
2.6 Horizons and the future of the universe (16 Nov. 2009)

2.6.1 Horizons

One last important distance in the universe is that of a “horizon.” One means a surface
(or the distance to a surface) beyond which nothing can be observed. Well known is the
Schwarzschild radius of a black hole. Light signals from inside can not reach us—the
Schwarzschild radius is the surface nearest to the black hole from which we can still receive
signals.

In cosmology, there are two concepts of horizon.

• Particle horizon DP

The largest coordinate distance in the past from which we receive information, i.e.
the “radius of the visible universe.” Events outside of this region can not have causal
influence on us today.

• Event horizon DE

The largest coordinate distance in the future that we can causally influence. Or
conversely, all objects or events outside of this horizon will never become visible to
us in future.

Depending on the dynamics of the universe, either of these horizons can be finite or infinite.
If it is infinite one can also say there is no such horizon.

2.6.2 General expression for coordinate distance

We recall that the present-day coordinate distance between two observers A and B is

DAB
c = a0

∫ B

A

dr√
1− kr2

Assuming more specifically that a light-signal is emitted by A at some time tA and received
at B at some time tB we use ds2 = 0 and the Robertson-Walker metric to conclude

DAB
c = a0

∫ rB

rA

dr√
1− kr2

= a0

∫ tB

tA

dt

a(t)
=

∫ tB

tA

dt

y(t)

where as usual y = a/a0. The evolution y(t) is determined by the Friedmann Eqn which
we can write in the form

ẏ2

y2
= H2

0

∑
j

Ωjy
nj

assuming we have different barotropic fluid components. For our most relevant case, a flat
matter-Lambda model, this is explicitly

H0dt =
dy√

ΩMy−1 + ΩΛy2
where ΩM + ΩΛ = 1
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Inserting this above provides

H0D
AB
c =

∫ yB

yA

dy√
ΩMy + ΩΛy4

and we recall that the Ω parameters by definition refer to the present epoch.

2.6.3 Particle and event horizons for simple flat models

For flat models characterized by the two components ΩM and ΩΛ the explicit expressions
for the particle and event horizons, for a present-day observer, are

H0DP =

∫ 1

0

dy√
ΩMy + ΩΛy4

H0DE =

∫ ∞

1

dy√
ΩMy + ΩΛy4

Matter dominated

For a purely matter-dominated case (ΩΛ = 0 and ΩM = 1) the integrals are easily performed
explicitly

H0DP = 2

H0DE → ∞

The universe visible to us today is limited, but we can see ever larger regions and in the
infinite future can see an infinite region of space.

Vacuum dominated

In the opposite case ΩΛ = 1 and ΩM = 0 we find

H0DP → ∞
H0DE = 1

An infinite region of space from the past is visible. On the other hand, objects that today
are further away than H−1

0 will never become visible: The light emitted by them can not
catch up with the cosmic expansion (“superluminal expansion”).

Since the expansion rate H = H0 is fixed in this case, the event horizon stays the same
forever. However, since all galaxies recede from us, they will eventually pass through this
horizon and disappear from view.

In this picture we see fewer and fewer objects until we are alone within our horizon.
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Realistic case

In our universe with ΩM = 0.27 and ΩΛ = 0.73 the present-day horizons are numerically

H0DP = 3.45

H0DE = 1.12

Therefore, some regions of space that were visible in the past have already disappeared
from view.

2.6.4 Future of our universe

The universe today is already vacuum dominated, so eventually all galaxies will disappear
from view and only gravitationally bound systems will survive this dilution effect.

However, even our galaxy can not last forever. It emits light, evaporates matter and dark
matter particles and gravitational waves. Even burnt-out stars will eventually collide and
collapse to form black holes. But even black holes do not last forever, they evaporate.

So in the end everything will get infinitely diluted, every elementary particle, or perhaps
atoms or molecules, isolated in their own horizon.

If protons are unstable on some huge time scale, as is often assumed, then in the end
only individual electrons, positrons, neutrinos, photons and gravitational waves will sit in
isolation, eventually being redshifted until their wavelength exceeds the horizon.

An even more extreme scenario obtains if the vacuum energy is of the phantom type,
leading to a “big rip.” See next homework assignment for details.
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3 The contents of the universe

In the section on the expanding universe we have repeatedly mentioned and used that
the universe today seems to have several components: vacuum energy, matter (dark and
visible) and radiation.

