total luminosity remains
almost fixed during the HB evolution (fig. 8.2). In the core, energy is transported by convection. This
entails that nuclear fuel is dredged to the center of the core, substantially increasing the amount of
helium available for burning. This can be appreciated by comparing the composition profile in fig. 8.3b
with the luminosity profile. The central burning source is characterized by the small region where the
luminosity rises from 0 to about 25L,, while the convective region is where the helium abundance, Y,
has been depleted. The observed lifetime of HB stars cannot be understood without this convective
supply of fuel.

When helium in the center is exhausted, the star makes a transition to a double-shell configuration
with helium and hydrogen burning in a shell each, leaving behind a carbon-oxygen core. This
development is accompanied by a second luminosity ascent along the asymptotic giant branch (AGB).
The further evolution is fast and complicated, with the two shells interacting and thermal pulses
occurring. Eventually, these stars become white dwarfs, i.e., completely degenerate stars with no
nuclear fuel left to burn.

The physical characteristics of these different evolutionary phases of low-mass stars are summarized
in table 8.1.

8.3. Suppression of the helium flash by particle emission

8.3.1. General argument
If the core of a red giant near the helium flash produces a large flux of neutrinos or other particles,
the resulting cooling will prevent helium from igniting until larger densities have been achieved, i.e.,

Table 8.1
Physical characteristics of the main evolutionary phases of low-mass stars. The properties of red giants are understood to be near the
helium flash

Main sequence
(MS)

Red giant branch
(RGB)

Horizontal branch (HB)
and “clump giants”

Energy source

Duration
Luminosity

Luminosity
determined by

Core mass

Central density
Central temperature
Conditions near center
Energy transfer

near center

central hydrogen

~10" yr
1L,

(our Sun)
total mass

3

~10* gem”
~10K
nondegenerate

radiation

shell hydrogen

~10%yr

~2000L,.

(at helium flash)
core mass

(grows along RGB)

~0.5M.

(at helium flash)
~10°gem
~10°K
degenerate

electron conduction

shell hydrogen (dominates)
central helium

~10% yr

~50L.,

(M~0.65M_, Z=0.001)
core mass at helium flash
(universal apart from weak
dependence on metallicity)
=0.5M,,
~10"gem
~10°K
nondegenerate

convection
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until the core has grown to a larger mass. The standard neutrino losses, for example, cause an increase
of the core mass of ~0.03M, [429]. Since electron conduction is efficient at transporting heat from the
hydrogen burning shell into the center, and since the core also heats by the release of gravitational
energy because of its contraction due to growth, the energy loss rate must be efficient enough to
compete with these heating mechanisms. For a sufficiently large energy loss rate the helium flash will be
delayed so much that the hydrogen burning front reaches the stellar surface, i.e., the helium flash would
never occur and the star would directly become a helium white dwarf after ascending the RGB,
contrary to the observation of HB stars and “clump giants”.

8.3.2. A specific case: the electron coupling of pseudoscalars

This argument was first advanced by Dearborn, Schramm and Steigman [63], who followed the
evolution of red giants numerically, incorporating axion emission in Dearborn’s stellar evolution code.
They gave bounds on the axion-electron coupling and on the axion-photon coupling, which were
required to be so small that helium would ignite in their calculations. Unfortunately, the correct
emission rates had not been calculated at the time, and the Primakoff rate, relevant for the
axion-photon coupling, was overestimated by a large factor, invalidating the bound on the axion-
photon coupling. Later, the red-giant evolution calculations were repeated with the correct Primakoff
emission rates by Raffelt and Dearborn [89] who found that the helium flash was never suppressed.
However, they derived a new bound on the axion—photon coupling because axion emission would
decrease the HB lifetime (section 8.5).

In order to constrain the coupling of axions or other pseudoscalars to electrons, Dearborn et al. [63]
used the following expression for the bremsstrahlung emission rate, e~ +(Z, A)—(Z, A)+e~ +a,

£=334x10"ergg™'s7 glp T2 e ™', (8.1)
where g, is the axion—electron Yukawa coupling, p, is the density in 10°gem™ and T, is the
temperature in 10°K, w, is the plasma frequency, and we have assumed a pure helium plasma,
appropriate for the core of a red giant before the helium flash. They also gave an expression for the
Compton emission rate, but it is negligible in a red giant core compared to bremsstrahlung. On the
basis of this rate they found that the helium flash was suppressed unless g, <1.4x 10™",

The correct emission rate was discussed in section 4.6.2, and using eqs. (4.51) and (4.54) we find

e=121x10"ergg™'s™' g’T}, (8.2)

with a different temperature and density dependence. Therefore it is not obvious what one would find if
one would incorporate the correct emission rate into a stellar evolution code. However, in order to
derive an estimate of the parameter space that is likely to be excluded by the helium ignition argument,
we note that w)/T ~2 near the center of a red giant, and taking p, =1 and T, = 1, Dearborn et al.’s
emission rate is a factor of ~4 larger than the correct rate. Hence their bound on g, must probably be
relaxed by a factor of 2 so that helium ignites if g, <3 x 107",

However, for this bound to apply one must assume that axions or other pseudoscalars freely escape
from the red giant core. On the basis of egs. (4.4) and (4.51) and noting that the volume emission rate
is O = gp we can easily estimate the inverse mean free path to be

™! ~2a’a,Z’Fplm’m A (8.3)



70 G.G. Raffelt. Astrophysical methods to constrain axions and other novel particle phenomena

with the axionic fine-structure constant, «, = g-/4m. Taking a density of 10° gem  a core radius of
R,,.=10"cm, and using R/l <1 as a criterion for axions to escape freely leads to the requirement

core core

g, <6x 107" Therefore the range
3x10 =g s6x1077, (8.4)

is excluded by the helium ignition argument. For values smaller than the lower bound, axions would not
suppress the helium flash, for values larger than the upper bound, they would not freely escape and
contribute to the transfer of energy, possibly even helping helium to ignite.

It is also of interest to consider pseudoscalars with a nonvanishing mass, m,. These particles can be
considered massless for the purpose of this argument if m, < T ~8.6keV. For larger masses, the
emission rate will be suppressed by a Boltzmann factor, e ™', whence the “cffective coupling
constant” is estimated to be g, ¢~ "<*"_ Similarly, the mean free path is reduced by the nonrelativistic
velocity so that, for the purpose of reabsorption, we have to substitute a,— a,(m,/T)"". Thus the

excluded regime is estimated to be
-12.5+0.025m,,, <log(g,) = —-6.2—-0.25log(1 +0.12m,,,) , (8.5)
where m,,, = m_/keV. This excluded parameter range is shown in fig. 8.4.
Considering specifically DFSZ-axions with three families of quarks, the interaction strength with
electrons and the axion mass are related by [see table 2.1 and eq. (2.32)]

g,=2.8x10"""m_, cos’B, (8.6)

where m,, =m_/eV and 0= 8=90° is a free parameter of the model. For =0 we show this
relationship as a short-dashed line in fig. 8.4. The excluded range in terms of m,, and 8 is shown in fig.

8.5.
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Fig. 8.4. We estimate that the hatched area of parameter space is Fig. 8.5. The hatched area of DFSZ-axion parameters is excluded by
excluded by the helium ignition argument. Above the long-dashed the helium ignition argument. As in fig. 8.4, the long-dashed line
line, the pseudoscalars would not escape from the red giant core, marks the borderline beyond which axions would not escape from the
below the solid line, they would not drain enough energy. The red giant core, while beyond the solid line the energy drain is too
short-dashed line is the locus of parameters for DFSZ-axions with small to prevent the helium flash.

cos’B = 1.
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8.4. Reduction of the helium burning phase

8.4.1. General argument and its applications

If the helium flash occurs in spite of particle emission, the further evolutionary path can still change
substantially. When the star has found its new equilibrium structure with a helium-burning core it will
still emit particles. This emission may be larger or smaller compared to the red giant before the flash.
For example, the plasmon-decay emissivity of neutrinos, vy, —v,.b,, is essentially proportional to
wg e T and since the plasma frequency, w,, is much smaller after the helium flash than before, the
neutrino losses drop by several orders of magnitude. Conversely, the emission of hadronic axions by the
Primakoff effect is strongly suppressed by screening effects which are much more severe in the red giant
before the flash than in the core of a helium-burning star afterwards so that axion emission rises
substantially (fig. 8.6). In either case, the energy drained by the particle losses must be supplied by the
nuclear reactions.

According to the analytic treatment of Frieman et al. [72] (chapter 6), a star adjusted to axion or
neutrino losses has a very similar structure compared with a no-loss model because it takes only a small
contraction to increase the temperature and thus the nuclear burning rates enough to provide for the
particle flux. Hence the dominant effect of the drain will be an increased nuclear fuel consumption,
reducing the helium burning lifetime, ¢, by a factor L, (L, + L, ) where L, is the exotic particle
luminosity while L, is the total energy production of the core if there were no particle losses,
L, ~15L. The actual reduction will be even larger if particle emission has delayed the helium flash so
that the core of the helium burning configuration is larger than standard, further shortening ;..

Observationally, the helium-burning lifetime of population I stars, i.e., stars of the most recent
generation like our Sun, was determined by Cannon [430], comparing the number of “clump giants”
(helium burning stars) in the open cluster M67 with the number of stars per luminosity interval near the
MS turnoff. He found t,,, = 150 X 10° yr, with a large statistical uncertainty, however, because of the
small total number of clump giants, N =5. Tinsley and Gunn [431] derived t,,, = (127 +29) x 10° yr
from low-mass giants of the old galactic disk population. This is in full agreement with the evolutionary

k4
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Fig. 8.6. Energy loss rates per unit mass for a pure helium plasma at T=10*K as a function of density. The solid line is the Primakoff axion
luminosity for g, = 107'° GeV ', the dashed line is the anomalous neutrino plasmon decay luminosity for a neutrino dipole moment of 10™" ;. If
multiplied with M, ~0.5M_, these curves yield the particle luminosity of the core of a red giant before the helium flash (p ~10° gem ) or of a
helium burning star (HB star or clump giant, p ~10* gcm ). Therefore the Primakoff axion luminosity of the core increases during the helium
flash, neutrino emission decreases.
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calculations of Sweigart and Gross [432] who found ¢,,, ~ 10% yr, the precise value depending on the
core mass, total mass, metallicity, and helium content of the envelope.

This agreement led Raffelt and Dearborn [90] to point out that a reduction of ¢;,, by a factor of ~2
was conservatively excluded on the basis of these observations. In other words, the core luminosity of
exotic particles, L , must not exceed the standard nuclear energy production rate of the core, L, .
Taking a typical core density of 10* gcm ™ and a temperature of 10° K, the particle emission rate at
these conditions is thus constrained by

g, <100ergg 's '. (8.7)

This is a universal criterion that can be applied to a large variety of cases. Indeed, this argument was
considered to be a standard result even before it had been put on a firm observational basis, and it was
used to constrain the properties of neutrinos [69, 90, 132, 134, 135], axions [56, 64, 65, 73, 74, 86, 89],
majorons {101], light supersymmetric particles [69, 122, 123], and of light scalar and vector bosons [116,
117, 119]. Some of these results are summarized in table 8.2. The bound on the Yukawa coupling of
pseudoscalars thus derived is somewhat less restrictive than the above result based on the helium
ignition argument.

It is important to recall that our general argument was based on a comparison between number
counts (i.e., the evolutionary speed) of stars during the helium burning phase versus the MS near its
turnoff. Hence we assumed implicitly that the MS evolution remains unaffected for particle parameters
which substantially affect the helium burning configuration. This assumption is justified as long as the
emission rates are steeply rising functions of temperature and density.

