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1 Sun as an axion source

We consider axions that have a two-photon vertex, characterized by the coupling constant
Gaγγ of dimension (energy)−1. As discussed in the lectures, the cross section γ + p → p + a
due to the Primakoff process is very roughly

σ ∼
αG2

aγγ

8π

(i) Estimate the energy loss of the Sun due to axion emission, assuming axions can freely
escape once produced. Treat the Sun as consisting purely of hydrogen and assume an average
temperature of 1 keV. Express the result as a fraction of the solar photon luminosity which
is roughly L⊙ = 4× 1033 erg s−1. Note also that the solar mass is M⊙ = 2× 1033 g. In other
words, the average nuclear energy generation rate in the Sun is 2 erg g−1 s−1.

A more rigorous treatment, including screening effects in the Primakoff rate and integrating
over a realistic solar model yields

La ∼ G2
10 1.85× 10−3 L⊙ ,

very similar to the simple dimensional estimate. Here we have usedG10 = Gaγγ/(10
−10 GeV−1).

(ii) Assuming the solar axion production can not exceed its normal photon luminosity (why?),
which limit on Gaγγ is implied?

(iii) Verify that for the relevant range of axion-photon couplings it is indeed true that axions
can escape freely once produced, noting that the radius of the Sun is R⊙ = 6.96× 1010 cm.
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Solution

(i) Solar axion luminosity

The scattering rate (or inverse mean free path) of a photon in a proton gas of density np is

Γ = σnp

where we have used that the relative velocity is the speed of light (unity in natural units)
and we have assumed that the protons are nonrelativistic. In each collision, the energy ωγ of
the photon is lost in the form of axions and the density photons is nγ . Since the approximate
cross section is independent of energy, the energy loss rate per unit volume is

Q = σnp ργ

where ργ = (π2/15)T 4 is the thermal photon energy density in the solar interior. For pure
hydrogen, the mass solar mass density is approximately ρ = npmp and therefore

Q = σ
ρ

mp
ργ .

Therefore, the energy loss rate per unit mass is

ϵ =
Q

ρ
=

σργ
mp

∼
αG2

aγγ

8π

1

mp

π2

15
T 4 =

π

120

αG2
aγγT

4

mp

With T = 1 keV and mp = 0.935 GeV one finds

ϵ ∼ G2
10 3× 10−3 erg g−1 s−1 or La ∼ G2

10 1.5× 10−3 L⊙ .

(ii) Energy-loss limit

The Sun is halfway through its normal lifetime, so it would have burnt out already if it had
lost twice the usual amount of energy all along. With the more exact energy loss rate we have
the criterion

La = G2
10 1.85× 10−3 L⊙ <∼ L⊙ ,

implying

G10
<∼ 20 .

Using globular cluster stars one can actually derive a more restrictive limit from them not
burning too fast, corresponding to G10

<∼ 1.

(iii) Mean free path

Approximate the Sun as a homogeneous body with mass M⊙, consisting purely of hydrogen,
with radius R⊙. Therefore, the average proton density is

np =
M⊙
mp

1

(4π/3)R3
⊙

=
2× 1033 g

1.661× 10−24 g

1

(4π/3) (6.96× 1010 cm)3
= 8.5× 1023 cm−3
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The cross section for axion to photon conversion is

σ ∼
G2

aγγ

8π
= G2

10 1.55× 10−49 cm2

Therefore, the mean free path is

λmfp ∼ 1

σnp
= G−2

10 7.6× 1024 cm = G−2
10 1× 1014 R⊙

This is much larger than the solar radius, so axions escape freely once produced.

2 Plasma frequency and photon dispersion

In a gas of free electrons, photons propagate as if they had a mass, ω2 − k2 = ω2
plas, that is

given by the plasma frequency

ω2
plas =

4πα

me
ne

where α = 1/137 is the fine-structure constant, me = 0.511 MeV the electron mass, and ne

the electron density.

(i) Near the center of the Sun, the matter density is around 100 g cm−3. Assuming it consists
of hydrogen, how large is the plasma frequency? How does it compare with a typical blackbody
photon energy, assuming the temperature is 1 keV?

(ii) The interstellar medium (ISM) consists to a large degree of ionized gas, i.e. free electrons,
typically of order 1 cm−3 in the galaxy. How large is the corresponding plasma frequency?

(iii) If we observe a radio pulsar at a distance of 100 pc with photons of frequency ν = 1 GHz
(corresponding to an angular frequency of 2π×109 s−1), how large is the photon time-of-flight
delay caused by the presence of the ISM?

(iv) The pulsar radio emission is pulsed with a typical period in the range 0.2–2 s, corre-
sponding to the rotation period. The spectrum of radio frequencies is broad. What is the
impact of the ISM? How can the dispersion effect be used to measure the interstellar electron
density?

Solution

(i) Plasma frequency in the solar interior

If the medium consists of hydrogen, the electron density is equal to the proton density and
we have roughly ne = ρ/mp. With a density of 100 g cm−3 we find an electron density of
ne = 6.0 × 1025 cm−3. Noting that 1 cm−1 = 1.973 × 10−5 eV we find ωplas = 0.3 keV. For
T = 1 keV, a typical photon energy is 3T = 3 keV ∼ 10ωplas.

(ii) Plasma frequency in the galactic interstellar medium

Repeating the same calculation with ne = 1 cm−3 yields a plasma frequency of ωplas =
3.71× 10−11 eV.
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(iii) Time-of-flight delay

The time to travel a distance D is t = D/v and the velocity is v = p/E =
√

1−m2/E2 for a
particle with mass. Expanding to lowest order reveals a delay relative to a massless particle of

∆t =
m2

2E2
D .

For photons where the effective mass is caused by the plasma frequency, this is numerically

∆t = 0.41 s
ne

1 cm−3

(
1 GHz

ν

)2 D

100 pc
.

(iv) Pulsar dispersion

The time delay is of the same order as the pulsar period, so a broad band radio signal will be
smeared out. However, this dispersion effect has a known frequency dependence and therefore
can be removed by a single fit parameter, the integrated electron density along the flight path,
also known as the “dispersion measure.” Therefore, the pulsed signal can be recovered and
the electron column density can be determined.
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