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1 Energy transfer in WIMP-nucleus collision

A WIMP with mass mχ and nonrelativistic velocity v strikes a nucleus at rest with mass mA.

(i) Show that the energy transfer to the nucleus is

∆E =
mAm2

χ

(mA +mχ)2
v2 (1− cos θ)

where θ is the scattering angle in the CM frame.

(ii) For which scattering angle and WIMP mass is the transfer maximal? Interpretation?

(iii) Assume the galactic WIMP velocity distribution follows an isothermal halo model with

dn

dv
= n0

4 v2√
π σ3

e−v2/σ2

where σ is the velocity dispersion. Assume further an isotropic scattering cross section that
is independent of velocity. What is the average energy transfer per collision, assuming the
Earth is at rest relative to an isotropic WIMP velocity distribution?

(iv) Give numerical values for the average energy transfer, assuming σ = 220 km s−1 and
taking WIMP masses of 50, 100, and 200 GeV and the target nuclei oxygen (A = 16), silicon
(A = 28), calcium (A = 40), germanium (A = 74), xenon (A = 132), or tungsten (A = 184).
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Solution

(i) Energy transfer

Take the direction of the WIMP velocity to be the z–direction. The CM system is defined
by the WIMP and nucleus momenta to be opposite and equal. Because the kinematics is
nonrelativistic and because the nucleus is at rest in the laboratory system, the transformation
to the CM system is enabled by pCM = mχ(v − vCM) = mAvCM, implying

vCM =
mχ

mA +mχ
v and pCM = mAvCM =

mAmχ

mA +mχ
v

The quantity mAmχ/(mA +mχ) is the reduced mass of the two-body system.

After the collision with angle θ in the CM system, the nucleus momentum parallel and trans-
verse to the z–direction is in the CM system

pCM,∥ = −pCM cos θ and pCM,⊥ = pCM sin θ

and therefore in the original laboratory system

pA,∥ = pCM − pCM cos θ and pA,⊥ = pCM sin θ

The energy transfer (measured in the lab system) is the same as the total final nucleus energy
because it was originally at rest,

∆E =
p2A
2mA

=
p2A,∥ + p2A,⊥

2mA
=

p2CM

2mA

[
sin2 θ + (1− cos θ)2

]
=

p2CM

2mA
2 (1− cos θ)

which is the result we are looking for.

(ii) Maximum energy transfer

The maximum of ∆E arises for back-scattering with θ = π and therefore cos θ = −1. If the
WIMP mass is equal to the nuclear mass, the energy transfer is

∆E =
m3

χ

(mχ +mχ)2
v2 × 2 =

mχv
2

2

and thus identical to the initial kinetic energy: The energy transfer is complete, the WIMP
remains at rest. Experiments are most sensitive to WIMPs with a mass matched to the mass
of the target nucleus.
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(iii) Average energy transfer for an isothermal halo model

The scattering probability scales with σ0v. If σ0 is velocity independent, the probability for a
scattering event scales with v times the distribution function. The energy transfer in a given
collision scales with v2. Therefore, the average of this per collision is

⟨
v2
⟩
coll

=

∫∞
0 dv v3f(v)∫∞
0 dv v f(v)

= 2σ2

where here σ is the velocity dispersion, not the cross section. The cross section is assumed
isotropic in the CM frame, so ⟨cos θ⟩ = 0. Therefore

⟨∆E⟩ = 2σ2
mAm2

χ

(mA +mχ)2

(iv) Average energy transfer for different mass combinations

The average energy transfer in our case is

⟨∆E⟩ = 10.8 keV
mχ

10 GeV

mAmχ

(mA +mχ)2

For the stated examples one finds the energy transfers (in keV) given here.

Element: O S Ca Ge Xe W
A 16 28 40 74 132 184

mχ = 50 GeV 9.5 12.1 13.2 13.1 11.1 9.4
100 GeV 12.1 17.6 21.3 26.0 26.6 25.0
200 GeV 13.9 21.9 28.5 41.0 50.7 53.5
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2 Annual modulation of WIMP signal

Consider the same isothermal halo model of the previous exercise. The Earth moves in the
halo with a velocity vE. The halo itself is assumed to be non-rotating, so the WIMP velocity
distribution is isotropic in a non-rotating frame.

(i) What is the velocity distribution in the laboratory frame, relevant for a WIMP detection
experiment?

(ii) Assuming vE = σ, how much larger is the detection rate compared to vE = 0? How much
larger is the average energy transfer per collision?

(iii) On its orbit around the Sun, the Earth velocity relative to the halo varies in a range
±15 km s−1 relative to the average, taken to be ⟨vE⟩ = σ = 220 km s−1. How large is the
annual variation of the detection rate?

Solution

(i) Laboratory velocity distribution

The isothermal velocity distribution corresponds to a three-dimensional distribution function

d3v f(v) ∝ d3v e−v2/σ2

where we do not worry about the overall normalization that will be fixed in the end. The
velocity in the laboratory frame is u = v − vE. The differential is the same: d3u = d3v.
Therefore, the laboratory distribution function is given by

d3u g(u) = d3u f(u+ vE) ∝ d3u e−(v+vE)
2/σ2

Since we do not have directional sensitivity, we are only interested in the scalar distribution
function

du g(u) = du u2
∫

dϕd cos θ e−(u+vE)
2/σ2

= du u2 2π

∫ +1

−1
d cos θ e−(u2+v2E−2uvE cos θ)/σ2

= du u2 2π
σ2

2uvE

[
e−(u−vE)

2/σ2 − e−(u+vE)
2/σ2

]
In normalized form it is

g(u) =
u√

π vEσ

[
e−(u−vE)

2/σ2 − e−(u+vE)
2/σ2

]
Note that for vE → 0 this agrees with the original isotropic distribution as can be shown by
expanding in powers of vE.
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(ii) Modified detection rate and recoil energy

Assuming the cross section is velocity independent, the detection rate is proportional to ⟨u⟩.
With vE = 0 the average laboratory velocity is ⟨u⟩0 = 2σ/

√
π. With vE = σ it is

⟨u⟩σ =

(
1

e
√
π
+

3erf(1)

2

)
σ =

2 + 3e
√
π erf(1)

4e
⟨u⟩0 = 1.304 ⟨u⟩0

As discussed in the previous exercise, the average recoil energy per collision we have for vE = σ

⟨∆E⟩ ∝
∫∞
0 duu3g(u)∫∞
0 duu g(u)

=
σ2

6

(
19 +

4

2 + 3e
√
πerf(1)

)
to be compared with 2σ2 for vE = 0. So it is a factor 1.61 larger.

(iii) Annual Modulation

Now let us set vE = σ+w with w some small velocity. To lowest order in w one finds for the
average velocity (proportional to the average detection rate)

⟨u⟩σ+w =

(
1

e
√
π
+

3erf(1)

2

)
σ +

(
1

e
√
π
+

erf(1)

2

)
w +O(w2)

The fractional modification is

⟨u⟩σ+w

⟨u⟩σ
= 0.427

w

σ

If w = ±15 km s−1 and σ = 220 km s−1 the fractional variation of the detection rate is ±1.2%
relative to the average.
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