The duration of helium burning can also be constrained by the “R-method”” where one compares the
number of HB stars in a globular cluster with the number of red giants with luminosities exceeding the
HB luminosity [433]. While this method allows for a more precise determination of ¢, it is a much
more complicated argument because particle emission effects both quantities that are being compared,

Table 8.2
Constraints on the properties of light particles based on the observed duration of helium burning in low-mass stars,
i.e., based on eq. (8.7)

Particle property Dominant process Constraint References
Yukawa coupling, g, (g,). of bremsstrahlung g <3x10" {116, 117
scalar {vector) boson, ¢. e ta—ate +¢ g<2x10t

to electrons

Yukawa coupling, g, (g,). of Compton g <11x10 " [116, 117]
scalar (vector) boson, ¢, yta—atd 2.<0.8x107"

to baryons

Photoproduction cross section photoproduction 0, <3%x10" em’ [119]

of Van der Velde's [118} X° boson yta—a+X'

Yukawa coupling, g, of Compton g, <08x10°" [56. 64, 65, 73]
pseudoscalar boson, ¢, yte —e t+o (74, 86, 87)
to electrons

Effective coupling, g .. of Primakoff g, <1Xx10° YGev' [87, 89]

pseudoscalar boson, ¢,
to photons

Neutrino dipole moment

ytg,e )=lae)td

plasmon decay
Yo = VY

pm, <1X 107“:‘"3

[90, 132, 134, 135]
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although by different amounts. This method, therefore, does not allow one to derive a simple and
general argument.

8.4.2. A numerical result: bounds on the axion—photon coupling

The general argument presented in the previous section was used by Raffelt and Dearborn [89] to
derive a bound on the axion—photon coupling. Starting with the Lagrangian eq. (1.1) they derived the
Primakoff emission rates for all conditions relevant during the evolution of a low-mass star from the MS
to the AGB, and they included this rate in Dearborn’s stellar evolution code. They followed the
evolution of a 1.3M, star with an initial helium abundance, Y =0.25, and a metallicity, Z =0.02,
parameters that were motivated by the properties of the stars in the open cluster M67, a case that had
been considered by Cannon [430] to derive an observational result for the helium burning lifetime (see
section 8.4.1). The results of this numerical calculation are summarized in table 8.3 where we list the
luminosity at the helium flash, L, the core mass at the flash, M_, identical with the core mass used for
the following helium burning phase, the time it took to reach the helium flash from the zero-age MS, ¢,
and the duration of helium burning, ¢,,.. Also, in fig. 8.7 we show the internal structure of this star on
the RGB near the helium flash in the absence of axions, and with axions for g, =10~ GeV .

It is important to note that the helium flash always occurred; it could not be suppressed even by
unreasonably large values of g, . This is understood because the Primakoff emission rates are strongly
suppressed in the dense core because of correlation effects. For g, =1 X 107 GeV ™', the core mass
increased only by about 0.014M,, while ¢, was reduced by almost a factor of 1/2. This behavior is
understood because the core expands during the helium flash, its density dropping by 2 orders of
magnitude until it reaches its helium burning equilibrium. At this reduced density at almost the same
temperature the Primakoff emissivity is much larger, explaining why the helium burning phase is much
more affected than the red giant phase. To illustrate this point we show, in fig. 8.6, the Primakoff
emission rate from a pure helium plasma at 7=10°K as a function of density. Because the core mass
before and after the helium flash is the same, this emission rate per unit mass is a direct measure of the
total luminosity of the core.

In summary, the work of ref. [89] establishes a bound

., <1x107"°GeV™!, (8.8)

on the basis of the observed duration of helium burning, superseding refs. [61, 63, 65, 73, 74, 86] where
incorrect emission rates had been used.

Table 8.3
Properties of a 1.3M,, star (Y =0.25, Z=10.02) at the helium flash (tip of the RGB), and
helium burning lifetime after the flash, t,,,, for several values of the axion—photon coupling
strength (taken from ref. [89]). ¢, is the time of the flash after formation of the star

8ay log Ly M, Iy e
(107 Gev ] [Lo] [M;] [10° yr] (10° yr]
0.00 3.34 0.477 54 120
0.10 3.42 0.491 53 69
0.30 3.68 0.546 53 16
1.00 4.00 0.648 45

2.50 4.18 0.744 2.1
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Fig. 8.7. Inner structure of a 1.3M_ star (Y =0.25, Z =0.02) near the helium flash, without axion emission and with Primakoff emission at the level
Buy = 107°GeV ™", d. The dashed parts of the curves refer to negative values of L, i.e. to an inward heat flow. e, f. The dashed lines refer to energy
losses (neutrinos, axions), while the solid lines refer to nuclear energy generation rates. (Taken from ref. [89].)

8.5. Core mass at the helium flash

8.5.1. General argument

The Primakoff emission of axions decreases with increasing density and thus, as shown in fig. 8.6,
this emission rate sharply rises during the helium flash when the core of a red giant expands. In this case
the helium burning lifetime was dramatically shortened although the core mass at the helium flash was
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hardly affected by axion emission, see table 8.3. In most cases, however, the situation will be reversed;
the emission rate will be a rising function of density at a fixed temperature. As an example we show, in
fig. 8.6 as a dashed line, the energy loss rate by plasmon decay (section 4.10), vy, — v, for neutrinos
with an anomalous magnetic dipole moment, u,. In such cases the dominant effect of particle emission
will be a delay of the helium flash, i.e., an increase of the core mass, M, when helium finally ignites.
The helium burning lifetime, 1,;,, will be shortened, but mostly because the core mass is larger, leading
to an acceleration of the evolution that is familiar from hydrogen burning stars on the MS; more
massive stars evolve faster. Also, the luminosity at the tip of the RGB will be larger, i.e., the
observable break of the RGB will occur at an increased luminosity which, in turn, depends only on the
increased core mass because hydrogen burning in a shell in red giants is mostly regulated by the core
mass. In other words, the effect of particle emission in such cases can be discussed entirely in terms of
an anomalous core mass increase, M, which, in turn, can be related to the particle emission rates near
the helium flash.

A discussion along these lines was recently performed by Raffelt [146] who considered the effect of
oM on three independent observables of the color-magnitude diagrams of globular clusters. The first
observable is the luminosity or rather absolute bolometric magnitude*’ of RR Lyrae stars, M. These
stars are HB stars with a surface temperature near 10°* K = 7080 K, the “instability strip” where their
surface layers exhibit a dynamic instability, leading to a pulsating luminosity. Their average bolometric
magnitude is calculated to be [146]

Mg =0.59 = 3.5(Y, —0.25) +0.16(3 + log Z) — Ay — 7.38M. , (8.9)

where Y, is the envelope helium abundance, Z the metallicity, and A, the average brightness excess of
RR Lyrae stars over zero-age HB models which are constructed such that their surface temperature
falls into the RR Lyrae strip. 8M_ is understood in units of the solar mass, M.

The second observable is the brightness at the tip of the RGB, i.e., at the helium flash, or rather, the
brightness difference between this break of the RGB and the RR Lyrae stars. It is predicted to be [146]

AMP =413 —4.4(Y, —0.25)+ 0.39(3 + log Z) — Az +4.08M, . (8.10)

Thus, an increased core mass causes the luminosity of HB stars to increase, and also causes the
luminosity at the tip of the RGB to increase, but by different amounts so that the difference between
the two is also predicted to increase. Clearly, the brightness difference between stars in the same cluster
is observationally much better determined than the absolute magnitude of either RR Lyrae stars or the
tip of the RGB which depend on an independent distance determination.

The third observable is the ratio, R, between the duration of helium burning over the duration of the
red giant evolution, where in this context the RGB is understood to encompass only those red giants
with luminosities exceeding RR Lyrae stars. This ratio is identical with the number ratio of stars on the
HB versus the RGB in globular clusters. It is predicted to be [146]

log R=0.151 +2.3(Y, - 0.25) + 0.029(3 + log Z) + 0.33 4, — 0.7 8M. . (8.11)

*' We recall that the absolute bolometric magnitude is given in terms of the surface luminosity by M, _, =4.72 - 2.5log(L/L,). While this is a
dimensionless number it is usually given in “‘magnitudes” or “mag” which is formally equivalent to 1, similar to the angular unit *rad”.
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From observations of the intrinsic properties of globular clusters one obtains the following results
[146]:

AM, = (4.19%0.03) + (0.41 £ 0.06)(3 + log Z) ,

(8.12)
log R = (0.162 + 0.016) + (0.065 = 0.032)(3 + log Z) ,

where the errors reflect 1o statistical uncertainties of the observations. The predicted and observed
metallicity dependences agree well with each other, allowing one to eliminate the terms in log Z.
Moreover, by statistical parallax determinations of field RR Lyrae stars one finds

(Mg} =0.62+0.14 (8.13)

where the sample has an average metallicity of log Z ~ —2.7. Combining these results leads to three
expressions for the envelope helium abundance,

AMY: Y. =(0.23720.007) — 0.23A,5 +0.918M_,
Mpe: Y. =(0.237£0.040) —0.294,, —2.093M,, (8.14)

R: Y, =(0.251 +£0.008) — 0.14 Ay, + 0.318M_ .

e

One may then use either the first and third or the second and third equations to eliminate the helium
abundance, leading to

SM, = +0.023+0.018 + 0.154,, ,  dM_ = —0.006 = 0.017 — 0.06 4, - (8.15)

Combining these results one may safely neglect the A, term since this quantity will be <0.2 mag so
that one finds an allowed regime [146]

SM_=0.009 £ 0.012 . (8.16)

In order to appreciate the tightness of this constraint we mention that “switching off” the standard
neutrino losses would lead to 8M, ~ —0.030M,,, i.e., the observations are marginally sensitive to the
standard neutrino losses at the helium flash, leaving little if any room for exotic particle losses.

8.5.2. A specific constraint: neutrino dipole moments
If neutrinos had anomalous magnetic or electric dipole moments, the enhanced plasmon decay rate
(section 4.10) would lead to an increased core mass of [146]

SM_=0.015M_ x /10 (8.17)

[Bohr magneton u, = e¢/2m_; for the definition of u, see eq. (4.87)]. In conjunction with eq. (8.16) this
yields
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p,<3x%107 ", . (8.18)

This is the most restrictive constraint on anomalous neutrino dipole moments.

9. The white dwarf luminosity function

The number of white dwarfs per luminosity interval in the solar neighborhood provides a direct
measure of the cooling speed of these stars, constraining the efficiency of any energy loss mechanism
other than the standard neutrino volume emission (young white dwarfs) and photon surface radiation.
One finds a constraint of a, <107° for the “fine-structure constant” of light pseudoscalar particles to
electrons. An anomalous neutrino magnetic dipole moment has also been constrained, u,<10™"u,
(Bohr magnetons).

9.1. White dwarfs; theoretical and observed properties

White dwarfs (WDs) represent the final state of the evolution of stars with initial masses of up to a
few M. For reviews see refs. [301, 434, 435]. They are compact objects which are supported by
electron degeneracy pressure and thus are in hydrostatic equilibrium without need for nuclear burning;
the hydrostatic and thermal properties are largely decoupled. The radius of a WD decreases with
increasing mass because, in order to support the extra weight, the electrons must be squeezed into
higher momentum states. As long as they remain nonrelativistic, one finds from a polytropic
approximation of the WD structure [301],

R=8880km (M_/M)'*(2/u,)" . 9.1)

The pressure is provided mostly by the degenerate electrons, while the self-gravity is mostly due to the
nucleons which is why the “‘mean molecular weight of the electrons”, u,, appears. WDs typically do not
contain any hydrogen so that u, = 2. However, if the mass becomes so large and the radius so small that
the electrons become relativistic, there exists no stable configuration, i.e., the masses of WDs must be
below the Chandrasekhar limit [301],

M, =1.45TM (2/p,)" . 9.2)

Observationally it turns out, however, that the WD mass distribution is strongly peaked near
M =0.6M [436] so that in observed WDs a nonrelativistic treatment of the electrons is appropriate. In
a polytropic approximation, the central density of WDs is given by [301]

p.=1.46x10° gem™ (M/0.6M_) (p./2) . (9.3)

Since stars of masses up to a few M are believed to become WDs, the excess mass is lost before
reaching the WD stage. In particular, a large fraction of the mass is ejected when the star ascends the
asymptotic giant branch, just prior to collapsing to a WD. The ejected material forms a “planetary
nebula” so that the central stars of planetary nebulae are identified with nascent WDs. The rate of WD
formation as inferred from the luminosity function discussed below is in good agreement with the
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observed formation rate of planetary nebulae within the statistical and systematic uncertainties of a
factor of ~2 [437]. A theoretical evolutionary path for a 3M, star from the main-sequence to the WD
stage was performed, e.g., in ref. [438].

