
7 Relic particles from the early universe

7.1 Neutrino density today (14 December 2009)

We have now collected the ingredients required to calculate the density of relic particles
surviving from the early universe. Besides photons and neutrinos these are ordinary matter
(baryons), dark matter, and light nuclei such as deuterium and helium.

The surviving neutrino density today is determined by the following sequence of events

• Neutrinos are in thermal equilibrium up to T ∼ 1 MeV, for example by e−e+ ↔ νν̄.

• Thermal distribution of electrons and positrons gets Boltzmann suppressed when T
falls below me.

• Relevant reactions only e−e+ ↔ γγ, but not e−e+ ↔ νν̄.

• Entropy stored in the e−e+ plasma gets transferred to photons if process is adiabatic.

• Photons are heated relative to neutrinos.

• Calculate relative number densities from entropy conservation.

Entropy density in relativistic gases

s =
2π2

45
T 3

(∑
bosons

gB +
7

8

∑
fermions

gF

)
Count relativistic degrees of freedom that are in equilibrium with each other before e+e−

disappearance

Photons gB = 2
e−e+ gF = 4

}
g∗ = 2 + 4× 7

8
=

11

2

After e+e− disappearance

gB = 2
gF = 0

}
g∗ = 2

Adiabatic evolution implies entropy conservation among interacting particles:

sinta
3 = const.

The cosmic scale factor evolves in the same way for all particles, so we infer

g∗intT
3 = const. ⇒ 11

2
× T 3

before = 2× T 3
after ⇒ Tbefore

Tafter

=

(
11

4

)1/3

Therefore after e+e− annihilation

Tν

Tγ

=

(
4

11

)1/3

⇒ T today
ν =

(
4

11

)1/3

× 2.725 K = 1.945 K

To assign a T to neutrinos today, however, makes only sense if mν
<∼ Tν .
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Number densities in one neutrino flavor vs. photons

nνν̄ = 2× 3

4

ζ3
π2

T 3
ν and nγ = 2× ζ3

π2
T 3
γ

and therefore in one flavor

nνν̄

nγ

=
3

4

(
Tν

Tγ

)3

=
3

4
× 4

11
=

3

11
⇒ ntoday

νν̄ = 112.1 cm−3

Even with 3 flavors, the number density of all neutrinos is somewhat less than the total
photon density.

Radiation energy density in neutrinos after e+e− annihilation

ρνν̄ = 3flavors × 2spins ×
7

8
× π2

30
T 4
ν =

21

8

(
Tν

Tγ

)4

ργ =
21

8

(
4

11

)4/3

ργ = 0.6813 ργ

Is a relatively small correction, but depending on neutrino mass the epoch of matter-
radiation equality is shifted (see homework).

7.2 Neutrinos with mass

If neutrino masses are significantly larger than a typical thermal energy of 3 × 1.95 K ∼
0.5 meV, then their contribution to present-day energy density determined by their rest
mass. For one flavor

ρνν̄ = mνnνν̄ = mν
3

11
nγ

In units of critical density

ρcrit = h2 10.54 keV cm−3

we find

Ωνν̄h
2 =

∑
flavors

mν

94.0 eV

With modern cosmological data: Ωdark matter = 0.23 and h = 0.74 this implies

Mν =
∑
flavors

mν < 12 eV

Originally in the 1960’s when νµ was first detected, cosmological limit on its mass from
cosmological data (Gershtein and Zel’dovich).

Experimental limits from tritium β decay together with neutrino oscillations imply

Mν =
∑
flavors

mν < 6.6 eV at 95% CL

so from this perspective alone neutrinos no longer suitable to account for all of dark matter.
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7.3 Dilution of sterile particles

The reduced number density of neutrinos today relative to photons illustrates a general
principle: A particle freezing out at some early epoch will get “diluted” relative to photons.

More precisely, photons will be heated by absorbing the entropy stored in the other disap-
pearing d.o.f.

Consider a particle freezing out at an epoch where the effectively excited thermal d.o.f.
(other than those from the particle) are g∗freeze and assume this is long before neutrino
decoupling.

Therefore, as other particles disappear, their entropy eventually ends up in neutrinos and
photons.

