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1 Cosmic expansion without center

According to Hubble’s law all galaxies show on average a recession velocity that increases
linearly with distance: vrec = H0D. Use the linearity of this relation to show that an observer
on any other galaxy will likewise see himself in the apparent center of the expansion. The
Hubble flow looks the same to all observers.

Solution

According to Hubble’s law an observer A measures the recession velocity of a galaxy G,
located at rG with coordinate origin at A, as vG = H0rG. Another observer B on a different
galaxy recedes from A with vB = H0rB. Subtracting the two equations leads to vG − vB =
H0(rG−rB). In our nonrelativistic scenario the recession velocity of G from B is v′

G = vG−vB

and its location relative to B is r′G = rG − rB. Therefore, the subtraction of the two original
equations implies v′

G = H0r
′
G, i.e. once more the Hubble law, but this time with B at the

coordinate origin. The linearity of Hubble’s law implies that any observer on any galaxy has
the impression of being at the center of an isotropic recession of all other galaxies.

Figure 1: Observers A and B measure the recession velocity of a galaxy G.
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2 Doppler effect (kinematical redshift)

Consider light of wavelength λ emitted by a source that moves relative to an observer. Which
wavelength or frequency is measured by the observer? Consider in particular the limiting
cases of (i) parallel motion (the source moves along the line of sight) and (ii) transverse
motion. Interpretation of the results?

Solution

Consider a light wave with frequency ω and wave vector k where |k| = 2π/λ. The photon’s
four momentum is therefore K = (ω,k). We use natural units with c = h̄ = 1 and do
not distinguish between energy E and frequency ω and not between momentum p and wave
vector k.

Let an observer (absorber) A have vA in the same coordinate system and hence the four

velocity VA = (1,vA)/
√

1 − v2
A. The quantity ωA = VAµKµ is a relativistic scalar and thus

the same in all frames. What is its interpretation? In the rest frame of A we have vA = 0,
so in that frame ωA is simply the photon frequency. In other words, the quantity

ωA = ω
1 − vA · k̂
√

1 − v2
A

(1)

is the frequency of the light wave that A measures in his rest frame. We have used k̂ =
k/|k| = k/ω as a unit vector in the direction of photon propagation.

Next consider a source (emitter) E and observer (absorber) A with velocities vE und vA,
respectively. The ratio of frequencies measured by these observers is

ωA

ωE
=

√

1 − v2
E

1 − v2
A

1 − vA · k̂
1 − vE · k̂

. (2)

In the rest frame of A we have vA = 0 and the velocity of the emitter is its velocity v relative
to the absorber. We conclude that

ωA

ωE
=

√
1 − v2

1 − v · k̂
, (3)

where v = |v|.
For a source receding from the observer, k̂ and v have opposite signs, so v · k̂ = −v and

ωA

ωE
=

√
1 − v2

1 + v
=

√

1 − v

1 + v
= 1 − v + O(v2) . (4)

Therefore, the observed frequency is smaller than the one emitted by the source. The usual
redshift variable is

z =
λA

λE
− 1 =

ωE

ωA
− 1 =

√

1 + v

1 − v
− 1 = v + O(v2) . (5)

If the source moves toward the observer, v and k are colinear, amounting to v → −v and
thus to a blueshift (negative z).
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Let the source move in a transverse direction to the observer, implying v · k̂ = 0 and

ωA

ωE
=

√

1 − v2 = 1 − v2

2
+ O(v4) . (6)

For small speeds this “transverse Doppler effect” is much smaller than the longitudinal one
because the small velocity appears quadratically to lowest order. The interpretation is that
of a relativistic time dilation: “Moving clocks run slow.”

3 Redshift by gravitation

(i) A photon moves along a gravitational field (acceleration g, approximately homogeneous).
After overcoming a height difference H, what is the photons’s redshift? [Hint: Use the
equivalence between a homogeneous gravitational field and an accelerated system of reference
(“Einstein elevator”). In the freely falling frame the absorber acquires a velocity during the
time that passes between emission and absorption of the light wave.] Express the result as a
difference between the gravitational potentials at the emission and absorption points.

(ii) How large is therefore the redshift of a spectral line emitted from a star of radius R
and mass M , observed at a large distance? The solar mass is M⊙ = 2×1030 kg and its radius
R⊙ = 6.96 × 105 km. How large is the redshift here? For a neutron star, typical values are
MNS = 1.4M⊙ und RNS = 12 km. Redshift here in the Newtonian approximation?