The hottest and brightest WDs have a luminosity of L ~107'L. while for the faintest ones
L ~4x107"L,,. Thus, in spite of being hot, WDs are generically faint because of their small surface
area. This implies that they can be observed only in the immediate solar neighborhood, typically out to
~100 pc for bright WDs. Since the vertical scale height of the galactic disk of ~250 pc [439] is much
larger, the observed WDs essentially fill a spherical volume around the Sun and it is customary to
express the observations in terms of a volume density. The total density of degenerates is on the order
of 107 pc ™. The observed luminosity function, i.e., the density of WDs per brightness interval, is
shown in fig. 9.1 and listed in table 9.1 according to refs. [437, 439]. The luminosity function is
characterized by three important features: its slope, which characterizes the form of the cooling law, its
amplitude, which characterizes the cooling time and WD birthrate, and its sudden break at log(L/
L,)~ —4.7, which characterizes the beginning of WD formation, i.e., the oldest WDs have not yet
reached lower luminosities. From this break one can derive an age for the galactic disk of (9.3 =
2.0) Gyr where 1 Gyr =10’ yr [440]. All of these features can be used to constrain the operation of a
novel cooling mechanism.
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Fig. 9.1. Observed luminosity function of white dwarfs as listed in table 9.1. a. The dashed line represents Mestel's cooling law with an assumed
constant white dwarf birthrate of B=10""pc > Gyr~". b. The dashed line was obtained from the numerical cooling curve of ref. [444] for a 0.6M,,
white dwarf, assuming the same constant birthrate. Standard neutrino cooling was included in this calculation.
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Table 9.1
Observed luminosity function for white dwarfs. The data were taken from refs. [437, 439]. For the hot
and bright degenerates (upper part of the table) a large fraction of their spectrum lies in the ultraviolet
regime, causing a large discrepancy between the absolute visual magnitude, M., and the absolute
bolometric magnitude, M, . For the hot dwarfs, the bins originally had been chosen on the M, -scale
with a width of 0.5mag, centered on the half-magnitudes, and the listed M, , is the mean in these
intervals. Note that log(L/L;)=(4.72- M,,)/2.5

Mean Mean dN/dM,,,
M, M, log,(L/L.,) [pc " mag '] log,,(dN/dM,,)

9.5 5.50 -0.31 1.22x10°° -5.91 (+0.18, -0.31)
10.0 6.88 -0.86 1.01x107° —5.00 (+0.14, —0.21)
10.5 7.84 -1.25 2.16x 1077 -4.67 (+0.13, —0.18)
11.0 8.92 -1.68 9.56x 107° —4.02 (+0.12, -0.16)
1.5 10.12 -216 121x107* -3.92 (+0.11, —0.15)
12.0 11.24 ~2.61 1.51x107* -3.82 (+0.11. =0.16)
12.5 11.98 -2.90 2.92x107" -3.54 (+0.11, -0.16)
13.0 12.55 -3.13 6.07x107* -3.22 (+0.20,-0.39)

13.50 -351 0.89x107° —3.05 (+0.14, —0.21)
14.30 -3.91 134x107° —2.87 (+0.14,-0.20)
15.50 -4.31 0.24x107° -3.62 (+0.18, -0.31)

9.2. Cooling theory for white dwarfs

A low-mass star becomes a WD when its nuclear energy resources have been exhausted; it shines its
residual thermal energy. Therefore the evolution of a WD must be viewed as a cooling process as was
first pointed out by Mestel [441]. Because electron conduction is an efficient mechanism of energy
transfer, the interior can be viewed, in a first approximation, as an isothermal heat bath with a total
amount of thermal energy, U. The nondegenerate surface layers have a large “thermal resistance” and
efficiently isolate the hot interior from the cold surrounding space, throttling the energy loss by photon
radiation, L. Of course, WDs can also lose energy by neutrino volume emission, L,, and by other
particle emission, L,. Hence WD cooling is governed by the equation

dU/dt=—(L,+L,+L,). (9.4)

This simple picture ignores the possibility of residual nuclear burning near the surface, a possibly
important luminosity source for faint WDs [442]. In order to translate this equation into the observable
luminosity function, we assume a constant WD birthrate, B, so that the total number density of
degenerates is N = Br_, . Taking the above values of N ~ 10 7% pc~* and te = 9.3 Gyr for the age of the
galactic disk, one has B~10""pc > Gyr~" Since the number density of WDs in a given magnitude
interval, dM, ,, is proportional to the time interval, dz, it takes to cool through this magnitude range,
one readily obtains

N _ o di dU/dM,,,

am,, Bam, T B L+,

(9.5)

bol

The photon luminosity is related to the bolometric magnitude by

L, =773L,107"t (9.6)
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This definition is equivalent to log(L./L;)=(4.72 - M, ,)/2.5. L, is related to the internal tempera-
ture, 7, by the thermal conductance of the surface layers, while U, L, and L, are given in terms of T,
so that one can express these quantities in terms of L. and hence M, . In this simple treatment we have
assumed identical properties for all WDs, and especially a fixed mass, M.

For hot WDs, the thermal energy is largely stored in the nondegenerate nuclei. Treating the nuclei as
an ideal gas, the internal energy is

M
U=%T—E—’ECT, (9.7)

mu,A}

where X, is the mass fraction of the element j with the atomic mass A, m, =1.661 X 107** g is the
atomic mass unit. Numerically,

L,Gyr M < X
10'K M, T A~

]

C=395%x10""

(9.8)

At sufficiently low temperatures, the ideal-gas law breaks down, and eventually the nuclei arrange
themselves in a crystal lattice. In these phases, the internal energy is a more complicated function of
temperature. The heat capacity per nucleon, which is 3/2 for the ideal-gas law, rises to 3 near the
Debye temperature, 6, and then drops to zero approximately as (167*/5)(T/0,)’ [301]. However,
since the observed WD masses are around 0.6M_, the densities of these stars are small enough that
even the oldest WDs have not had enough time to reach the crystallization phase. Hence the ideal-gas
law is a reasonable first approximation.

The thermal conductance of the surface layers is more difficult to calculate. In order to estimate the
energy flux, one has to solve the stellar structure equations (6.1) and (6.4) for these layers. Assuming a
Kramer’s opacity law, k = k,p T~ ", one finds approximately [301, 443]

L=17x10"L(M/M_)T/10"K)"?=KT""*?, (9.9)

where T is the internal temperature.
With these results the luminosity function is found to be

dN _ 4In(10) _ C(L/K)*"

: 9.10
dM, 35 L,+L,+L, (9.10)
With B_,=B/10"> pc ™’ Gyr ™, this is numerically
dN i . . 10741‘\4h0|/35 ( M >5/’7 X]
——=B_,-22x10 ’ 3 - -
M, P MA8 293X 10 M 1 L /L +LJL, \M, ; A,
(9.11)
If we ignore L and L, this is
dN -6 -3 -1 4n2M, /7< M )jl7 Xf
= ‘ bott 7} —— —. 9.12
i, B_,-2.9%x10°pc’ mag ' 10 7h ; y (9.12)
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Taking now M =0.6M,, and an equal mixture of '°C and '°O we find
log(dN/dM, ) = 1M, — 6.84 + log(B_,) , (9.13)

a behavior known as Mestel’s cooling law. For B_; =1 this function is shown as a dashed line in fig.
9.1a. Detailed cooling curves and luminosity functions have been calculated, for example, in refs. [440,
442, 444-447] while the elementary treatment is described in Mestel’s original paper [441] and in refs.
[301, 443].

9.3. Neutrino losses included

In numerical calculations it is easy to include standard neutrino losses. The dominant emission
process at the relevant conditions is the plasma process, vy, —v.v,. In fig. 9.1b we show a luminosity
function which we have derived from a numerical cooling curve published in ref. [444] for a 0.6M,
white dwarf, assuming a constant WD birthrate of 10> pc™> Gyr ™' as above. From fig. 9.1b and from
the theoretical luminosity functions of other authors, e.g. ref. [440], it appears that the dip in the
luminosity function for bright WDs should be associated with neutrino losses.

If the neutrino emission rate were much stronger than standard, the dip would be much deeper. The
observation of several bright WDs in the Hyades cluster was used by Stothers [41] to constrain the
efficiency of neutrino cooling. He found that an emission rate 300 times stronger than standard could be
conservatively excluded. If neutrinos had anomalous electric or magnetic dipole moments the standard
plasmon decay rate would be enhanced — the ratio between the “exotic”” and the standard rate were
given in eq. (4.92). Hence Stother’s result implies p, <3 % 10" 'u.

Recently, Blinnikov [131] has considered the WD luminosity function, including nonstandard
neutrino losses. He found that the “neutrino dip” at the bright side of the luminosity function was too
deep unless

s, <107y, (9.14)

when comparing his theoretical cooling times with the empirical luminosity function of field WDs,
shown in fig. 9.1. [For a discussion of the plasma decay rate see section 4.10 and especially for the
definition of u, see eq. (4.87).]

9.4. Axion bounds

It is now very simple to derive conservative bounds on the coupling of axions or other pseudoscalar
particles to electrons, results which were first discussed in ref. [88] and corrected for ion correlation
effects in refs. [84, 85]. The emission rate for the relevant conditions of a degenerate, strongly coupled
plasma were given in eq. (4.51), and we use a “correlation factor”, F = 1.0, as discussed at the end of
section 4.6. We assume an equal mixture of carbon and oxygen. Then we find for the axion luminosity
as a function of the interior temperature,

L,=a,-2.0X10”L(M/M,)(T/10" K)* (9.15)

where a, is the “axionic fine-structure constant”. This expression enters eq. (9.11) in place of L_. It is
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interesting that the temperature variation of this expression is almost identical to that of the photon
luminosity, eq. (9.9), so that the shape of the cooling curve would remain essentially unchanged, even if
axion cooling dominated the WD energy loss, in contrast with neutrino cooling, which changes the
shape of the luminosity function. Also, if we were to consider scalar as opposed to pseudoscalar
particles, the bremsstrahlung emission rate would be proportional to T rather than T, the extra factor
of T’ for pseudoscalars arising from the spin-flip nature of the emission process. Thus, if scalars
dominated WD cooling, the shape of the luminosity function would be altered.

If axion emission dominated WD cooling, the overall amplitude of the luminosity curve would be
reduced correspondingly, and since the shape remains approximately unchanged, the empirically
inferred birthrate of WDs would be increased by a factor 1+ L,/ L. . Since the birthrate inferred from
the luminosity function corresponds within a factor ~2 to the observed birthrate of planetary nebulae, it
is justified to use L, = L. as a constraint on the axion luminosity. Moreover, the overall time scale of
cooling would be reduced by a factor (1+ L,/ Ly)fl‘ The sharp drop in the luminosity function at the
faint end is interpreted as the beginning of WD formation, implying an age of the galactic disk of
~9 Gyr. Any contribution of axion cooling would reduce this number. Recalling that the age of the
solar system is known to be 4.5 Gyr, a reduction of the age of the galactic disk by a factor of 2 appears
to be an extremely generous allowance, i.e., L, < L_ is a very conservative constraint. Taking a WD
mass of 0.6M,, the internal temperature for faint dwarfs (M, =14) is ~6 x 10°K, leading to
L/L,=a,-117X 10*(T/10" K)'* = @, - 0.91 x 10*°. Hence the requirement L, < L, leads to the
constraint

a, <1.1x107%°, (9.16)

valid for all pseudoscalars with masses m, =< 1keV. A corresponding constraint for scalars or other light
particles has not been derived in the literature.

