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1 Second Friedmann Equation

The Friedmann equation and continuum equation are
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and ρ̇ = −3(ρ + p)
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Differentiating the Friedmann equation with respect to time and using the continuum equa-
tion, derive the second Friedmann equation
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Solution

Differentiating the 1st Friedmann Eqn with respect to time and inserting for ρ̇ the continuum
eqn yields
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Now use once more the 1st Friedmann Eqn to replace in the r.h.s.
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It is now straightforward to solve for ä/a and obtain the 2nd Friedmann Eqn.
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2 Measures of distance

Assume that a cosmological model is perfectly characterized by ΩM and ΩΛ, i.e. ignore the
contribution of radiation. An observer receives light from a distant source (emitter E) and
measures that the spectral lines have suffered the redshift zE. (i) Write down general integral
expressions for the lookback time (how long ago was this signal emitted) and for the coor-
dinate, luminosity and angle distances of the source. These quantities will depend on ΩM,
ΩΛ and zE. (ii) Solve them explicitly for a flat, matter-dominated universe (ΩM = 1 and
ΩΛ = 0). (iii) For this model, find the redshift where the angular size of an object is smallest.
(iv) What is this redshift in a realistic flat model (ΩM = 0.27 and ΩΛ = 0.73)? (v) For this
realistic model, plot the different distance measures as a function of redshift.

Solution

(i) General integral expressions

Following what was shown in the lectures, we write the Friedmann Eqn in the form

ẏ2 = ΩM y−1 + ΩK + ΩΛ y2

where

ΩK = 1− ΩM − ΩΛ, y =
a

a0
=

1
1 + z

, τ = H0t, ẏ =
dy

dτ

and so time is always expressed in units of H−1
0 . The Friedmann Eqn is equivalent to

dτ =
dy√

ΩM y−1 + ΩK + ΩΛ y2
.

Lookback time

Simple integration provides the lookback time ∆t = ∆τH0

∆τ =
∫ 1

τE

dτ =
∫ 1

yE

dy√
ΩM y−1 + ΩK + ΩΛ y2

If expressed in terms of redshift z = y−1 − 1 these results are equivalent to

dτ = − dz

(1 + z)
√

(1 + z)2(1 + ΩMz)− z(2 + z)ΩΛ

∆τ =
∫ zE

0

dz

(1 + z)
√

(1 + z)2(1 + ΩMz)− z(2 + z)ΩΛ
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Coordinate distance

Beginning with the Robertson-Walker metric

ds2 = dt2 − a2(t)
(

dr2

1− kr2
+ r2dΩ2

)

we consider a light ray (ds2 = 0) propagating along the radial direction (dΩ = 0) and so

dr√
1− kr2

= − dt

a(t)

The minus sign was chosen to have a light signal coming to us at r = 0 from a distant source,
so dr is negative with increasing time. Multiplying both sides with H0a0 and noting τ = H0t
and y(t) = a(t)/a0 leads to

H0a0
dr√

1− kr2
= −dτ

y

The l.h.s. is the differential of the coordinate distance (in units of H−1
0 ). On the r.h.s. we

may insert the differential from the Friedmann Eqn dτ = dy/
√· · · and so

H0a0
dr√

1− kr2
= − dy

y
√

ΩM y−1 + ΩK + ΩΛ y2

=
dz√

(1 + z)2(1 + ΩMz)− z(2 + z)ΩΛ

In integrated form we thus find for the coordinate distance in units of H0

H0Dc = H0a0

∫ rE

0

dr√
1− kr2

=
∫ 1

yE

dy√
ΩM y + ΩK y2 + ΩΛ y4

=
∫ zE

0

dz√
(1 + z)2(1 + ΩMz)− z(2 + z)ΩΛ

Particle horizon

As an additional remark let us note that the coordinate distance corresponding to infinite
redshift is called the “particle horizon.” It is the coordinate distance that a light signal or
gravitational wave signal has travelled since the big bang, or conversely, the largest coordinate
distance of objects that we can see in the sky. Objects further away can not be seen because
their light signals could not yet have reached us since the big bang.