However, these have different temperatures after e+e− annihilation. So the sum of the
effective d.o.f. today, relative for entropy conservation, is

g∗s = 2 +
7

8
× 6×

(
Tν

Tγ

)3

= 2 +
7

8
× 6× 4

11
=

43

11
= 3.909

Therefore the number density of these X particles relative to photons today compared to
when they were in thermal equilibrium is

nX

nγ

∣∣∣∣
today

=
g∗s

g∗freeze

nX

nγ

∣∣∣∣
thermal

=
43

11

1

g∗freeze

nX

nγ

∣∣∣∣
thermal

If a particle freezes out before the QCD transition, g∗freeze > 61.75 and therefore

nX

nγ

∣∣∣∣
today

<
43

11

1

61.75

nX

nγ

∣∣∣∣
thermal

=
1

15.8

nX

nγ

∣∣∣∣
thermal

If it freezes out much earlier, it gets even more diluted. This effect would apply, in partic-
ular, to sterile neutrinos (Dirac partners of ordinary neutrinos if these are Dirac particles,
see homework assignment) or similar states or also to gravitons, assuming these were in
equilibrium at some early epoch.

Sometimes it may be useful to express the number ratio today relative to one species of
ordinary neutrinos. Their number density themselves is reduced by a factor 4/11 relative
to early epochs, so drop this factor,

nX

nνν̄

∣∣∣∣
today

=
43

4

1

g∗freeze

nX

nνν̄

∣∣∣∣
thermal

<
1

5.74

nX

nνν̄

∣∣∣∣
thermal

where the inequality refers to particles freezing out just before the QCD transition.
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7.4 Non-relativistic freeze-out: General picture

Neutrinos are an example where particles stop interacting (freeze out) while being rela-
tivistic. ⇒ Number density fixed by thermal number density at freeze out.

If particles still interact while becoming nonrelativistic, their number density gets Boltz-
mann suppressed. In the absence of a chemical potential, the number density of massive
spin-1/2 fermions plus antifermions is, as derived earlier,

nff̄ = g e−m/T

(
mT

2π

)3/2

Here g number of degrees of freedom, for example g = 4 for a Dirac fermion.

To factor out general cosmic expansion, express density relative to entropy density (recall
entropy is conserved in a comoving volume),

s = g∗
(2π)2

90
T 3

Relative number density therefore

Y ≡
nff̄

s
=

g

g∗

√
2π

90
e−x x3/2 where x =

m

T
∝

√
t

is a useful measure of epoch. Like time, and in contrast to T , it increases in the direction
of cosmic evolution.

Boltzmann suppressed number density frozen at xF = m/TF when the annihilation rate
becomes smaller than the expansion rate (or rather, when mfp exceeds Hubble distance).
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7.5 Boltzmann collision equation

7.5.1 Homogeneous, isotropic, expanding system

To make this argument more precise, study in more detail the freezing of particles when
they are nonrelativistic.

To this end study the evolution of the distribution function in phase space f(x,p). Its
evolution is governed by Boltzmann’s Collision Equation

L[f ] = C[f ]

Left-hand side is Liouville operator, describing flow of particles by free motion and caused
by external forces: ṗ = F

L[f ] =

(
∂

∂t
+ ẋ ·∇x + ṗ ·∇p

)
f(x,p)

Collision operator C[f ] changes the distribution by microscopic processes, e.g. collisions
and annihilations.

Assuming homogeneous and isotropic universe:

f(x,p) → f(p) where p = |p|

In thermal equilibrium

fp = f(p) =
1

eE/T ± 1
where E =

√
p2 +m2

In the expanding universe the Liouville term is provided by

ṗ

p
= − ȧ

a
= −H ⇒ ṗ = −Hp

causing the cosmic redshift of momenta.

Collision equation is finally

∂

∂t
f(t, p)−H p

∂

∂p
f(t, p) =

df(t, p)

dt

∣∣∣∣
coll
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7.5.2 Integrated equation

It will be useful to study not the detailed phase-space distribution, but only the total
number density

n =

∫
d3p

(2π)3
f(p) =

∫
dp

p2

2π2
f(p)

For the moment ignore spin degrees of freedom. Can be trivially included with a summation
as long as polarization effects play no role.