10. Cooling of nascent and young neutron stars

The observation of a neutrino pulse from SN 1987A confirmed the theoretically expected cooling
speed of nascent neutron stars to be a few seconds. This result excludes excessive cooling by axions,
right-handed neutrinos, or other novel low-mass particles, allowing one to derive bounds on the
axion—nucleon coupling, right-handed neutrino coupling, masses as well as electromagnetic dipole
moments of Dirac neutrinos, and other particle properties. The cooling speed of young neutron stars
(t~10" and 10* yr) can be established by the observation of thermal surface radiation (X-rays) from
pulsars of known age, and measurements of the Einstein Observatory allow one to set tentative
constraints on exotic cooling agents.

10.1. Birth and cooling of neutron stars

10.1.1. Stellar collapse

While in chapters 8 and 9 we have discussed how time scales of stellar evolution can be determined
statistically from ensembles of stars and can then be used to constrain novel forms of energy loss, we
now consider neutron stars, objects which evolve so fast that we have direct evidence for individual
cooling time scales. Neutron stars are born in type II supernova explosions which occur when stars of
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masses exceeding ~10M have developed a large iron core which no longer can produce energy by
nuclear burning (for recent reviews see refs. [159, 448]). At the time of collapse, such a star consists of
an iron core of ~1.3M_, at a density of ~10'" gcm ™ and a temperature of ~7.6 x 10° K = 0.66 MeV, of
a mantle of ~3M, with nuclear burning in several shells, and an envelope of unprocessed hydrogen and
helium. At this point the medium becomes unstable to two reactions, the photodissociation of iron,
v+ **Fe— 13« + 4n, and electron capture, e +p—>n+v,. The former reaction is endothermic and
thus absorbs energy, while the neutrinos produced in the latter reaction at first escape freely, also
draining the star of energy. Therefore, further compression fails to increase the pressure enough to
support the core, resulting in a run-away of these reactions and an almost free-fall collapse.

As the core becomes hotter and denser, neutrinos become trapped at a density of ~3 x 10" gcm_3,
i.e., their mean free path becomes smaller than the core radius, and from then on they are entrained by
the collapsing material. The infall is halted only when the medium reaches nuclear densities where the
equation of state stiffens. The sudden interception of the collapse leads to a ““bounce”, i.e., the
formation of a shock wave at a mass shell around (0.8-0.9)M_, well inside the iron core. This shock
wave moves outward, depositing energy and thus dissociating the nuclei of the medium as it passes.
When it reaches the neutrino-sphere, i.e., the shell inside of which neutrinos are trapped, the
dissociation of the nuclei leads to a sudden decrease of the coherent neutrino cross-sections and thus to
a break-out of the neutrino luminosity (fig. 10.1). When the shock reaches the edge of the iron core
after ~1s, a “proto-neutron star’” or “nascent neutron star’” has formed, and about half of its binding
energy, E, ~(2-3) X 107 erg, has already been emitted. The further evolution must be viewed as a
cooling phenomenon, not unlike the cooling of a white dwarf. This means that the star is now
essentially supported by degeneracy pressure so that its further thermal evolution (cooling) does no
longer change its structure in any dramatic way.

10.1.2. SN 1987 A neutrino observations

While the emission of neutrinos from a fixed neutrino sphere over the next several seconds with a
thermal spectrum is an oversimplification, such a cooling model is sufficiently detailed to allow for a
comparison with the sparse data from the neutrino observations of SN 1987A (tables 10.1 and 10.2).
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Fig. 10.1. Schematic view of the neutrino luminosity expected from a type II supernova (adapted from Cooperstein in ref. [159]). There are several
breaks of scale in the horizontal axis, separating the following periods: first ~0.2s, infall from core density, ~10' gem ™, to maximum scrunch,
~10" gem™; next ~0.004's, from bounce to shock breakout at the neutrino sphere; further ~1s until shock reaches edge of iron core; in the
following ~10's, most of the remaining binding energy is radiated from the neutrino sphere.
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Table 10.1 Table 10.2

Neutrino burst from SN 1987A in the IMB detector [166]. The event Neutrino burst from SN 1987A in the Kamiokande-II detector [168].

time is relative to the first event which occurred on 23 February 1987, The event time is relative to the first event which occurred on 23

7:35:41.374 (UT), with an uncertainty of =0.05s. The angle is the February 1987, 7:35:35 (UT), with an uncertainty of +1:00 min. The

polar angle with respect to the direction away from the SN. The angle is the polar angle with respect to the direction away from the

energy is the measured energy of the electron or positron. If the SN. The energy is the measured energy of the electron or positron

events were due to v +p—n+c’ on free protons, E, was typically Time An

N ) p ) gle Energy
2 MeV larger than the measured ¢~ energy Event [s] [deg] (MeV]
Time Angle Ener, ]

Event ] [ deg] [MeVg]y 1 0.00 18+ 18 20.0+2.9
2 0.11 40 +27 13.5+£32

1 0.00 80+ 10 387 3 0.30 108+ 32 7520

2 0.41 44+ 15 37+7 4 0.32 70+30 92+27

3 0.65 56+20 28+6 5 0.51 13523 12829

4 1.14 65+ 20 39+7 6 0.69 6877 6.3+1.7

5 1.56 33+15 36+9 7 1.54 32+16 35.4=8.0

6 2.68 5210 36+6 8 1.73 3018 21042

7 5.01 42+20 19+5 9 1.92 3822 19.8+3.2

8 5.58 104 +20 2+5 10 9.22 12230 8.6+2.7
11 10.43 49+ 26 13.0x2.6
12 12.44 91 +39 89+19

The most detailed analysis along these lines was performed by Loredo and Lamb [211] who were the
first authors to include the detector background events in their analysis. They investigated a variety of
cooling models and found that an exponential cooling model was preferred with a constant radius of the
neutrino sphere, R, ., and a time-varying temperature,

T(t)y=T,e ", (10.1)
so that 7 is the luminosity decay time scale. Moreover, they used the parameter
a=(R, /10km)(50kpc/D)g""*, (10.2)

where D is the distance to SN 1987A and g is a weight factor which is unity if only left-handed, massless
neutrinos of any given flavor are being emitted (three flavors are assumed to exist). They also took the
mass of the electron neutrino as a free parameter in order to allow for signal dispersion, and they
introduced two separate offset times for the IMB and Kamiokande II detectors between the arrival of
the first neutrinos and the first detected event. Hence they allowed the following six parameters to vary
in order to achieve a maximum likelihood result: T, 7, @, m, , t,(IMB), and ¢ ,(KII). The best-fit
values are given in table 10.3, first column, where we also show the inferred values for the neutron star
proper radius, R, the total amount of binding energy, and the number of expected neutrino detections
in each detector. In fig. 10.2 we show the projection of the 68% and 95% confidence volume on the
T,—7-plane. The neutrino mass is found to be limited by 23 eV at the 95% CL, and taking this value as a
fixed choice, the best-fit values for the remaining five parameters are given in table 10.3, second
column.

These results confirm beautifully the standard picture of neutron star formation, and in particular
confirm the expected values for the temperature at the neutrino sphere, the time scale of cooling, and
the total amount of energy which was radiated in neutrinos. This latter result directly excludes the
possible existence of more than two or three extra neutrino flavors, a result which is, of course, obsolete
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Table 10.3
Maximum likelihood results inferred from the observed neutrino pulse of SN 1987A, using an exponential cooling model, and including
detector background events in the analysis (Loredo and Lamb [211]). If the neutrino mass is taken to be a free parameter, the best-fit result
ism, =0, with all other parameters having the best-fit values shown in the first column. In the second column, we show the results if m,_is
‘ assumed to be 23 eV, a value which is an upper limit at the 95% CL

Fitted parameters Inferred parameters
m, 0 23eV m, 0 23eV
T, 4.47 MeV 4.84 MeV E, 2.86 x 10” erg 2.33% 10" erg
T 4.15s 2.96s R 22.6km 20.6 km
@ 2.26 2.06 N,., (KII) 12.5 11.5
to (KII) 0 3.57s N, (IMB) 5.51 6.14
t. (IMB) 0 0.85s

in view of the recent precision measurements of the Z° width at SLAC [449] and CERN [450-453].
Most important for our purposes is the confirmation of the cooling time scale which was not excessively
shortened by novel effects. This conclusion remains valid even if one allows for signal dispersion, i.e.,
the inferred time scale of neutrino emission at the source is not very sensitive even to an extreme choice
of an assumed neutrino mass.

10.1.3. Late-time cooling and Einstein observations

After a few seconds, the temperature at the neutrino sphere has dropped so much that the IMB and
Kamiokande II detectors are no longer sensitive to the neutrino flux, but the star continues to cool by
surface neutrino emission. When the inner temperature has reached ~10° K~ 100keV after (10-
100) yr, the neutron star becomes transparent to neutrinos, and continues to cool by neutrino volume
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Fig. 10.2. Projection of the 68% (dashed line) and 95% (solid line) confidence volume for the exponential cooling model (Loredo and Lamb [211]).
The cross marks the best-fit values (see first column in table 10.3). (I thank T. Loredo for providing an original for this figure.)
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emission. After ~10” yr it reaches an inner temperature of ~2 x 10°K, a point at which photon
emission from the surface becomes the dominant form of cooling. In fig. 10.3 we show the central
temperature, surface temperature, neutrino luminosity, and photon luminosity as functions of age,
taken from a numerical calculation of Nomoto and Tsuruta {454], their case “FP” which corresponds to
a phenomenological equation of state of intermediate stiffness.

Such calculations can be confronted with observations by using data of the Einstein Observatory, the
X-ray satellite HEAO-2 that was launched in 1979. In several supernova remnants, X-ray emission from
a compact source was discovered, while in most cases the non-observation of such a source allows one
to set an upper limit (see table 10.4). In these cases it is not even certain whether there is a neutron star
in the SN remnant. The absence of a neutron star can be understood since type [ supernovae are
thought to occur when a white dwarf accretes enough material to ignite carbon, leading to a nuclear
run-away and likely to the disruption of the star. Hence type I supernovae are physically completely
distinct from type II. The absence of a neutron star can also be understood if black holes form in some
type H supernovae.

Therefore, the most crucial test consists of a comparison of the four X-ray sources in SN remnants
listed in table 10.4, 3C 58, the Crab pulsar, RCW-103, and the Vela pulsar, where the effective surface
temperatures were quantitatively established. Given the large uncertainties in the observations and in
the theoretical predictions, we may group the first three cases together at an age of ~10’ yr where they
yield a surface temperature of (2.0-2.4) x 10°K, while the Vela pulsar yields (0.8-1.1) X 10°K at
t~10*yr (see table 10.5). Standard cooling calculations, notably of Nomoto and Tsuruta 454, 456],
using a variety of plausible equations of state, and including such effects as nucleon superfiuidity and
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Fig. 10.3. Cooling of a neutron star with an equation of state of intermediate stiffness, ignoring such effects as nucleon superfluidity or a pion
condensate (after Nomoto and Tsuruta [454], case FP).
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Table 10.4
Einstein observations of supernova remnants, adapted from Tsuruta [455]. An h in the age column refers to a historical
supernova. The uncertainty of the observations is mostly due to the uncertain amount of interstellar absorption

T, of compact source [10° K]

Age
Name [yr] Pulsar detected detection upper limit
Cas A 300 (h) - 1.5x01
Kepler 375 (h) - 2002
Tycho 407 (h) - 1.1£0.1
3C58 (800) (h) - 2202
Crab 925 (h) radio, optical, X-rays 2202
SN 1006 973 (h) - 0.68 = 0.06
0540-693 1660 optical, X-rays detected
RCW-103 1500 = 500 - 2.15£0.15
RCW-86 1794 (h) - 1.5+0.1
MSH15-52 1850 = 250 radio, X-rays detected
W-28 3400 - 1.6+0.1
G350.0-18 ~8000 - 1.6=0.1
G22.7-0.2 ~10000 - 2.0x0.2
Vela X ~12000 radio, optical 0.95x0.15

Table 10.5
Confronting neutron star cooling calculations with observations. (Data from table 10.4, predictions from
Nomoto and Tsuruta [456}.)