So in our ΩM-ΩΛ models the particle horizon (in units of H−1
0 ) is

H0Dhor =
∫ 1

0

dy√
ΩM y + ΩK y2 + ΩΛ y4

=
∫ ∞

0

dz√
(1 + z)2(1 + ΩMz)− z(2 + z)ΩΛ
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Luminosity and angle distance

In the lectures we have derived the luminosity and angle distance. After multiplying with H0

they are

H0DL = (1 + zE) H0a0rE =
H0a0rE

yE

H0DA =
H0a0 rE

(1 + zE)
= H0a0 rE yE

To evaluate these expressions we need an explicit expression for H0a0rE. We recall from the
lectures that

χE ≡
∫ rE

0

dr√
1− kr2

=





asin(rE) for k = +1
rE for k = 0
Asinh(rE) for k = −1

or turning this around

rE = Sk(χE) ≡





sin(χE) for k = +1
χE for k = 0
sinh(χE) for k = −1

From the above integral expressions we note that H0Dc = H0a0χE. Therefore,

H0a0rE = H0a0 Sk

(
1

H0a0

∫ 1

yE

dy√
ΩM y + ΩK y2 + ΩΛ y4

)

Finally recall from the definition of the Ω parameters that

Ωtot = ΩM + ΩΛ = 1 +
k

(H0a0)2
⇒ ΩK = 1− ΩM − ΩΛ = − k

(H0a0)2

For k = 0 we may choose the arbitrary scale factor such that H0a0 = 1 and anyway, because
here Sk(χ) = χ for k = 0, the factor H0a0 drops out. For k = ±1 we find

H0a0 =
1√
|ΩK|

=
1√

|1− ΩM − ΩΛ|
Therefore, we now have explicit expressions for the different distance measures in terms of
integral expressions. Of course, everything can be expressed in terms of z–integrals.
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(ii) Flat, matter dominated case

We now specialize to the simple case ΩM = 1, ΩΛ = 0 and therefore ΩK = 0 and k = 0. The
lookback time is now found by direct integration

∆τ =
∫ 1

yE

dy
√

y =
2
3

(
1− y

3/2
E

)

and we may use yE = 1/(1 + zE). The age of the universe is found for yE = 0 and thus the
familiar t0 = 2

3H−1
0 .

The coordinate distance is

H0Dc =
∫ 1

yE

dy√
y

= 2
(
1− y

1/2
E

)

Therefore, a light signal emitted shortly after the big bang has traversed the coordinate
distance 2H−1

0 or, comparing with age of the universe, the distance 3t0. In other words,
we receive light from 3 times further away than in the Newtonian picture. When the light
began travelling, all distances were smaller and so it got further than it would have in a static
Newtonian space.

We note that in the flat case H0Dc = H0a0rE and therefore

H0a0rE = 2 (1− y
1/2
E )

The coordinate and luminosity distances are then

H0DL = 2
1− y

1/2
E

yE

H0DA = 2 yE(1− y
1/2
E )

(iii) Redshift of smallest angular size in the flat, matter-dominated case

The function H0DA has a maximum. Differentiate the function with respect to yE, set the
result to zero, and find

ymin
E =

4
9

and zmin
E =

1
ymin
E

− 1 =
5
4

(iv and v) Realistic flat model

Now we have ΩK = 0, k = 0 and ΩM = 1− ΩΛ. The coordinate distance is then

H0Dc =
∫ 1

yE

dy√
(1− ΩΛ) y + ΩΛ y4

and the luminosity and angle distance are once more obtained by dividing or multiplying
with yE.
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The integral can not be expressed in a simple analytic form, although it can be expressed as
an incomplete beta function. The coordinate, luminosity and angle distance as a function of
redshift can be numerically plotted as shown here.

Numerically one finds for the redshift of smallest angular size (largest angle distance)

zmin
E = 1.64

which is larger than in the matter-only flat case.

While this was not asked in the assignment, consider also the particle horizon, i.e. the coor-
dinate distance of the big bang. For the flat matter-dominated case we found Dhor = 2H−1

0

whereas the numerical evaluation for the realistic flat case with ΩM ∼ 0.27 yields Dhor ∼
3.5H−1

0 . With the Hubble distance H−1
0 = 4.0 Gpc the particle horizon is Dhor = 14 Gpc.

This is “the size of our visible universe.”