Take phase space integral of entire collision equation and look at Liouville term∫ ∞

0

dp p2
(
p
∂f

∂p

)
=

∣∣∣∣∞
0

p3f −
∫ ∞

0

dp 3p2f

First term vanishes if f(p) falls off fast enough at infinity, trivial for thermal distribution.
Therefore Liouville term∫

d3p

(2π)3

(
p
∂f

∂p

)
= −3n

Integrated collision equation therefore

ṅ+ 3Hn =

∫
d3p

(2π)3
df(t, p)

dt

∣∣∣∣
coll

For collisionless gas this is

ṅ+ 3Hn = 0

Conservation of particle number in cosmic co-moving volume

n ∝ a−3

and therefore

ṅ ∝ ∂t
(
a−3
)
= −3a−2 ȧ = −3a−3 ȧ

a
= −3Ha−3 ∝ −3Hn
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7.5.3 Integrated equation for annihilations

Now consider collision equation for a system of particles and antiparticles (massive neutri-
nos and antineutrinos). Collisions of the form ν +X → X + ν do not change the overall
density. Therefore consider only annihilations of the form

νν̄ ↔ e+e− or other channels

Number of collisions per unit time in terms of cross section

Γ = σ ntargets vrel

Right-hand side of collision equation

df(t, p)

dt

∣∣∣∣
coll

= −Γp f(p) = −σ ⟨ntargets vrel⟩︸ ︷︷ ︸∫
d3q

(2π)3
f̄(q) vrel

f(p)

where overbarred quantities refer to antiparticles. Integrated collision term∫
d3p

(2π)3
df(t, p)

dt

∣∣∣∣
coll

= −
∫

d3p

(2π)3

∫
d3q

(2π)3
σ vrel fpf̄q︸ ︷︷ ︸

⟨σvrel⟩nn̄ for νν̄ → e+e−

+Production term︸ ︷︷ ︸
e+e− → νν̄

Pauli blocking or Bose stimulation factors not included in the final states. However, not
necessary because massive particles at freeze-out very dilute.

Integrated Boltzmann Eqns together then

ṅ+ 3Hn = −⟨σv⟩nn̄+ P

˙̄n+ 3Hn̄ = −⟨σv⟩nn̄+ P̄

Symmetric situation (no chemical potential): n̄ = n etc.

ṅ+ 3Hn = −⟨σv⟩n2 + P

In thermal equilibrium, nothing changes by collisions, so r.h.s. = 0 and

Peq = ⟨σv⟩n2
eq

Assume that all particles except for νν̄ in equilibrium,

P = Peq

So production rate by thermal medium expressed in terms of the total annihilation rate:
Manifestation of “detailed balancing” in a thermal system. Rate of production and anni-
hilation equal in thermal equilibrium.
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The integrated collision equation thus turns into

ṅ+ 3Hn = −⟨σv⟩
(
n2 − n2

eq

)
For massive particles the true density n always larger than equilibrium density, so r.h.s. is
negative as expected.

Now express in terms of the variable Y = n/s (entropy density s). Entropy conservation
in a comoving volume implies

ṡ = −3Hs

Therefore

sẎ = s
d

dt

(n
s

)
= s

ṅs− nṡ

s2
= ṅ+ 3Hn

and therefore Boltzmann Eqn

Ẏ = −⟨σv⟩s
(
Y 2 − Y 2

eq

)
= −⟨σv⟩s (Y + Yeq) (Y − Yeq)

As long as distribution is close to equilibrium we have Y ∼ Yeq and therefore Y +Yeq ∼ 2Yeq.
With equilibrium annihilation rate

Γeq = ⟨σv⟩neq = ⟨σv⟩Yeqs

we have close to equilibrium

Ẏ = −2Γeq (Y − Yeq)

The factor 2 arises because in each annihilation, a particle and an antiparticle disappear.

As expected, the rate of approaching equilibrium is driven by the deviation from equilib-
rium (Y − Yeq).

