

	Quintessence as a Perfect Fluid						
	Energy-momentum tensor of homogeneous Φ-mode that of an isotropic perfect fluid			$\rho = \frac{1}{2} (\partial_t \Phi)^2 + V(\Phi)$ $p = \frac{1}{2} (\partial_t \Phi)^2 - V(\Phi)$			
	General equation of state			$p = w \rho$			
	Example: Exponential potential			$V(\Phi) = V_0 e^{-\lambda 8\pi G_N \Phi}$			
	Explicit solution of eqs	olicit solution of eqs of motion imply					
	Like vacuum energy	$\lambda^2 = 0$	w = -1	Observational			
	Accelerated expansion	$\lambda^2 < 2$	w < -1/3	evidence for			
	Like matter	$\lambda^2 = 3$	w = 0	with "nonstandard"			
	Like radiation	$\lambda^2 = 4$ w = 1 w-parame		w-parameter?			

Gravitational Growth of Density Perturbations					
	The dynamical evolution of small perturbations				
	$\delta(x) = \frac{\delta \rho(x)}{\overline{\rho}} << 1$				
	is independent for each Fourier mode $\boldsymbol{\delta}_k$				
•	 For pressureless, nonrelativistic matter (cold dark matter) naively expect exponential growth 		Sub-horizon $\lambda \ll H^{-1}$	Super-horizon $\lambda \gg H^{-1}$	
		Radiation dominates a $\propto t^{1/2}$	$\delta_k \approx \text{const}$	δ _k ∝a²∝t	
 Only power-law growth in expanding universe 		Matter dominates a \propto t ^{2/3}	$\boldsymbol{\delta}_{k} \propto a \propto t^{2/3}$		
				PACE 6	

Concordance Model of Cosmology					
A Friedmann-L parameters pe	A Friedmann-Lemaître-Robertson-Walker model with the following parameters perfectly describes the global properties of the universe				
Expansion rate	$H_0 = (70.1 \pm 1.3) \text{ km s}^{-1} \text{ Mpc}^{-1}$				
Spatial curvatu	re $ R_{curv} > 33 \text{Gpc}$ $-0.018 < \Omega_k < 0.009$				
Age	$t_0 = (13.73 \pm 0.12) \times 10^9$ years				
Vacuum energy	$\Omega_{\Lambda} = 0.721 \pm 0.015$				
Cold Dark Matt	$\Omega_{CDM} = 0.233 \pm 0.013$				
Baryonic matte	r $\Omega_{\rm B} = 0.0462 \pm 0.0015$				
The observed I are perfectly a with the above adiabatic dens	The observed large-scale structure and CMBR temperature fluctuations are perfectly accounted for by the gravitational instability mechanism with the above ingredients and a power-law primordial spectrum of adiabatic density fluctuations (curvature fluctuations) $P(k) \propto k^n$				
Power-law inde	$n = 0.960 \pm 0.014$				

Dark Matter in Galaxy Clusters

Fritz Zwicky: Die Rotverschiebung von Extragalaktischen Nebeln (The redshift of extragalactic nebulae) Helv. Phys. Acta 6 (1933) 110

In order to obtain the observed average Doppler effect of 1000 km/s or more, the average density of the Coma cluster would have to be at least 400 times larger than what is found from observations of the luminous matter. Should this be confirmed one would find the surprising result that dark matter is far more abundant than luminous matter.

Dark Matter vs. Dark Energy				
Dark Matter	Dark Energy			
Acts graviationally like ordinary matter (attractive force)	 Provides "negative pressure" "Anti-gravitation of the universe" 			
Probably new form of weakly interacting particles	 Cosmological constant (classical GR)? Vacuum energy of quantum fields? Quintessence (new scalar field)? Plays no role on small scales (homogeneous, does not cluster) 			
Dominates dynamics of galaxies, clusters, larger structures				
Decelerates cosmic expansion	Accelerates cosmic expansion			
Possibly just an experimental problem (detect the dark matter particles!)	Probably a fundamental theory problem			

Periodic System of Elementary Particles					
Matter Atom Electron Proton Ouarks Nucleus Neutron					
	Qua	arks	Leptons		
	Charge +2/3	Charge -1/3	Charge –1	Charge 0	
1. Family	Up u	Down d	Electron e	e-Neutrino v _e	
2. Family	Charm c	Strange s	Muon µ	μ -Neutrino ν_{μ}	
3. Family	Top t	Bottom b	Tau τ	τ -Neutrino ν_{τ}	
Gravitation					
	Weak Interaction	on			
	Electromagnetic	c Interaction	'		
	Strong Interaction				