How do we know all of this? The answer today derives largely from “precision cosmology”
and is based on the observed structures in the universe, particularly the statistical proper-
ties of the matter distribution and of the temperature fluctuations of the cosmic microwave
background radiation.

These are rather advanced topics that we will probably not find time to develop in de-
tail. A first overview is given in a powerpoint presentation—see the collection of slides
“slides04.pdf”.

One concludes that there are large amounts of dark matter in the universe in a weakly
interacting form. This is also inferred from local evidence (galactic rotation curves, galaxy
clusters, gravitational lensing)—see the slides.

All the radiation and matter in the universe today must have arisen in the hot early phase.
Let us first take a brief glance at what happened at which epoch in the universe and then
take it from there to study the early phases.
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Redshift Time Temp. Event

0 13.7 Gyr 2.725 K Today

0.76 6.8 Gyr Universe begins accelerating

1100 380,000 yr 0.26 eV Recombination (neutral hydrogen & helium forms)
Universe becomes transparent → Origin of CMB
Baryons begin following structure formation

3600 60,000 yr Matter-radiation equality
Structures begin growing

3× 108 3 min 80 keV Nucleosynthesis of light elements begins

3× 109 1 s 1 MeV Neutrinos decouple
Proton/neutron ratio freezes out

150 MeV QCD phase transition
Free quarks group inseparably into hadrons

250 GeV Electroweak phase transition
Fermions acquire mass from Higgs field
W and Z bosons become massive
Weak interaction becomes “weak”

∼ 1016 GeV Grand unification between electroweak
and strong interactions?

1019 GeV Planck epoch
Need quantum gravity to understand

In addition, somewhere on this timeline the dark matter particles must have emerged or
frozen out, but when depends on the relevant particle.

Likewise, at some large temperature cosmic inflation is assumed to have happened, and
it is not clear to which temperature the universe was reheated afterwards. The GUT
temperature likely was never reached.

From big bang nucleosynthesis we know with reasonable certainty that the universe was
once hotter than about 1 MeV, the rest is hypothesis.

Most of the interesting particle-physics stuff happens in the early universe to which we
now turn.
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4 Radiation-dominated universe (17 Nov. 2009)

4.1 Friedmann Equation

Before matter-radiation equality, the universe was dominated by radiation. Henceforth we
may usually negelect the contribution of matter, curvature and vacuum energy—they all
become negligible.

Friedmann equation therefore

H2 =
8π

3
GN ρrad =

8π

3

ρrad
m2

Pl

or H =
1

mPl

√
8π

3
ρrad

with Planck mass as discussed earlier

m2
Pl = 1.22× 1019 GeV

4.2 Electromagnetic radiation

4.2.1 Energy density

Energy density of the electromagnetic radiation field is given by the phase-space integral

ργ = 2

∫
d3k

(2π)3
ω

eω/T − 1
=

T 4

π2

∫ ∞

0

dx
x3

ex − 1︸ ︷︷ ︸
π4/15

=
π2

15
T 4

where for massless photons ω = |k| is the energy of mode k, the factor 2 is for two
polarization degrees of freedom.

Note that the vacuum contribution (zero-point energy) of 1
2
ω per mode is not included

here. It diverges and has no obvious interpretation as far as its gravitational effects are
concerned. (Problem of vacuum energy or cosmological constant.)

As long as photons are the only form of radiation (no neutrinos etc.), the Friedmann Eqn
becomes

H =
1

mPl

√
8π

3

π2

15
T 4 =

√
8π3

45

T 2

mPl

This is the characteristic relationship between expansion rate and temperature in the early
universe.
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4.2.2 Number density

The photon number density is

nγ = 2

∫
d3k

(2π)3
1

eω/T − 1
=

T 3

π2

∫ ∞

0

dx
x2

ex − 1︸ ︷︷ ︸
2ζ3

= 2
ζ3
π2

T 3

where ζ3 = 1.20206 is the Riemann Zeta function at argument 3.

In the present-day universe with T = 2.725 K the number density is

nγ = 411.1 cm−3

4.2.3 Baryon-to-photon ratio

Compare the photon density with that of ordinary matter (baryons), i.e. protons or neu-
trons. The present-day baryon density is

nB = ΩB
ρcrit
mu

= 0.046
1.04× 10−29 g cm−3

1.66× 10−24 g
= 2.88× 10−7 cm−3

where mu is the atomic mass unit.

The baryon-to-photon ratio is then

η ≡ nB

nγ

= 0.70× 10−9

This small number needs explaining as we will see. There are far more primordial photons
in the universe than baryons.

