
6.1.5 Quantized electron field (30 Nov. 2009)

For fermions (electrons) one postulates the existence of a field

Ψ(x, t)

For particles with mass m the field will obey the Klein-Gordon Eqn

(�+m2)Ψ(x, t) = 0

The Fourier modes are assumed to be quantized in an analogous way to bosons, except
that the commutation relations become anti-commutation relations:

{a, a†} = a a† + a† a = 1

{a, a} = {a†, a†} = 0

From the second line follows, in particular,

a2 = (a†)2 = 0

For the occupation number states therefore

a†|0⟩ = |1⟩
a†|1⟩ = (a†)2|0⟩ = |0⟩

Only occupation numbers 0 and 1 possible (Pauli exclusion principle).

For “Dirac particles” we have antiparticles (here positrons), obeying the same relations.
Usually denoted by b and b†.

Four possible “polarization states” unified to a single “Dirac field” with four components:

Ψ(x, t) =


ψ1(x, t)
ψ2(x, t)
ψ3(x, t)
ψ4(x, t)


The eigenvectors in this space are “Dirac spinors.” For nonrelativistic particles, the upper
two components are the two spin states of the electron, the lower of the positron.

The quantized Dirac field is found, in analogy to the photon field, as

Ψ(x, t) =
∑
s,p

1√
2EV

[
us,p e

−i(Et−p·x)as,p + vs,−p e
i(Et−p·x)b†s,p

]

where s denotes the spin and E =
√

p2 +m2.

77



The “spinors” u are for electrons whereas v for positrons.

The four components of the Dirac field are not independent. Besides each component
fulfilling the Klein-Gordon Eqn, the Dirac field obeys a linear wave Eqn, the Dirac Eqn

(iγµ∂
µ −m)Ψ(x, t) = 0

where the γµ are 4× 4 “Dirac matrices” for which different representations exist.

The field Ψ contains the destruction operator for particles and the creation operator of anti-
particles, the conjugate field Ψ† the creation of particles and destruction of antiparticles.

The Dirac field ψ, as opposed to the Maxwell field A, is not a Hermitean operator and
therefore not a quantum observable. The Dirac field has no classical counterpart. (Pauli
exclusion!)

Operators representing observables are always field bilinears of the form Ψ† . . .Ψ. For
example, Ψ†Ψ is an operator representing the particle density. It contains operators of the
form a†a and bb†. By anticommutation: bb† = −b†b + 1, so apart from overall constants
Ψ†Ψ is the number operator for particles minus antiparticles, i.e. the “net particle density”
or charge density

ne− − ne+ = ⟨state|Ψ†Ψ|state⟩
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6.2 Electrodynamics as a gauge field theory

Observable quantities of electron field always field bilinears of the form

Ψ†Ψ

Such bilinears are invariant under “gauge transformations” of the first kind

Ψ(x) → eiα Ψ(x) and Ψ†(x) → e−iα Ψ†(x)

where α is a real number (a phase).

Postulate that total Hamiltonian is also invariant under gauge transformations of the sec-
ond kind (local phase transformations)

Ψ(x) → eiα(x)Ψ(x) and Ψ†(x) → e−iα(x)Ψ†(x)

where α(x) is a real scalar function.

In this case bilinears Ψ†Ψ are still invariant, but there are also derivatives of Ψ in the
Hamiltonian (or in the Lagrangian). They transform as

∂µΨ(x) → eiα(x) ∂µΨ(x) + [i∂µα(x)] eiα(x)Ψ(x)

Invariance is restored if everywhere in the original Hamiltonian (or Lagrangian) we use the
“covariant derivative”

Dµ = ∂µ − ieAµ(x)

and under a gauge transformation of the electron fields transform the vector potential as

Aµ(x) → Aµ(x) +
1

e
∂µα(x)

Covariant derivative then transforms as

DµΨ(x) → eiα(x)DµΨ(x)

Bilinears constructed from Ψ and DµΨ are invariant.

Gauge invariance of the free EM fields ensures that Hamiltonian or Lagrangian is also
invariant.

Assumption of gauge invariance leads to unique interaction structure between electrons
and photons. As in classical electrodynamics, canonical momentum for electrons

P µ → P µ − eAµ where P µ → 1

ı
∂µ
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Relativistic covariance best seen in Lagrangian formulation because Lagrangian is a rela-
tivistic scalar, whereas Hamiltonian is 00 component of the energy-momentum tensor.