Surface temperature [10° K]

Age
Objects [yr] observed predicted
3C58, Crab, RCW-103 ~10° 2.0-24 1.6-2.3
Vela X ~10* 0.8-1.1 1.2-1.7

magnetic fields, yield surface temperatures at these ages as given in table 10.5. The observations at
10° yr are in agreement with the predictions, while the Vela result at 10°* yr is, at best, in marginal
agreement, and probably too low. This led Nomoto and Tsuruta [456] to speculate that a novel form of
input physics may be needed to bring theory and observations into agreement. Conversely, the
agreement at 10° yr may not be significant because it is not certain that HEAO-2 actually observed
thermal surface radiation because of the lack of spectral sensitivity of that instrument. Since X-rays
conceivably can be produced by other mechanisms in the environment of a young neutron star, the
agreement at the younger age may be fortuitous. Therefore the most serious limitation to the
significance of any bounds of exotic cooling processes derived from these cases is the uncertainty of the
measured X-ray spectrum.

10.2. Supernova explosions and new particle physics

While the birth of a neutron star in type II supernova explosions must be considered a well
understood phenomenon, the actual explosion which ejects the mantle and envelope of the progenitor
star is more difficult to account for. The problem is that most of the energy liberated in the collapse of
the iron core, (2-3) x 10> erg, is emitted in neutrinos, while only ~1% is transferred to the mantle and
envelope. In other words, coupling the implosion of the core to an explosion of the mantle and
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envelope is a difficult theoretical problem. The general view is that these layers are pushed out by the
shock wave that forms at the core bounce. However, the energy of this shock is severely depleted as it
passes through the outer layers of the iron core so that is is very difficult to obtain SN explosions on the
computer, and it may be impossible unless the iron core of the progenitor star is smaller than had been
thought possible until recently. A variation on this theme is Wilson’s delayed shock scenario where the
shock wave stalls, but neutrinos from the cooling core transfer enough energy to revive the shock and
cause the SN to explode.

This difficulty is sometimes called the ‘“‘supernova problem” and has stimulated some speculations
about the role of new particle physics to obtain an explosion. Falk and Schramm [139] discussed
radiatively decaying neutrinos and, from the requirement that such decays would not transfer oo much
energy to the mantle and envelope, derived a bound on the radiative decay width. Conversely, for a
narrow range of decay parameters, such effects could help trigger the explosion, a possibility first
advanced by Sato and Kobayashi [457], and further elaborated by Takahara and Sato [458]. Schramm
and Wilson [459] obtained numerical SN explosions by energy transfer through radiatively decaying
standard axions, particles which are now excluded but which at the time had reportedly been detected.

If neutrinos have magnetic or electric dipole moments, the electromagnetic scattering of trapped
left-handed neutrinos in the SN core on charged particles will flip their helicity, and if the helicity-
flipped states are right-handed, i.e., sterile with respect to weak interactions (implying that neutrinos
are of Dirac type), they can escape from the core. This leads to a new mechanism of cooling and thus to
constraints on neutrino dipole moments (section 10.3 below). However, once the right-handed
neutrinos have left the core, they can be rotated back into interacting states by the strong magnetic
fields that are thought to exist near the core surface, and that are observed at pulsars. Therefore, again,
neutrinos would transfer energy to the mantle and envelope and trigger the explosion. This scenario
was first proposed by Dar (1987), but never published because of heavy criticism. More recent
discussions are those of Voloshin [144] and of Blinnikov and Okun [138] who included in their
discussion the problem of magnetic spin oscillations in the presence of a dense medium where the left-
and right-handed neutrinos follow different dispersion relations, leading to the possibility of strong
suppression or resonant enhancement of the oscillations.

One may take the opposite point of view and look at situations where new particles would deprive
the shock of even more energy than in SN models with standard physics. The observed occurrence of
SN explosions then leads to constraints on certain particle properties. Notzold [142] derived a bound on
(Dirac) neutrino dipole moments of g, <6 X 10 "*u, (Bohr magneton u, = e/2m,) on the basis of such
reasoning.

In the following section we will discuss bounds on particle properties that were derived by the
requirement that the observed neutrino signal from the cooling proto-neutron star after collapse was
not unduly shortened. It must be stressed, however, that particles with properties that remain allowed
by that argument may still have an important impact during the infall phase and on the formation and
propagation of the shock wave. This point was stressed by Fuller, Mayle and Wilson [109] who
investigated numerically the effect of the triplet majoron model on SN physics during the infall and core
bounce phase.*’

*)The triplet majoron model, however, is now obsolete because the recent precision measurements of the Z' decay width at SLAC [449] and
CERN [450-453] exclude the existence of triplet majorons which would contribute the equivalent of two neutrino flavors (see the last paragraph of
ref. [101]).
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10.3. SN 1987 A bounds on novel cooling phenomena

10.3.1. General argument

In section 10.1.2 we have shown that the IMB and Kamiokande II neutrino observations are in good
agreement with the standard picture of the formation and early cooling by neutrinos of a neutron star
after a SN collapse. Now assume the existence of some new particle, X, light enough to be thermally
produced in the SN core, m, < 10 MeV, and more weakly interacting than neutrinos. If the interaction
of these X-particles, e.g., axions or right-handed neutrinos, is strong enough for them to be trapped,
they will be thermally emitted from an “X-sphere” at a radius R, < R, (neutrino sphere radius R ). By
the Stefan—Boltzmann law, the total flux, L_, from this black-body emission scales as RiT4(Rx). For a
nascent neutron star, R’T*(R) is a rapidly decreasing function of radius so that L > L, i.e., L,
increases with a decreasing coupling strength, g , of these particles. This behavior is schematically
illustrated in fig. 10.4. Of course, if g, is so small that the X mean free path exceeds the neutron star
radius, these particles will be emitted from the entire volume of the star. In this case L, will be
dominated by some specific emission process, e.g., axion bremsstrahlung from nucleons , n+p—n+
p+a, and thus will be proportional to g2, see fig. 10.4, so that L, now decreases with decreasing
interaction strength. This leaves a range of coupling strengths where the new particles would dominate
the cooling of the nascent neutron star, a general argument first raised by Ellis and Olive [69] who also
showed a figure similar to fig. 10.4.

Observationally this means that the total energy emitted in neutrinos will be reduced, and the
cooling time scale will be shortened. It turns out, however, that the total amount of energy emitted in
neutrinos, E,, is relatively insensitive to the X coupling strength. This is so because about half of E is
emitted immediately after the shock wave has broken through the neutrino sphere (fig. 10.1) when the
dissociation of large nuclei leads to a sudden jump in the neutrino mean free path. The (volume)
emission of X-particles, however, will typically be dominated by the inner core where the densities are
highest. This part of the core, however, is at first at relatively low temperatures, see fig. 10.5 where we
show snapshots of the temperature profile of a newly born neutron star for the first 20 seconds. Hence

Blackbody
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emission,

2 .4
Ly<t T (r,)
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-
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logyg (9y)

Fig. 10.4. Schematic dependence of the “exotic” luminosity, L,, on the coupling strength of the new particles, g, which could be, for example, the
Yukawa coupling of axions to nucleons or a “right-handed Fermi constant”. In the range g,... < g < ..., the novel energy loss would exceed the
neutrino luminosity, L . (Taken from Raffelt and Seckel [92].)
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Fig. 10.5. Snapshots of the matter temperature versus the enclosed baryon mass of the case A standard collapse calculation of Burrows et al. [58].
The initial model (¢ = 0) is the bottom curve. The snapshots are every 0.1s for the first two seconds, and then every 2's until the end at r =20s. (I
thank A. Burrows for providing an original for this figure.)

the (volume) emission of X-particles will start slowly as energy diffuses into the inner core, and thus will
be important mostly during the exponential cooling phase after the first neutrino burst.

Therefore novel forms of energy loss will mostly compete with neutrino cooling after the first burst,
and thus will mostly shorten the “cooling tail” of the signal [92]. Here the main observable to constrain
particle parameters is the duration of the neutrino signal, not the total amount of binding energy
inferred from this signal. The duration of the neutrino signal as a function of particle parameters is
illustrated in fig. 10.6 for the case of invisible axions where we show the duration as a function of the
axion-nucleon coupling strength, g,. For details see sections 10.5 and 10.6 below; here we only note
that if axions are very weakly interacting they do not affect the neutrino signal (free streaming side in
fig. 10.6), and if they are very strongly interacting they also have no effect (trapping side of fig. 10.6).
For a certain range of coupling strengths they shorten the signal substantially.

Pulse Duration

0.
10712 1071 1g8 19
Yukawa Coupling g,

Fig. 10.6. Duration of the neutrino pulse from a supernova, taking axion emission into account, assuming identical Yukawa couplings to protons
and neutrons, g,. For a very small or very large coupling strength the duration is normalized to unity, reflecting the standard value where axion
cooling is irrelevant. This figure is based on the numerical investigations of Burrows et al. [58, 59], case B. We show an average of the results
relevant for the IMB and Kamiokande detectors. No numerical results are available in the intermediate regime between free streaming and
trapping, partly because there is no simple numerical procedure to treat that regime.
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In general, the observed duration of neutrino emission (see table 10.3) precludes L, to exceed L, by
much, and because L ~3 X 10°? erg/s during the exponential cooling phase, and because the core mass
is ~1M, a crude bound on new particle properties is set by the requirement

£, <10"ergg 's™", (10.3)
where the novel energy loss rate is to be calculated at the core conditions, p ~0.8 X 10" gem ™ and
T ~ (30-60) MeV. This simple criterion applies to the free streaming case while no simple argument
appears to exist for the trapping regime.

10.3.2. Application to specific cases

Detailed numerical investigations in the framework of this method are available only for axions, see
sections 10.5 and 10.6 below. For many other cases, variations of the general argument in a simple
analytic form were applied, and we may now go through a list of cases other than axions. A summary of
the results is given in table 10.6.

A class of particles other than axions that could drain the SN core of energy are right-handed (RH)
neutrinos, i.e., noninteracting states. These particles could be an entire new class of sterile neutrinos,
particularly if the known neutrinos are of Majorana type. If the known neutrinos are Dirac particles,
they could simply be the helicity-flipped states. The simplest way to produce RH neutrinos is by the

Table 10.6
Constraints on the properties of light particles based on the observed duration of the SN 1987A neutrino pulse. The quoted results are
“middle of the road” values, ignoring possible reductions by many-body effects and by various uncertainties. These numbers, therefore, are
uncertain by at least a factor of ~3 in either direction. The issue of Nambu—Goldstone bosons coupled to neutrinos was motivated by the
triplet majoron model. Because of the lepton-number violating properties of that model, SN physics may be more complicated, and the
quoted bounds have been questioned [107]. See also refs. {105, 106, 109]. However, the triplet majoron model is now excluded (see footnote
in subsection 10.3.1) so that this discussion has become obsolete. Bounds on singlet majorons were provided in refs. [112-114], but they
cannot be represented in a simple way in this table

Particle property Dominant process Constraint References

Dirac neutrino, mass helicity flip of trapped v, m, <20 keV [92, 149-151]
v +N->N+y,

Dirac neutrino, helicity flip of trapped v, g, <0.5x10""%u, {141)

dipole moment v +(p.e )= (p,e )ty B, <8x 107y, [136]

Right-handed Fermi constant modified urca processes G <03x107°G, [92, 147]

(charged currents) ntnontpte +7,
n+p+e —n+tnt+v,

Right-handed Fermi constant pair bremsstrahlung: Gy <107°G, [92]

(neutral currents) n+tpon+p+v,+ v,

Squark mass pair bremsstrahlung m, >1TeV [127-129]
n+p>n+p+y+y

Yukawa coupling, g,, of nucleon bremsstrahlung g.<107" [58, 80, 81, 92, 97]

pseudoscalar boson, ¢,

n+p—>n+pt+d

(see also section 10.5.)

to nucleons
Yukawa coupling, g,, of neutrino annihilation £,<03x10°° [111]
pseudoscalar boson, &, v—2¢ g, <2x107’ {108]

to neutrinos
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same processes which produce LH states, assuming there exist RH weak interactions on some level.
Assuming further that these RH interactions have the same structure as the LH interactions, one may
easily derive bounds on a RH Fermi constant, G,,. On the basis of the modified urca processes,
ntn—n+p+e +v ande +n+p—>n+n+v,, which involve charged currents, one finds in the
free streaming regime [92] Gy, =3 X 107° G;. The trapping regime is of much less interest because it
overlaps with a regime excluded by laboratory data. On the basis of another emission process,
e +p—n+ v, one finds a similar constraint [147]. In the standard left-right symmetric models, this
result can be translated into a bound on the mass of RH gauge bosons, My, and the standard
W,—W, -mixing angle, ¢ [147],

1/2

(7 + (my, imy, )] P =3 %107 (10.4)

Similarly, one may constrain RH neutral currents on the basis of bremsstrahlung processes,
N+ N— N+ N+ v,v,, yielding [92] Gg,, <10 ", although a somewhat weaker bound was reported by
other authors [129, 147, 148]. Moreover, in standard left-right symmetric models, the RH neutral
current has vector structure and thus does not contribute to nucleon bremsstrahlung [129], leaving us
with a much less efficient emission process, e '€ — v v,. For E, models, where RH neutrino masses
can be expected to be naturally small, the neutral-current bremsstrahlung rates are not suppressed, and
a detailed analysis and interpretation of the constraints is available [129, 148]. A constraint on a
neutrino charge radius [145], we believe, should be discussed in a unified picture with RH neutral
current interactions since in the framework of electroweak gauge theories a neutrino charge radius is a
problematic concept.