4.2.4 Pressure

General gas with phase-space distribution fp. Pressure is equivalent to momentum flow
per unit area through some surface A with normal vector n̂.
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Pressure therefore proportional to velocity × momentum perpendicular to the surface, i.e.

Pressure ∝ (n̂ · v)(n̂ · p) = |v| |p| cos2 θ

If the fluid is isotropic, simply average over an isotropic distribution for all angles of modes
moving toward the surface

⟨cos2 θ⟩ =
∫ 1

0

cos2 θ d cos θ =
1

3

Phase-space integral over all modes then

Pressure =
∑
spins

∫
d3p

(2π)3
fp |v| |p| ⟨cos2 θ⟩

For photons∑
spins

→ 2, |v| = 1, |p| = ω, fp =
1

eω/T − 1

and so the phase-space integral is the same as for ργ, except for the factor 1
3
. Therefore

p =
ρ

3

4.2.5 Entropy

Based on general thermodynamic arguments one can show that the entropy density is

s(T ) =
ρ(T ) + p(T )

T

One can actually show that in the expanding universe this implies that the entropy within
a comoving volume is conserved (see next homework assignment)

d

dt

(
a3s
)
=

d

dt

(
a3

ρ(T ) + p(T )

T

)
= 0

Therefore, the evolution of the entropy density tracks the evolution of the cosmic scale
factor a, or rather a−3.

Viewed as a thermodynamic system, in the expanding universe it is comoving entropy that
is conserved, not the energy.

For relativistic radiation, and notably electromagnetic radiation, where p = ρ/3 the entropy
density is

s =
ρ+ p

T
=

4

3

ρ

T
and sγ =

4π2

45
T 3

comparable to the number density.
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4.3 Electron-positron gas

4.3.1 Fermi-Dirac distribution

In thermal equilibrium all possible forms of “radiation” will be present. At sufficiently high
temperature T this includes electrons and positrons, serving as an example for a thermal
fermion gas.

We know from quantum electrodynamics that electrons and positrons can be produced in
pairs, for example by the annihilation of two sufficiently high-energy photons

γ + γ ↔ e− + e+

The electron mass is me = 0.511 MeV, so if the reaction takes place in the CM frame, each
photon must have at least this energy.

Given enough time, these pair processes will achieve thermal equilibrium. In this case the
thermal occupation numbers of the momentum modes p of the electron (and positron)
field is given by the Fermi-Dirac distribution

fp =
1

eEp/T + 1
< 1 where Ep =

√
m2

e + p2

It reflects the Pauli principle: every mode can be occupied by at most 1 excitation and the
thermal average is given by the Fermi-Dirac distribution.

Every momentum mode includes four different discrete possibilities. Each one can be
occupied: two spin states (spin 1

2
for fermions!) and the excitation can have positive or

negative electric charge.

In other words, the phase space includes the continuum of momentum modes and four
discrete possibilities.

4.3.2 Energy density

The energy density follows from the analogous phase-space integral as in the case of the
electromagnetic field

ρe+e− = 4

∫
d3p

(2π)3
E

eE/T + 1
= 4

4π

(2π)3

∫ ∞

0

dp
p2E

eE/T + 1

where p = |p| and

E =
√
m2

e + p2 ⇒ dE =
1

2

2p dp√
m2

e + p2
=

p

E
dp

Phase-space integral therefore

ρe+e− =
2

π2

∫ ∞

me

dE
E2
√

E2 −m2
e

eE/T + 1
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“Massless” limit: T ≫ me

In the limit me → 0, the temperature is the only scale of the problem and the phase-space
integration is very similar to bosons

ρe+e− =
2

π2

∫ ∞

0

dE
E3

eE/T + 1
=

2T 4

π2

∫ ∞

0

dx
x3

ex + 1︸ ︷︷ ︸
7

8

π4

15

=
7

8
4

π2

30
T 4︸ ︷︷ ︸

Same as for
1 boson
degree of freedom

Except for a factor of 4 (for the number of discrete degrees of freedom) and the factor 7/8
(Fermi rather than Bose statistics) the same as for photons.

At high T the electron-positron gas plays the same role as radiation.