Actually the furthest light signal we can receive is the cosmic microwave background. At
earlier times the universe was not transparent to light. The CMB decoupled at a redshift of
approximately 1100, so yE ∼ 1/1100. The integral for the horizon is practically the same for
the lower limit of integration being zero or 1/1100, so the coordinate distance to the surface
of last scattering is practically the same as the distance to the big bang. At the time of
decoupling, then, the coordinate distance to the surface of last scattering was 1/1100 of what
it is today, i.e. 14 Gpc/1100 = 13 Mpc. Today this is about the distance to the next galaxy
cluster.
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3 FLRW models models of the universe with matter and vac-
uum energy

Assume that a cosmological model in the post-radiation epoch is perfectly characterized by
0 ≤ ΩM < ∞ and −∞ < ΩΛ < +∞. In the plane defined by these two parameters,
identify the regions where (i) the universe is flat, positively curved and negatively curved,
(ii) is accelerating, coasting, or decelerating, (iii) the locus where a static Einstein universe is
possible, and (iv) the universe expands forever or eventually recollapses.

Solution

Following what was shown in the lectures, we write the Friedmann Eqn in the form

ẏ2 = ΩM y−1 + ΩK + ΩΛ y2

where

ΩK = 1− ΩM − ΩΛ, y =
a

a0
=

1
1 + z

, τ = H0t, ẏ =
dy

dτ

(i) Curvature

Recalling that ΩK is proportional to k it is clear that the universe is flat for ΩK = 0 and thus
for ΩM + ΩΛ = 1, shown as a diagonal dashed line in the figure below. Space is negatively
curved below this line and positively curved above it.

(ii) Acceleration

Differentiating the Friedmann Eqn with respect to τ provides

2ẏÿ = −ΩM y−2ẏ + 2ΩΛ yẏ ⇒ ÿ = −1
2 ΩM y−2 + ΩΛ y

The universe is accelerating for ÿ > 0. The present epoch is given by y = 1, so today the
universe is accelerating if

ΩΛ > 1
2 ΩM

This line is not shown in the figure.

7



(iii) Einstein universe

To identify the different types of solutions, we write the Friedmann Eqn in the form “kinetic
energy + potential energy = constant”

ẏ2 + V (y) = ΩK = 1− ΩM − ΩΛ where V (y) = −ΩM y−1 − ΩΛ y2

An Einstein solution is only possible when the system sits at the maximum or minimum of
the potential. There is never a minimum (no stable static solution). A maximum exists only
for ΩΛ > 0. The condition is dV/dy = 0 yields

ΩM y−2 − 2ΩΛ y = 0 ⇒ ymax =
(

ΩM

2ΩΛ

)1/3

Now demanding that ẏ = 0 we insert this value into the Friedmann Eqn and find the condition

0 = ẏ2
∣∣∣
y=ymax

⇒
(

ΩM

2ΩΛ

)2/3

=
1− ΩM − ΩΛ

3ΩΛ

One can now solve this equation to find the locus ΩΛ(ΩM) that fulfills this condition. One
way to express the solution is in parametric form, using µ ≡ ΩM/2ΩΛ

ΩΛ =
1

1 + 2µ− 3µ2/3
and ΩM =

2µ

1 + 2µ− 3µ2/3

The denominator diverges for µ → 1, so there are two branches for 0 ≤ µ < 1 and one for
1 < µ ≤ ∞, beginning at the points (ΩM, ΩΛ) = (0, 1) and (1, 0) respectively (solid lines).
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(iv) Forever expanding or re-collapsing

For negative vacuum energy the potential increases for large y, so the system will reach a
largest y–value, then return, i.e. the universe reverses to a contracting phase and ends in a
big crunch.

For vanishing vacuum energy we have three possibilities: ΩM < 1 (expands forever, negative
curvature), ΩM = 1 (expands forever, flat), and ΩM > 1 (re-collapses, positive curvature).

For positive vacuum energy ΩΛ > 0 there are three generic cases, depending on whether or
not ΩK is below, at or above the Einstein value. First we note that now V (y) < 0, so for
ΩK < 0 we have ẏ2 > 0 for any y. In other words, for negative curvature the universe expands
forever, irrespective of the other parameters.

Between the “Einstein lines” in the figure, ΩK is above the maximum of the potential and
we have a single, forever expanding solution. Above and below these lines, there are two
solutions. The expanding solution in these regions would not have had a singlurity in the
past (no big bang).
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