In the previous cases one had to assume that the mass of the RH neutrinos was small enough for
them to be thermally emitted from the SN. The following arguments rely on various processes of
flipping the helicity of Dirac neutrinos, thereby transforming an interacting (LH) state into a sterile
(RH) state of the same mass. For v, and v, the following constraints are thus valid without restriction,
while for v_with a laboratory limit on its mass of 35 MeV most likely there exists a mass range near this
limit where the following bounds can be evaded. The simplest way to flip the helicity is by a mass term,
i.e., the neutrinos trapped in the SN core will develop RH components if they have a Dirac mass. The
resulting neutrino luminosity will be so large that one can infer a bound {92, 149-151] m, <20 keV. It
was claimed that the excluded mass range reaches up to ~35MeV, with a substantial uncertainty,
however, so that 7 neutrinos with masses near their laboratory limit are still allowed by this argument.
If neutrinos had a magnetic or electric dipole moment, interactions with charged particles in the SN
core would also flip the helicity, yielding a bound [136, 140, 141] of u, < 10™ "y, where g, = €/2m_is
the Bohr magneton. Finally, the helicity flip in the gravitational field of the nascent neutron star in the
context of novel gravitational interactions was also discussed, allowing one to constrain the parameters
of such models [152}.

In supersymmetric models with light photinos, these particles would be emitted by nucleon
bremsstrahlung processes. The cross section is o« m; *, leading to a constraint on the squark mass of
[127-129] m; = 1 TeV.

Many authors [101-114] have discussed the effect of majorons on supernovae, although most of
them concentrated on the triplet majoron model which is now excluded on the basis of the measured Z"
width (see footnote in section 10.3.1). However, the most recent investigation [114] is a detailed
account of bounds on the singlet majoron model, excluding a large range of neutrino masses and
vacuum expectation values.
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10.4. Non-detection of new particles from SN 1987 A

It is still possible that the SN core emitted a large pulse of new particles and one may wonder
whether they could have been detected in the IMB and Kamiokande II detectors. One interesting case
is that of right-handed neutrinos which were produced by helicity flips from electromagnetic interactions
with charged particles. These neutrinos could oscillate back into left-handed, interacting states on their
way from the SN core to Earth. Indeed, this possibility was raised as a mechanism to cause the SN
mantle to explode (section 10.2). The angle of rotation of the expectation value of the neutrino spin is
proportional to [ u, B, dI where B, is the transverse magnetic field along the line of sight with the SN.
Of course, in the mantle and envelope, the relevant expression is more complicated because the two
helicity states follow different dispersion relations. However, even the galactic magnetic field of
~3x107°G with a coherence scale of ~300pc is enough to reflip neutrinos from SN 1987A if
#, =3 % 10" *u,. The reflipped neutrinos could be detected, and would cause a different signal from
that observed because their energies would be characteristic of core temperatures rather than
characteristic for the temperature at the neutrino sphere [136, 142]. This argument is especially
powerful for those neutrinos that were emitted from behind the neutrino sphere, before the shock
reached this point, i.e., the right-handed neutrinos that would be emitted before the deleptonization
burst. The electron neutrinos in this region are degenerate and have large Fermi energies and would
thus cause a very prominent signal. The absence of such detections led Notzold [142] to infer

p, <1.5%107 "y, (10.5)

a bound which applies to the diagonal magnetic (or electric) dipole moment of Dirac electron neutrinos.
It is conditional on the assumption that the Earth was not coincidentally located at a “‘node” of the spin
oscillation pattern of the neutrino pulse.

Another interesting case is that of axions which are on the trapping side of the regime excluded by
the cooling argument. Engel, Seckel and Hayes [96] argued that axions which interact so strongly that
they are trapped could also be detected in the water Cerenkov detectors. Especially the reaction
a+ *O— "°O* could serve to absorb axions in the detector. The nuclear de-excitation often includes
y-rays with energies of 5-10 MeV which trigger the Kamiokande detector with an efficiency similar to
that of electrons in the same energy range. Taking a common Yukawa coupling to protons and
neutrons, g,, these authors find that in the range 6 X 107" < g, <1x 10™° the axion flux should have
produced more than 5 (and up to 200) observable events at Kamiokande, and so this range is excluded.

10.5. SN 1987 A axion bounds from numerical investigations

While the “cooling argument” of the nascent neutron star in SN 1987A has yielded many interesting
constraints, notably on neutrino properties (see table 10.6), only the cases of invisible axions [58, 80,
81] and that of triplet majorons [109] have been investigated numerically. We do not consider the triplet
majoron model any further because it is now excluded (footnote in section 10.3.1). When the numerical
works for the axion case were performed, the understanding of the relevant emission rates was in a
state of flux, and none of the groups used the appropriate rates described in section 4.8. Burrows,
Turner and Brinkmann (BTB) [58] used the “exact” rates of Brinkmann and Turner [57], but with the
vacuum nucleon mass, thereby underestimating the axion luminosity. Mayle, Wilson, Ellis, Olive,
Schramm and Steigman in their first paper (MI) [80] used the degenerate rates with the vacuum nucleon
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mass, while in their second paper (MII) [81] they used the nondegenerate rates, again with the vacuum
nucleon mass, although they mentioned that one should use an effective nucleon mass of ~0.5my.
Moreover, BTB considered a “‘generic axion case’” with equal couplings to protons and neutrons while
MI and MII used specifically the DFSZ model, and stated their results as a function of the free
parameter, B, of this model. We will attempt to reduce these results to a common and correct set of
assumptions.

We begin with pseudoscalar particles which couple to protons and neutrons with equal Yukawa
strengths, g,. This is the case considered by BTB who included the rates eq. (4.63) in Burrows’
supernova code, using fixed form factors corresponding to g =1/2 (table 4.2), ie., F, = F =5/6,
F,=2/3, and F, = 14/15, and using the vacuum nucleon mass. For several values of g, they calculated
the number of neutrino events to be expected in the IMB and Kamiokande II detectors, N, ,, and the
duration of the neutrino pulses in each detector. In their work, this quantity is defined to be the time,
A#(90%), which is required to accumulate 90% of the expected counts in each detector. They also
calculated the total amount of energy in neutrinos, E , and axions, E,, to be emitted in each case. They
performed this calculation for three different equations of state. In fig 10.7 we show these results for
their ‘“‘case B” (cases A and C yield similar results). As predicted in our general discussion in section
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Fig. 10.7. Core collapse including axion emission, after BTB [58], case B. The most sensitive observable quantity is the duration of the measured
neutrino pulse. The lower panel of this figure corresponds to the free-streaming part of fig. 10.6.
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10.3, it is the duration of the neutrino pulse which is the observable most sensitive to axion losses, while
the total amount of energy radiated in axions as well as the total number of neutrinos detected remain
almost unchanged for values of g, where the duration of the pulse drops substantially. (See also fig. 10.6
for the variation of the pulse duration.)

No precise statistical reasoning was offered in the numerical works that would allow one to state a
confidence level at which the expected pulse duration for a given value of g, is in agreement or
disagreement with the observed data. Nevertheless, the quantity g, ,, i.e., the coupling strength g at
which the pulse duration is shortened by a factor 1/2 appears to be a reasonable albeit arbitrary choice.
From the calculations of BTB one infers g,,, ~1x 10™'". However, these authors used the vacuum
nucleon mass in their calculations. From fig. 10.5 we conclude that typical temperatures relevant for
axion emission were in the range (20-40)MeV, at densities corresponding to Fermi-momenta
~380 MeV. Hence, from fig. 4.8 we conclude that they underestimated axion emission by a factor of
~1/2. With eq. (4.70) we conclude that BTB’s emission rates should be multiplied by ~2 % 0.3 x 2.
Since the emission rates are proportional to g, we estimate

8,~13x1071" x 2" (10.6)

Next, we turn to MI and MII who also considered the duration of the neutrino pulse as their main
criterion. They used the DFSZ model, but for 8 = 72° the neutron and photon couplings are equal, and
we can extract their results that would correspond to BTB’s “‘generic case”. From MI, where they used
the degenerate emission rates, we infer g, =0.5X 10™"" for their limiting value after correcting for an
erroneous factor of 2 in their emission rate (see MII). From MII, where they used the nondegenerate
rates throughout, we infer g, =1.3Xx 107", However, they used the vacuum nucleon mass, and
following their discussion, a value of mg ~0.5m, would have been appropriate, leading to a correction
factor of 0.5%"%. Hence we infer from MI and MII an identical result of g, ~0.5x 107"

While the agreement between these two results confirms our earlier conclusion that the conditions
pertaining to axion bounds are intermediate between degeneracy and nondegeneracy, this agreement
also means that both results equally overestimate the actual bound. The asymptotic expressions
overestimate the emission rates in the region of crossover by as much as a factor of 5, see Brinkmann
and Turner [57]. Also, we must apply the factor eq. (4.70) so that we infer g, ~0.2x 107'" x 27",
Finally we note from their display of the v, luminosity, that their curve marked “f, = 0.08 x 10'* GeV”
corresponds to a reduction of the time constant of the neutrino pulse a factor of ~2, while they actually
used a value f, = 0.2 X 10'> GeV to derive their limiting case. Hence we infer

g,,~05x107"" x 27", (10.7)

on the basis of MI and MIIL.

The discrepancy of about a factor of 3 between the two groups probably may be ascribed to different
input physics. Mayle and Wilson’s models are characterized by higher temperatures, leading to larger
emission rates and hence more restrictive axion bounds. It thus appears reasonable to combine the two
results to infer

g,,~(0.3-2.6)x107"", (10.8)

for the axion coupling constant where the neutrino pulse would be shortened by a factor of 1/2.
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If the axion couplings to protons and neutrons are not equal, we may estimate the dependence of the
emission rates on the individual couplings by taking specific values for the mass fractions of neutrons
and protons, respectively. While BTB do not state specific values, MI and MII give X_ =0.88 and
X, =0.12 as a typical case. Of course, these values change with time and radius so that our following
estimate is very crude. With these mass fractions and using the F; values listed in table 4.2, we infer that
the degenerate emission rates, eq. (4.59), are proportional to 0.15a, +0.08«, +0.22a, +0.56a,, while
the nondegenerate rates, eq. (4.60), are proportional to 0.42a, +0.01a, +0.07a, + 0.51a,. Taking an
average, we find that the neutrino signal will be shortened by a factor 1/2 if

[0.55g2, +0.31g2 +0.14(g,, + g,,)/4]"* ~ (0.3-2.6) x 107" .
Finally, using table 2.1 (bottom line) we find
m, ., ~(02-1.7) x 107" &V X [0.55¢% + 0.31c;, + 0.14(c, + ¢,)’74] " (10.9)

for the axion mass which shortens the neutrino signal by a factor 1/2.