Low-temperature limit: T ≪ me

The energies E will be not much larger than the mass. Expand nonrelativistically

E =
√
m2

e + p2 ≈ me +
p2

2me

eE/T + 1 ≈ eme/T︸ ︷︷ ︸
≫ 1

ep
2/2meT︸ ︷︷ ︸
O(1)

+ 1 ≈ eme/T ep
2/2meT

Energy density therefore

ρe+e− =
2

π2

∫ ∞

0

dp
p2E

eE/T + 1

→ 2

π2

∫ ∞

0

dp p2 me e
−me/T e−p2/2meT =

2me

π2
e−me/T︸ ︷︷ ︸

Boltzmann
suppression
factor

∫ ∞

0

dp p2 e−p2/2meT︸ ︷︷ ︸
Maxwell-Boltzmann
distribution

=
2me

π2
e−me/T (2meT )

3/2

∫ ∞

0

dx x2 e−x2

︸ ︷︷ ︸√
π/4

= e−me/T
me

2

(
2meT

π

)3/2

For low T , the electron-positron population is suppressed by the mass threshold.
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4.3.3 Chemical potential

If there is an initial asymmetry between electrons and positrons (true in the universe
because today we have ordinary matter with electrons in it), the Fermi-Dirac distribution
involves the chemical potential µ, which has dimensions of energy

f =
1

e(E∓µ)/T + 1

where the upper sign refers to particles, the lower to antiparticles, i.e. µ is chosen positive
if there is an excess of fermions (here: electrons).

The energy density for the electron-positron gas is in this case

ρe+e− = 2

∫
d3p

(2π)3

(
E

e(E−µ)/T + 1︸ ︷︷ ︸
Electrons

+
E

e(E+µ)/T + 1︸ ︷︷ ︸
Positrons

)

In the early universe, the electron chemical potential is very small (see next homework
assignment). On the other hand, in stars it is very large—the excess of electrons over
positrons is huge.

At zero temperature, the chemical potential is also called the Fermi energy.

Often the chemical potential is introduced in its nonrelativistic form not including the
particle mass,

µnonrel = µ−m

In this case the energy in the distribution functions must be the kinetic energy E −m.

However, in the relativistic context it is extremely confusing to measure the chemical
potential relative to the rest mass. We always use the relativistic chemical potential.

In general, then, the thermal distributions are characterized by three energy scales: tem-
perature T , chemical potential µ and particle mass m.
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4.4 General expressions (relativistic limit)

In summary, the energy density for a thermal relativistic gas of electrons and positrons is

ρ = g
π2

30
T 4 ×

{
1 Bosons
7
8

Fermions

where g is the number of discrete degrees of freedom per momentum mode, e.g. 2 polar-
ization states for photons and 4 states for relativistic electrons/positrons.

The number density and entropy density are

n = g
ζ3
π2

T 3 ×

{
1 Bosons
3
4

Fermions

s =
ρ+ p

T
=

4

3

ρ

T
= g

4π2

90
T 3 ×

{
1 Bosons
7
8

Fermions

Cosmic energy density

ρ =
π2

30
T 4

(∑
bosons

gB +
7

8

∑
fermions

gF

)
︸ ︷︷ ︸

g∗

Effective number of
thermal degrees of
freedom

Friedmann Equation

H =
T 2

mPl

√
4π3

45
g∗ ≈ T 2

mPl

1.660
√
g∗

The cosmic expansion rate is therefore determined by the particle-physics degrees of free-
dom that are relativistic at a given temperature.
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4.5 Expansion age

In our general discussion of solutions to FRWL models we have shown that a radiation
dominated universe has the expansion age since the big bang of

t = 1
2
H−1

With our result for H this is

t =
1

2

√
45

4π3

1√
g∗

mPl

T 2
=

0.3012√
g∗

mPl

T 2

Of course, we still need to understand what happens when g∗ changes, i.e. g∗ is itself a
function of time.

However, since T ∝ t1/2 for constant g∗, the temperature change is always slowest at the
latest time. In other words, most cosmic time is accrued near the g∗ of the last epoch.
Therefore, the overall age is well approximated by using the final value of g∗.

To determine g∗ we need to worry about two issues.

• Which thermal degrees of freedom (which particles) are available and what are their
mass thresholds?

• Are they actually in thermal equilibrium at a given epoch? Need to know the inter-
action rate and compare with available time t ∼ H−1 to reach equilibrium.

For example, the cosmic microwave background today has a thermal distribution, but is
not in thermal equilibrium: The CMB photons have propagated without interaction since
they decoupled from the cosmic plasma at redshift z = 1100.

Electromagnetic radiation (e.g. starlight) produced after decoupling propagates without
interaction and thus is not thermalized.

We begin with an overview of the particle-physics degrees of freedom and later turn to the
question of their interactions to determine if and when they reach equilibrium.
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