On the other hand, at late times, after freezing the number density, Yeq ≪ Y and

Ẏ = −ΓY where Γ = ⟨σv⟩n

It stays approximately constant if the times considered are much smaller than the Hubble
time.

Another way to write the collision equation uses a change of variables from time to x =
m/T . With

d

dt
=

dx

dt

d

dx
= Hx

d

dx

and using a prime to denote d/dx one finds

xY ′ = −Γeq

H

Y + Yeq

Yeq

(Y − Yeq)

Freezing out roughly when 2Γeq = H. Since Γeq drops exponentially for nonrelativistic
freeze out, the exact criterion not important for estimated freeze-out temperature TF.
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7.6 Solution for s-wave annihilation (15 Dec. 2009

Particles annihilating to radiation by s-wave process (no relative angular momentum)

σ ∝ 1

vrel
⇒ σvrel = σ0 = const.

Equilibrium annihilation rate therefore

Γeq = ⟨σvrel⟩neq = σ0
g

2

(
mT

2π

)3/2

e−m/T =
g

2
σ0

m3

(2π)3/2
x−3/2 e−x

where x = m/T and g the number of degrees of freedom (4 for Dirac neutrinos).

Expansion rate

H =
T 2

mPl

√
4π3

45
g∗ =

1

x2

m2

mPl

√
4π3

45
g∗

Freezing-out condition

H = 2Γeq

Therefore

x−1/2 ex = σ0 mPlmg

(
45

32π6g∗

)1/2

Take natural logarithm on both sides

xF = log(σ0mPlm) +
1

2
log

(
45 g2 xF

32π6 g∗

)
Zeroth-order result by ignoring second log term on r.h.s., and insert it on r.h.s., so find to
first order

xF = log(σ0mPlm) +
1

2
log

[
45 g2 log(σ0mPlm)

32π6 g∗

]
Particle density at freeze-out from freeze-out condition

H = 2Γeq = σ0 Yeq s

and therefore

YF =
H

sσ0

∣∣∣∣
T=TF

=
1

x2
F

m2

mPl

√
4π3

45
g∗

1

σ0

90

(2π)2 g∗
x3
F

m3
=

√
45

πg∗
xF

σ0mPlm

Upon insertion of our result for xF we find

YF =

√
45

πg∗

log(σ0mPlm) + 1
2
log
[
45 g2 log(σ0mPlm)

32π6 g∗

]
σ0mPlm

The surviving density roughly inversely proportional to the annihilation cross section.

Survival of the weakest: More weakly interacting particles freeze out earlier and survive in
larger numbers.
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7.7 Baryon catastrophe

Take protons/antiprotons as an example with mp = 938 MeV.

For the annihilation cross section assume they annihilate “when they touch,” i.e. a cross
section would be something like πr2 with r ∼ 1 fm = 1 × 10−13 cm, i.e. σ ∼ 30 mb
(millibarn) with 1 mb = 1× 10−27 cm2. So we estimate

σ0 = ⟨σvrel⟩ ∼ 30 mb

Therefore crucial small parameter

σ0mPlm ∼ 30 mb× 938 MeV × 1.22× 1019 GeV = 0.88× 1021

Therefore, they would freeze out roughly at

xF ∼ log(0.88× 1021) = 48.2 or TF ∼ 20 MeV

This is very late in the universe. Effective degrees of freedom roughly g∗ = 10.75 (neutrinos,
electrons, photons). Therefore more precisely

xF = log(0.88× 1021) +
1

2
log

(
45× 42 × log(0.88× 1021)

32π6 × 10.75

)
= 47.1

almost identical with the simplest estimate.

Surviving relative number density

YF =

√
45

πg∗
xF

σ0mPlm
= 0.6× 10−19

Therefore, baryonic matter surviving today would be very dilute (and symmetric between
matter and antimatter).

The actual baryon density (no antibaryons) is roughly 10−9 and derives from a primordial
baryon asymmetry: the creation of the Baryon Asymmetry of the Universe (BAU) from
an initially symmetric plasma is an important issue of particle cosmology.