QED Lagrangian is then

LQED = Ψ̄(iγµDµ −m)Ψ− 1

4
FµνF

µν

Note that Ψ̄ = Ψ†γ0 and that

−1

4
FµνF

µν =
1

2
(E2 −B2) whereas H =

1

2
(E2 +B2)

Note that the Hamiltonian density is the starting point for the canonical quantization
procedure that is simple, but not intrinsically covariant. The Langrangian density is the
starting point for the path-integral quantization procedure.

The interaction term between the EM field and the electron field is

Lint = eAµΨ̄γ
µΨ

The crucial point is that the interaction between electrons and photons has the structure

eAΨ†Ψ

Therefore, the interaction can, for example, destroy a photon and at the same time create
an electron and a positron etc.

The gauge coupling constant, here e, is a dimensionless number. In the electromagnetic
case

e =
√
4π α = 0.30

where α ≈ 1/137 is the fine-structure constant.

80



6.3 Feynman graphs and some processes

A formal perturbative treatment of processes can be represented by Feynman graphs,
depicting the interaction of electrons, positrons and photons. The expansion parameter is
the fine-structure constant α = 1/137.

6.3.1 Radiation of a single photon

The process e→ e+γ is not possible in vacuum because of energy-momentum conservation,
but allowed in a medium when the photon refractive index is larger than 1 and so effectively
ω2 − k2 < 0 (“space-like photons”): Cherenkov effect

p1

p2

k

6.3.2 Coulomb scattering between two electrons (Møller scattering)

The process e + e → e + e is among the simplest second-order processes. One electron
emits a photon that is absorbed (before or afterwards) by the other.

p1

p2

p3 or p4

p4 or p3

k

6.3.3 Bhabha scattering

The process e−+e+ → e−+e+ is similar to Coulomb scattering, but involves the additional
annihilation graph. Note also that the arrows follow the flow of charge, not the flow of
momenum. (For an antiparticle the flow of momentum is opposite to the flow of charge.)

p1 p3

p4

k

p1

p2 p2

p1 p1p3 p3

p4 p4

k
k

For the “Coulomb graph”, the intermediate photon is space like, for the annihilation graph
it is “time-like”

k2 = (p4 − p2)
2 < 0 Coulomb graph

k2 = (p1 + p2)
2 > 0 Annihilation graph
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6.3.4 Compton scattering

This basic process can occur by two amplitudes, the final-state photon can be emitted
before or after the first.

p2p1

k1 k2

k1

p1 p2

k2

As an example, we give in this case the explicit result for the total scattering cross section:

σ =
πα2

m2
e

[
16

(ŝ− 1)2
+
ŝ+ 1

ŝ2
+

2(ŝ2 − 6ŝ− 3)

(ŝ− 1)3
ln(ŝ)

]
where ŝ =

s

m2
e

For an electron with four momentum P = (E,p) and a photon with K = (ω,k) the CM
energy is defined by

s = (P +K)2 =

{
(E + ω)2 CM frame where p = −k

2ωme +m2
e Laboratory frame where p = 0

In the nonrelativistic limit ω → 0 this is the Thomson cross section

σ =
8πα2

3m2
e

whereas in the ultrarelativistic limit me → 0 relative to other energy scales it is

σ =
πα2

s

[
2 ln

(
s

m2
e

)
+ 1

]
Apart from overall factors and logarithmic corrections, such results can be guessed from
an “educated dimensional analysis”. Each photon vertex contributes a factor α. The cross
section has the dimension of an area or inverse energy squared. In the relativistic limit
(relevant for the early universe), the only natural energy scale is the CM energy.
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6.3.5 Pair annihilation or pair creation

The Compton graph “turned sideways” gives us the pair annihilation or creation graph

p2

p1 k1 or k2

k2 or k1

The pair creation cross section (γγ → e−e+) is found to be

σ =
πα2

m2
e

1− v2

2

[
(3− v4) ln

(
1 + v

1− v

)
+ 2v(v2 − 2)

]
where v is the velocity of the produced e− or e+ in the CM frame

v =

√
1− 4m2

e

s

Near threshold (for small v) the cross section expands as

σ =
πα2

m2
e

v

In the other extreme of v → 1, i.e. s≫ m2
e, one finds

σ =
4πα2

s

[
ln

(
s

m2
e

)
− 1

]
Pair annihilation (e−e+ → γγ) has the same high-energy limit except for a factor 1/2. This
factor comes from the “statistics” of the final-state photons: They are not distinguishable,
so the two-body phase space is reduced by this factor.