We now discuss this result in the framework of two typical axion models. Beginning with KSVZ-type
axions, we use the couplings of table 2.2, keeping the amount of proton spin carried by strange quarks,
As, a free parameter. In fig. 10.8 we show m,, as a function of As where the hatched band reflects the
uncertainty of this result. We also show m, (see below): axion masses between m,,, and m,, are
excluded by the SN 1987A neutrino observations. Clearly, the boundary of the excluded range is very
uncertain, and even axion masses as large as 10 * €V may be tolerable. The variation of the results with
As is a relatively minor uncertainty compared with the uncertainty resulting from SN physics and the
uncertainty of the emission rates. In fig. 10.9 we show similar results for DFSZ-axions, taking two

specific values, As = 0.0 (NQM) and —0.26 (EMC).
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Fig. 10.8. SN 1987A axion bounds for KSVZ-axions, using the cou- Fig. 10.9. SN 1987A axion bounds for DFSZ-axions, using the cou-
plings of table 2.2. The hatched band is the range for m, ,, the axion plings of table 2.2, analogous to fig. 10.8. The NQM case corresponds
mass for which the duration of the neutrino signal would be shortened to As =0 (solid line) while the EMC case has As=—0.26 (dashed
by a factor 1/2, inferred from the numerical works [58, 80, 81]. The line).

“trapping mass” was inferred from ref. [97], but no estimate for its
uncertainty is available.
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10.6. Axion trapping

If axions interact too strongly, they do not freely stream out of the SN core, but rather will be
radiated from an ‘“axio-sphere” similar to the neutrino sphere. Turner [97] has investigated this
question quantitatively, and he finds that axions which couple more strongly than g, =1.7 X 107’
not excluded on the basis of the SN 1987A neutrino observations. However, Turner’s interaction rate is
too small by a factor of ~2, relaxing this boundary to ~1.1 x 10™". The conditions most relevant for
axion trapping are those near the neutrino sphere with temperatures of (5-10) MeV, and a density of
~10""gem ™, more than three orders of magnitude less than in the inner core. Therefore the
nondegenerate interaction rates are fully justified, the nucleon mass is at its vacuum value, and all
interactions can be viewed as taking place in vacuum. However, neglecting the pion mass in the matrix
element is a rather bad approximation. The form factors, F;, in the emlss10n rates, and similar factors in
the absorption rate, arise from terms such as A(k)= Ik| / ( |k|2 +mZ)’ in the squared matrix element
where k is the momentum transfer carried by the intermediate pion. Taking T=8MeV as a
temperature corresponding to the axio-sphere leads to a typical momentum transfer of |k|~
(3myT)""* ~ 150 MeV, hence F,~0.3. Taking equal numbers of protons and neutrons near the neutrino
sphere yields the trapping condition 2.0 x 10~ ~(0.5g2, +0.5g2.)""%, or

Mgy~ 1.3€V X (0.5¢5 +0.5¢2)7'"% . (10.10)
It is not quantitatively clear, however, how this value relates to the shortening of the observed neutrino
pulse and thus it is only a crude upper limit for the axion masses that can be excluded. We show m
for KSVZ- and DFSZ-axions in figs. 10.8 and 10.9.

Very recently a numerical investigation of the trapping regime was conducted by Burrows, Ressell
and Turner [59] who implemented radiative energy transfer by axions in their supernova code. This
work for the first time allows one to relate quantitatively the duration of the neutrino signal to a particle
coupling constant in the trapping regime. In fig. 10.6 we show the duration of the neutrino signal in the
trapping regime, assuming equal coupling strengths to neutrons and protons. To prepare this figure we
have taken an average between the results relevant for the IMB and Kamiokande detectors. From fig.
10.6 we conclude that the neutrino signal in the axion trapping regime is reduced by a factor 1/2 for
g,=2x 107" which fortuitously coincides with our above corrected version of Turner’s [97] analytic
result. Hence eq. (10.10) remains valid and, moreover, can be interpreted as giving the value for m,,,
in the trapping regime.

trap

10.7. Axion bounds from Einstein observations

Iwamoto [77] showed that in young neutron stars axion emission would dominate neutrino emission
for a large range of parameters not excluded by other arguments, except for the SN 1987A neutrino
observations which were not available at the time. Later Tsuruta and Nomoto [99] incorporated the nn
bremsstrahlung rates into their numerical evolution code and calculated cooling curves for several
values of the axion-neutron coupling. Assuming that the Einstein data actually establish the surface
temperature of young neutron stars at ¢t~ 10° yr (table 10.5), they found an axion constraint of

8w =107 (10.11)
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It is not clear, however, how this result would vary if one also considered the axion—proton coupling,
and if one would allow these couplings to vary independently. Nevertheless, this result is comparable to
the SN 1987A results.

Finally, it was proposed that the axions emerging from a neutron star could convert into X-rays in
the strong magnetic fields near the pulsar surface, leading to a detectable signal [83]. However, these
transitions are strongly suppressed by photon refractive effects caused by the magnetic fields (section
4.9.4) so that the arguments of ref. [83] do not apply as was shown in ref. [411].

10.8. What if neutron stars are strange quark stars?

It has sometimes been speculated that the ground state of nuclear matter would be a medium of free
quarks and gluons, i.e., that at sufficiently high densities nuclear matter makes a phase transition to a
quark—-gluon plasma. This means that “neutron stars’ could consist of free quarks and gluons rather
than of nucleons, and a supernova core after collapse could contain a region of a quark—gluon plasma.
Most recently a number of authors [55, 55a, 94] have investigated the issue of axion emission from a
quark—gluon plasma and how it would affect bounds on the axion mass from SN 1987A.

The SN 1987A bounds are mostly of importance for hadronic axion models for which bounds based
on the axion—electron coupling do not apply. Hadronic axions by definition do not couple to leptons at
tree level and also typically do not couple to normal quarks. Hence for conditions of a quark—gluon
plasma such axions only couple to exotic heavy colored objects (which would not be present in a SN
core) and to free gluons by virtue of the Lagrangian eq. (2.3) which is the most generic ingredient of all
axion models so that the axion-gluon interaction is completely model-independent. Therefore, in a
quark—gluon plasma hadronic axions can be produced only by processes involving their coupling to
gluons while there is no equivalent to the nucleon bremsstrahlung processes which dominate in the
nuclear matter phase.

Salati and Ellis [94] have discussed axion emission from the gluonic plasmon decay process,
g, —g, +a, where g, and g, refer to transverse and longitudinal gluonic modes, respectively. The
emission rate from this process alone is much less than that for nucleon bremsstrahlung at the same
density and temperature so that these authors conclude that the axion bounds will be substantially
weakened if SN cores actually consist of a quark—gluon plasma. However, Altherr [55a] pointed out
that the gluonic Primakoff effect, g + q— q + a, would be more important. This process is analogous to
fig. 4.9 if the double line is interpreted as representing a quark and the wavy lines as representing
gluons. Altherr found that the bound on the Peccei-Quinn scale and thus on the axion mass would
remain essentially unchanged, i.e., that the emission rate would be about the same as that from nuclear
matter at similar densities and temperatures.

11. Summary of axion and neutrino bounds

We summarize the astrophysical bounds on axions and neutrinos that were discussed in this report.
11.1. Neutrinos
11.1.1. Masses

From the absence of dispersion of the neutrino pulse of SN 1987A one infers a mass bound for the
electron neutrino of
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m, <23eV (11.1)

at the 95% CL (section 10.1.2 and ref. [211]). If neutrinos are Dirac particles so that flipping their
helicity causes them to be sterile with respect to standard weak interactions, the cooling argument of
the SN 1987A neutron star (section 10.3) yields a bound [92, 149-151]

m, <25keV, (11.2)

195

with an uncertainty of at least a factor of 3 in either direction. The laboratory bounds are m, <250 keV
at 90% CL and m, <35MeV at 95% CL [325]. There exists a range of allowed mass values for v_ near
this experimental bound because of trapping.

11.1.2. Right-handed interactions

If right-handed neutrinos exist they would have been produced in the core of SN 1987A, escaped
freely, and thus the cooling argument applies (section 10.3). If the right-handed interactions are
described by an effective current—current Lagrangian in analogy with the left-handed currents, the
right-handed Fermi constant is constrained by Gy <0.3x 107°G, (charged currents) and G, <
10"*G; (neutral currents), see section 10.6 and table 10.6. The best laboratory bound is Gy, <
0.17 X 10 °G, (charged currents).

11.1.3. Magnetic and electric dipole moments

It is now known that there exist exactly three light neutrino flavors [449-453], all of which could have
anomalous magnetic dipole and transition moments, u,, as well as electric dipole and transition
moments, &, where i, j=1,2,3, denoting the mass eigenstates. These properties would allow for
radiative neutrino decays, v,— v, + v, plasmon decay in stars, v, — v,v;, and electromagnetic scatter-
ings, v, +(Ze)—>(Ze) + v, prov1ded that the appropriate kinematic constraints are observed. (See
section 4.10 for the rates and cross sections.) All of these processes have been used to constrain various
entries of the magnetic and electric dipole matrices.

During the time of the neutrino observations, the solar maximum mission (SMM) satellite was
operational and registered a normal background flux of +y-rays [182]. The absence of a +y burst in
association w1th the neutrino burst allows one to constrain radiative neutrino decays [181-183],
T, / m, 22X 10" s/eV, where 7 is the radiative lifetime only. A similar bound pertams to p and 7
neutrinos if they are lighter than about 20 eV while for larger masses the bound is less restrictive
because the photon spectrum would be spread out in time. A general bound, valid for all families, is
[183]

2x10%(m /1eV) if m,<20eV,
%2 3% 10" if 20eV=<m, <100eV, (11.3)
8x107(1eV/im,) if 100eV<m, <1MeV .

More interestingly, these results can be expressed in terms of the electric or magnetic transition
moments. Considering specifically the decay v,— v, +y we find
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Ul + e, 1) [1x107(1eVim,)* if m,<20eV,
(11.4)

<Z
JI 5x107""(1eV/im,) if m,=100eV,

where u, = e/2m, is the Bohr magneton.

The SN 1987A cooling argument (section 10.3) can be used because the electromagnetic moments
would lead to helicity flips in the electromagnetic scattering of trapped, left-handed neutrinos on
charged particles. This argument {136, 141], as well as the absence of high-energy events in the
detectors [142] leads to the constraint

3 1/2
(.Zl (I, * + [g,.j|3)> <(0.5-5) X 103" (11.5)
1j=
where the sum is to be extended over all neutrinos with m, <1 MeV.

Finally, the plasmon-decay width for v, — v,v; would lead to the cooling of the core of red giants
before the helium flash, increasing the core mass of red giants and horizontal branch stars (section 8.5),
and leading to a constraint [146]

3 1/2
2 2 —-12
(_Zl(|/*l‘ijl +|8ij‘ )) <2X10 “pg . (11.6)
L=
A constraint of 1 X 10™ "', arises from the white dwarf luminosity function (section 9.3) and from the
duration of helium burning in low-mass stars (section 8.4). This result applies to Dirac neutrinos, while
for Majorana neutrinos the final states must not be counted twice, i.e., the bounds are less restrictive by
a factor 2"

11.2. Axions

11.2.1. Pseudoscalar couplings to fermions and photons

We begin with the bounds on the couplings of (pseudoscalar) Nambu-Goldstone bosons to fermions.
The most restrictive lower bound on the Yukawa coupling to electrons, g,., arises from the “‘helium
ignition argument” (section 8.3.2). It was first presented in ref. [63], and a slightly revised result
(section 8.3.2) is

g.<3x10° ", (11.7)

valid for m, <30keV. This bound is conservative because even if the helium flash occurred, the
increased core mass would make itself known by an increased luminosity at the tip of the giant branch
and a shortened helium burning lifetime (section 8.4). A bound which is only slightly less restrictive
arises from the white dwarf luminosity function (section 9.4 and refs. {84, 85, 88]). If the interaction is
too strong, our bosons would not escape from red giant cores or white dwarfs, but then they would
contribute to the energy transfer in stars (chapter 5), and the known properties of the Sun preclude
such strong interactions (section 7.1 and refs. [160, 161]), leaving no room for a window below the
bound eq. (11.7).