Relic particles from the early universe can survive if they freeze-out early enough to have a
significant density today (weakly interacting relics) or if they have an asymmetry created
in the early universe.
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7.8 Weakly Interacting Massive Particles (WIMPs)

Consider particles like ordinary neutrinos that interact only by weak interactions. Call
them χ to distinguish from known “sequential” neutrinos.

Annihilation processes are of the following form, where the actual final states of course
depend on the χ mass and thus on the available energy

χ̄

χ

`+ or ν̄ or q̄

`− or ν or q

Assume mass of weakly interacting particles is below the Z–mass. Dirac annihilation cross
section

σ0 = ⟨σvrel⟩Dirac ∼
G2

Fm
2

2π
× channels× coupling constants ∼ 5

2π
G2

Fm
2 ∼ G2

Fm
2

Assume freezes out before QCD transition, so g∗ ∼ 60. Freeze-out conditions, taking in
the logarithmic terms m = 1 GeV,

σ0mPlm ∼ G2
FmPlm

3 = 1.7× 109m3
GeV where mGeV =

m

1 GeV

Freeze-out temperature

xF = 18.8 + 3 logmGeV

The mass number density today roughly

YF ∼ 1.1× 10−8 m−3
GeV (1 + 0.16 logmGeV)

The number density today is

nχχ̄ = YFs0

where the entropy density today is

s0 = g∗s
2π2

45
T 3
0 where T0 = 2.725 K

The effective entropy density today includes photons with full strength (bosons) g∗γ = 2
and 6 fermionic degrees for neutrinos, which however have reduced number density relative
to photons of by the factor 4

11
, so they have g∗νν̄ = 7

8
× 6× 4

11
= 21

11
. So as discussed earlier

g∗s =
43

11
⇒ s0 =

43

11

2π2

45
(2.725 K)3 = 2894 cm−3
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In units of the critical density

ρcrit = h2 10.54 keV cm−3

we find

Ωχχ̄ =
mYFs0
ρcrit

⇒ Ωχχ̄h
2 ∼ 3.0

1 + 0.16 logmGeV

m2
GeV

This result applies for nonrelativistic freeze out. Neutrinos freeze out relativistically at
TF ∼ 1 MeV, so this result applies if

m >∼ 1 MeV

7.9 Majorana neutrinos

It is usually assumed that WIMPs are Majorana particles: If fermions carry no conserved
gauge charge there is no need to have a four-component state.

Several consequences. All else equal, only two degrees of freedom, not four, so reduce
surviving mass density by factor 1/2.

Majorana fermions are identical, so can be in relative s-wave only if spins are opposite
(Pauli principle).

Majorana particles in relative s-wave: Can not annihilate to νν̄ pair if interaction is left-
handed. Remember that π0 → νν̄ was not possible because spin-0 state can not decay into
particles with opposite helicity (their spins add up to 1 if they move in opposite directions).

However, Z0 coupling to charged leptons not purely left-handed (remember that Z0 is
a superposition of underlying neutral gauge bosons W 0 and B such that photon is the
massless combination).
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So Majorana annihilation is mixture of s- and p-wave annihilation. For p-wave annihilation
note that amplitude involves a factor of velocity of incoming particles, and rate therefore
a factor v2. Cross section therefore

⟨σvrel⟩ ∼ σ0⟨v2⟩ ∼ σ0
T

m

so a further factor x = T/m in annihilation rate.

Overall effective annihilation cross section smaller ⇒ larger relic density. For Majorana
neutrinos, relic mass density ∼ factor 2–3 larger.

7.10 Lee–Weinberg–Curve

A single species of neutrino-like particles contributes to the dark matter density as a
function of the assumed mass m. With our previous result for relativistic freeze out we
have (for Majorana neutrinos and ignoring the logarithmic term)

Ωχχ̄h
2 ∼

{
meV/94 for m <∼ 1 MeV

6m−2
GeV for m >∼ 1 MeV

Increases with increasing mass, then decreases. “Lee–Weinberg–curve:” Dark-matter den-
sity as function of particle mass.

Dark-matter density today known to be ΩDMh
2 = 0.13, so neutrino-like particles can be

dark matter for

mν ∼

{
10 eV Hot dark matter

10 GeV Cold dark matter

Two dark-matter solutions for weakly interacting particles.
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