6.3.6 Photon-photon scattering

Completely new processes include photon-photon scattering by a loop of virtual elec-
trons/positrons.
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6.4 Equilibrium of gauge interactions in the early universe

Now estimate when in the early universe photons are in thermal equilibrium, as an example
for all particles/processes governed by gauge interactions.

Consider specifically the photon annihilation rate into fermion pairs. In thermal equilib-
rium this is the same as the reverse rate.

The reaction rate (or inverse mean free path) of a typical photon is on average

Γ = nγ⟨σvrel⟩

with the cross section

σ =
4πα2

s

[
ln

(
s

m2
e

)
− 1

]
In thermal equilibrium the number density of photons is

nγ =
2ζ3
π2

T 3

The relative velocity between photons 1 and 2 is given by

vrel = v1 − v2 ⇒ v2rel = v21 + v22 − 2v1v2 cos θ = 2(1− cos θ)

The CM energy is given by

s = (K1 +K2)
2 = K2

1 +K2
2 +2K1K2 = 0+0+2(ω1ω2 − k1k2 cos θ) = ω1ω22(1− cos θ)

Therefore the dominant term is

vrel
s

=
1

ω1ω2

1√
2(1− cos θ)

So we should average the second factor over relative angles and find⟨
1√

2(1− cos θ)

⟩
=

∫ +1

−1

1√
2(1− cos θ)

d cos θ

/∫ +1

−1

d cos θ = 1

Averaging the former factors we note that for a Bose-Einstein distribution⟨
ω−1

⟩
=

π2

12 ζ3
T−1 ≈ 0.684T−1

and therefore⟨
1

ω1ω2

⟩
=

(
π2

12 ζ3

)2

T−2 ≈ 0.468T−2 ∼ 1

2T 2
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The logarithmic term in the cross section is taken to be a constant. At high T the electron
will have a thermal mass of order eT , so roughly s/m2

e ∼ 2(3T )(3T )/(0.3T )2 = 200 and
ln(s/m2

e)− 1 ∼ 4.

Altogether for the interaction rate then

Γ ∼ 2ζ3
π2

T 34πα2 4

2T 2
=

16ζ3
π

α2T ∼ 6α2T

Something we could have guessed immediately on dimensional grounds except for the
numerical coefficient.

Possible reaction channels include all charged fermions. At sufficiently high T , muons and
tau leptons will play the same role as neutrinos, so

3 channels from charged leptons

Quarks have charges 2/3 and 1/3, respectively. The rate is proportional to α2 = e4/(4π)2,
so the effective channels are(

2

3

)4

× 3 colors× 3 flavors =
16

9
from up-type quarks(

1

3

)4

× 3 colors× 3 flavors =
1

9
from down-type quarks

So roughly 2 effective channels from quarks and thus a total of about 5 channels. Altogether

Γ ∼ 30α2T

Compare with Hubble expansion rate, assuming standard-model particles with g∗ = 106.75

H =
T 2

mPl

1.66
√
g∗ ∼ 17

T 2

mPl

The equlibrium condition H <∼ Γ then is

17
T 2

mPl

<∼ 30α2T ⇒ T <∼ 2α2mPl

With α = 1/137 this is approximately T <∼ 1 × 1015 GeV. However, the effective cou-
pling constants depend on energy (see later) and at this scale we roughly have α ∼ 1/25.
Equilibrium condition then

T <∼ 3× 1016 GeV

Roughly identical with the “grand unification scale”.

Gauge interactions enter thermal equilibrium roughly at the GUT scale, assuming the uni-
verse ever reheated to such large T after cosmic inflation. Otherwise they are in equilibrium
directly after reheating.
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6.5 Will gravitons thermalize ever? (1 Dec. 2009)

We can ask if the hypothetical quanta of gravitational radiation, gravitons, will ever ther-
malize.

They would interact by all sorts of processes, like the one shown here, where a graviton
substitutes, for example, for a photon.

e−

e+

γ

Graviton

e

E/mPl

The “charge” substituting for e must be an energy scale E divided by the Plank mass.

Compare Newton’s and Coulomb potential between two bodies. The potential involves
Newton’s constant and therefore 1/m2

Pl, one factor being associated with one vertex each.

M1

M2

M1

M2

1/mPl

1/mPl

Therefore, on dimensional grounds the rate will be something like

Γ ∼ α(T/mPl)
2 T = αT 3/m2

Pl

and for equilibrium should be larger than

H ∼ T 2/mPl

and thus

T >∼ mPl/α

This would be before the Planck epoch where we have no idea about the relevant physics.

Gravitons never reached thermal equilibrium in the universe as we understand it.
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