The most restrictive bounds on the Yukawa coupling to nucleons, g, and g,,, arise from the
observed duration of the SN 1987A neutrino signal (section 10.5 and refs. {58, 59, 80, 81, 92, 97]).
Neglecting a small term proportional to (g, + gap)z, the bound is

(0.6g;, +0.4g2 ) * <371 x 107" (11.8)
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The large uncertainty arises from variations between different numerical SN codes, unknown correction
factors due to many-body effects, and the sparse data (few observed neutrinos from SN 1987A). The
criterion in deriving this bound was a shortening of the observed neutrino pulse by a factor of 1/2. If
the pseudoscalars interact too strongly they are trapped, and it was estimated that for (0.5g> +
O.Sgip)”2 22x 1077 the neutrino signal would also be shortened by a factor of 1/2 (section 10.6 and
refs. [59, 97]).

A bound similar to eq. (11.8) arises from the observed cooling time scale of neutron stars at an age
of ~10” yr (section 10.7 and refs. [77, 99]), but these arguments have to rely on the assumption that the
observed X-ray emission of compact sources in SN remnants actually represents thermal surface
radiation.

The photon coupling was constrained by considering the helium burning lifetimes of low-mass stars
(section 8.4 and ref. [89]), leading to a bound, for m, <30keV,

8., <1x107°Gev™!, (11.9)

assuming that the lifetime is not shortened by more than a factor of 1/2. In this case many-body effects
can be treated with high accuracy so that the major uncertainty lies in the observational determination
of the helium burning lifetime which is thought to be known to at least within a factor of two from
number counts in open clusters and the old galactic disk population. Conceivably, this bound could be
enhanced by a detailed comparison of number counts in globular clusters with numerical evolutionary
sequences.

11.2.2. Axion mass bounds and axion windows

We may now translate the bounds on the various coupling constants into axion mass bounds. Taking
the generic relationship between fermion couplings and the axion mass eq. (2.31), the bound on the
electron coupling eq. (11.7) yields

m,<035x10%eVc . (11.10)

In the DFSZ-model, specifically, we have c, = cos’8/N; according to eq. (2.32) so that
m,<1.1x107*eV/cos’B , (11.11)

where we have taken the number of families to be N, = 3. Similar, the SN 1987A bound yields a bound
of

m,<0.6x107*" eV (0.6c; +0.4c3)™""% . (11.12)

For the KSVZ-model this is m, <3 x 1077 (ﬁg 10.8) while for DFSZ-axions the excluded regime
was shown as a function of the free parameter 8 in fig. 10.9.
Finally, the constraint eq. (11.9) on the photon coupling, together with table 2.1, yields

0.75
m, <0. 7eV‘E/ (11.13)

-1.921"

For DFSZ-axions or any GUT axion model (E/N =8/3) the correction factor equals 1, while for
models with E/N =2 this bound is strongly suppressed.
The axion bounds are best summarized by fig. 11.1 where we show the excluded mass range. For
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Fig. 11.1. Synopsis of astrophysical and cosmological bounds on the axion mass. For KSVZ-axions, the only free parameter is £/N, the coefficient
of the electromagnetic anomaly, while for DFSZ-axions it is the angle B which measures the ratio of the vacuum expectation values of two
low-energy Higgs fields which give masses to up and down quarks, respectively. The SN 1987A bounds for DFSZ-axions are shown for the EMC
case with As = —0.26. The parameter E/N is not a continuous variable, rather it is the ratio of small integers. For E/N =2, there is a window of
allowed masses between the SN 1987A and the red giant bound. “No Inflation” means either that there is no inflation, or that the universe was
reheated beyond the Peccei~Quinn scale after inflation. allowing for the formation of cosmic strings and domain walls, effects which exclude models
with N >1 such as the DFSZ-model. In the presence of inflation, the initial “‘misalignment value™ of the axion field, a,/2#f,, can take on any value
in the interval {0, 1]. It is disputed whether or not all of these values have equal conditional probabilities to produce possible observers, and
according to Goldberg [361], there is no dependence on a,. We also indicate the uncertainty of the SN 1987A bound and of the inflationary axion
bound. It is not clear whether or not there is a window between the Davis—Shellard bound and the SN 1987A bound. If there is no window, axions
need inflation.
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KSVZ-type axions it is shown as a function of the electromagnetic anomaly coefficient, E/N, which
affects the coupling strength to photons, while all other couplings are uniquely fixed, barring the
uncertainty of the amount of proton spin carried by strange quarks. However, the results are rather
insensitive to this value within the experimentally allowed range. While E/N in any realistic axion
model must be the ratio of small integers, the graphical display is facilitated by treating it as a
continuous variable. The dip in the constraints from the photon coupling at E/N =1.92 could equally
occur at E/N =2 because the number 1.92 is uncertain within +0.08 (see section 2.3.2). However, the
dip would be filled in somewhat by higher-order interactions. For DFSZ-axions the constraints are
shown as a function of B8 which affects somewhat the coupling to nucleons, affects drastically the
coupling to electrons, and leaves the photon coupling entirely untouched: E/N =8/3.

Because of axion trapping in the supernova for m, exceeding a few eV there exists a small window of
allowed axion masses for hadronic axions between the red giant and SN 1987A bound, a range
sometimes referred to as “Turner’s window”. The magnitude of this window, and whether or not one
has to appeal to E/N =2 for its existence, depends critically on the SN 1987A axion bounds in the
trapping regime. Moreover, for most parameters in this window axions could trigger the Kamiokande
detector so efficiently that most of the relevant parameter range is excluded (see sections 10.6 and ref.
[96)).

We also show the cosmological constraints that were discussed in chapter 3. If the universe never
underwent inflation, or if it inflated before the Peccei-Quinn symmetry breaking, we have to focus on
N =1 models to avoid overclosing the universe by the energy associated with domain walls. Even for
N =1 models there is only a narrow range of axion masses which possibly remains allowed. If Davis and
Shellard’s [348] treatment of the string radiated axion density is correct, axions are necessarily a large
fraction of the cosmic mass density, and most likely affect supernova physics. A more rigorous
treatment of string radiation and of supernova physics with axions might reveal that this entire window
is closed.

If the universe inflated after the Peccei-Quinn symmetry breaking there remains a large range of
masses where axions are allowed, and for specific combinations of m, and the initial ““misalignment”
they would be the dark matter of the universe. In the mass range around 10> eV galactic axions can be
detected, in principle, in laboratory experiments.

11.2.3. Summary and outlook

In summary, the astrophysical and cosmological axion constraints leave a number of interesting
windows for the possible existence of axions that should be further explored. A better understanding of
many-body effects in the core of supernovae and a truly self-consistent calculation taking these effects
into.account is of great interest. ‘““Turner’s window” between the red giant and SN 1987A bounds for
hadronic axion models can be explored, in principle, by laboratory experiments searching for solar
axions (section 7.3), and the same window is accessible to searches for a spectral line from axion decay
in the “glow of the night sky” (section 3.4). The cosmic mass density from axionic string decay should
be treated in more detail so that, perhaps, the SN 1987A and the cosmological bounds can be brought
to overlap, allowing one to conclude that axions need inflation, unless they lie in Turner’s window.

The most important question, however, is whether axions are the dark matter of the universe.
Searches for galactic axions (section 3.5) are therefore of paramount importance. While a negative
search result cannot rule out the existence of axions, the parameter range accessible to microwave
cavity searches covers a well-motivated range of parameters for one of the few serious cold dark matter
candidates.
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Note added in proof

After completion of the manuscript several recent works have come to my attention which ought to
be mentioned in this report. Gould [461] has investigated the capture of solar system WIMPs by the
Earth and found that one may essentially use the “free space” capture formula although the Earth is
deep in the potential well of the Sun. Cox et al. [462] have investigated solar oscillations including
cosmion energy transfer in their models. They found that they could not match the observed and
calculated frequencies and claimed that cosmions could not solve the solar neutrino problem. Equally,
Kaplan et al. [463] have numerically investigated the cosmion problem and found that the confrontation
with helioseismological data distavors cosmions in the Sun.

Burton and Carlson [464] have investigated Goldberg’s claim that even in an inflationary scenario the
cosmic axion density did not depend on an initial value for the axion field (ref. [361] and section 3.1).
They disagree with Goldberg and reaffirm the standard axion scenario. According to these authors the
cosmic axion density does depend on initial conditions as shown in the upper left panel of fig. 11.1.

As discussed in section 3.4, hadronic axions with a mass around a few eV could produce a decay line
in the glow of the night sky. The decay photons could, indeed, stimulate further axion decay. It has
been speculated that coherently enhanced decay of cosmic axions could provide the energy source for
quasars [465] or even lead to the formation of the observed voids in the structure of the universe by the
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explosion of clustered axions [466]. Axions with such parameters, however, are probably excluded by
the absence of axion induced signals in the SN 1987A neutrino observations [96].

It has been proposed [467] to upscale the University of Florida axion search experiment in order to
conduct a realistic axion search. The main ingredient of this proposal is to use a large superconducting
magnet (volume of magnetic field ~2.8 m® at ~7 T) owned by Lawrence Livermore National Labora-
tory (California) that could be made available for this purpose. Moreover, one would subdivide the
field volume in anywhere from 1 to 1024 individual cavities in order to allow for search masses from 0.6
to 16 weV. Over a search time of ~4 years one may be able to reach the ‘“‘axion line” in fig. 3.2 over the
range of search masses and thus would be able to find or exclude GUT axions in their role as the dark
matter of our galaxy.

Goyal and Anand [468] have computed the neutrino emissivity of strange quark matter, while Anand
et al. [469] have computed the emission of axions by bremsstrahlung processes involving quarks. They
found that the emissivity of strange quark matter was a factor of 4-10 below that of nuclear matter at
the same density and temperature so that bounds on DFSZ-type axions (which couple directly to light
quarks) from SN 1987A would be diminished if the SN core consisted of strange quark matter. This
work is complementary to refs. [55, 55a, 94] discussed in section 10.8.

Gandhi and Burrows [470] have considered the flipping of neutrinos into right-handed states in SN
1987A, assuming a Dirac mass term (section 10.3.2 and table 10.6). They included the corresponding
energy loss rate in Burrows’ supernova code and computed the duration of the neutrino signal in the
IMB and Kamiokande detectors along the lines discussed in section 10.5. They found a mass bound
m, <14 keV, in good agreement with the result given in table 10.6.

Several groups of authors [471-473] have considered particles with a small fractional electric charge
(milli- or mini-charged particles). They have derived constraints in the mass—charge plane from various
arguments, including the stellar energy loss argument applied to HB stars, white dwarfs, and SN 1987A.

References

[461] A. Gould, IAS preprint (1990).

[462] A. Cox, J.A. Guzik and S. Raby, Astrophys. J. 353 (1990) 698.

[463] J. Kaplan, F. Martin de Volnay, C. Tao and S. Turck-Chiéze, report PAR-LPTHE 90-38 (September 1990}.

[464] JW. Burton and E.D. Carlson, Phys. Lett. B 247 (1990) 16.

[465] I.1. Tkachev, Phys. Lett. B 191 (1987) 41.

[466] T.W. Kephart and T.J. Weiler, report VAND-TH-90-2 (1990).

[467] P. Sikivie, N.S. Sullivan, D.B. Tanner, K. van Bibber, M.S. Turner and D.M. Moltz, Proposal to the U.S. Department of
Energy and to the Lawrence Livermore National Laboratory (1990), unpublished.

[468] A. Goyal and J.D. Anand, Phys. Rev. D 42 (1990) 992.

[469] J.D. Anand, A. Goyal and R.N. Jha, Phys. Rev. D 42 (1990) 996.

[470] R. Gandhi and A. Burrows, Phys. Lett. B 246 (1990) 149.

[471] M.L. Dobroliubov and A. Yu. Ignatiev, Phys. Rev. Lett. 65 (1990) 679.

[472] R.N. Mohapatra and I.Z. Rothstein, Phys. Lett. B 247 (1990) 593.

[473] 8. Davidson, B. Campbell and D. Bailey, report (1990), to be published in Phys. Rev. D.