Solution

(i) A photon is emitted at E at time t = 0 and absorbed at A at time t = H (natural units
with c = 1). We analyze the experiment from the perspective of a freely falling observer who
is at rest at time t = 0. While the photon moves upward, the elevator accelerates downward
and at the time of absorption has reached the speed v = gH. From this observer’s perspective
there is no gravitational field, but he sees A accelerating, reaching v = gH at the moment of

Figure 2: Redshift experiment in a gravitational field, analyzed by an observer in a freely
falling “Einstein elevator.”
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absorption. Hence A will measure the light wave with a kinematical Doppler effect of

z = gH . (7)

All of this applies in linear approximation for a small height difference, so we may as well
interpret the result in a differential sense as dz/dR = g. Noting that g = −dΦ/dR with Φ
the gravitational potential we find

z = ΦA − ΦE . (8)

Obviously one finds a corresponding blue shift if the photon runs from a higher to a lower
gravitational potential. These results apply for weak gravitational fields, i.e. in the Newtonian
limit.

(ii) In the Newtonian limit the gravitational potential outside of a spherical mass distri-
bution M is

Φ = −GNM

R
= −2.14 × 10−6 M

M⊙

R⊙

R
, (9)

if we normalize the potential to zero at infinity. The numerical version of this result if found,
for example, if we use natural units and recall that GN = 1/m2

Pl
with mPl = 1.22×1019 GeV.

The mass 1 g corresponds to 0.561 × 1024 GeV and 1 cm−1 to 1.973 × 10−14 GeV. The
redshift z = −Φ on the solar surface for a distant observer is therefore 2.14 × 10−6 and thus
quite small, but has been precisely measured. (Of course, for a precise measurement by an
Earth-based experiment one needs to take into account the gravitational potential on Earth.)
Multiplying z with the speed of light yields a Doppler effect corresponding to 640 m s−1. For a
typical neutron star the mass is 1.4 times larger, the radius smaller by a factor of 1.72×10−5,
implying Φ = −0.17. The corresponding Doppler effect of 0.17 c is small enough that for a
crude estimate the Newtonian approximation is still o.k., but for an exact result one would
have to use a fully relativistic treatment.

4 Friction by Hubble expansion

Consider a body (e.g. a galaxy) moving with a nonrelativistic speed v relative to the Hubble
flow (“peculiar velocity”). It will slow down relative to the Hubble flow by cosmic expan-
sion. (i) How large is the deceleration as a function of v and of the Hubble parameter H0?
(ii) Compare the result for the Earth on its orbit with the gravitational acceleration caused
by the Sun? (H0 = 74 km s−1 Mpc−1, M⊙ = 2 × 1030 kg, average Earth-Sun distance 150
million km). (iii) How do these numbers compare in a hydrogen atom relative to the Coulomb
acceleration, assuming a typical distance and velocity of the electron?

Solution

(i) Cosmic redshift implies that the inverse momentum of a body evolves like the cosmic scale
factor, p−1 ∝ a, or equivalently ṗ/p = −ȧ/a = −H. Since for a nonrelativistic body we have
p = mv we conclude

v̇ = −H v . (10)

(ii) The circumference of the Earth orbit around the Sun is 2πD where D⊕ = 150 million
km is the mean Sun–Earth distance. The Earth goes around the Sun once per year and a year
is approximately π × 107 s, so the Earth’s orbital velocity is v⊕ = 30 km s−1. The Hubble
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deceleration in the absence of other gravitational fields would be gH = |v̇⊕| = H0v⊕. With
H0 = 1/tH and tH = 4.2 × 1017 s we find gH = 7 × 10−14 m s−2. The Sun’s gravitational
acceleration at the Earth orbit is g⊙ = GNM⊙/D2

⊕ = 6 × 10−3 m s−2 and thus much larger
than gH. Evidently the Sun’s gravitational field is far more important than cosmic expansion.
The solar system does not expand under the influence of cosmic expansion.

(iii) To estimate the properties of the hydrogen atom, we note that the Coulomb potential
at a distance r is, in natural rationalized units, e2/4πr = α/r where α = e2/4π ≈ 1/137
is the fine structure constant. The virial theorem informs us that in a Coulomb potential
the average potential energy should be twice the negative average kinetic energy, Φ = −2T
with T = p2/2me. Heisenberg’s uncertainty relation reads ∆x∆p > 1 (in natural units with
h̄ = 1). Taking the momentum uncertainty to be equal to the momentum and the location
uncertainty equal to the distance r from the nucleus, the virial condition 〈α/r〉 = 〈p2〉/m
translates with p ∼ 1/r into the estimate r ∼ 1/(αme), which actually is the exact expression
for the Bohr radius (in natural units). Inserting this back into mv = p = 1/r yields v ∼ α
for an estimate of a typical velocity, i.e. an electron in a hydrogen atom moves typically
with 1/137 of the speed of light. Comparing the Coulomb acceleration at the Bohr radius of
gB ∼ α/r2 with the Hubble acceleration gH ∼ αH0 yields for the ratio gB/gH ∼ α (me/H0).
Recalling that H0 in natural units is identical with the Hubble energy of about 1.55×10−33 eV
and the electron mass is me = 0.511 MeV one finds gB/gH ∼ 2 × 1036.
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