
2.4.6 Equation of state (09 Nov. 2009)

To solve Friedmann’s equation we need to know how the gravitating mass–energy ρ evolves
with time (or with cosmic scale factor).

For “dust” (non-relativistic bodies such as galaxies or dark-matter particles), dilution by
cosmic expansion implies

ρ ∝ a−3

In general there is pressure p. Cosmic expansion does work against pressure

dE = −p dV where E ∝ ρa3 and V ∝ a3

Therefore

d(ρa3) = −p d(a3) ⇒ ρ̇ = −3(ρ+ p)
ȧ

a

Taking d/dt of the Friedmann equation and using this result provides directly

ä

a
= −4π

3
GN(ρ+ 3p)

Altogether we have three equations available, but only two are independent

(

ȧ

a

)2

=
8π

3
GNρ−

k

a2
1st Friedmann Eqn

ä

a
= −4π

3
GN(ρ+ 3p) 2nd Friedmann Eqn

ρ̇ = −3(ρ+ p)
ȧ

a
Continuum Eqn

The first two Eqs together follow from the Einstein equation and are the “Friedmann equa-
tions” whereas the third represents energy-momentum conservation (continuum equation).

Need physical knowledge of EoS to solve.

2.4.7 Decelerated expansion

From the 2nd Friedmann Eqn one concludes that ä < 0 (decelerated expansion) if

p > −1

3
ρ

True for all “normal fluids” (have positive pressure, not “tension”).

In this case t0 < H−1
0 , cosmic age shorter than Hubble time.
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2.4.8 Barotropic fluids

In practice one nearly always considers “barotropic fluids” with the EoS

p = wρ where w = const.

Behavior under cosmic expansion

dE = −p dV

d(ρa3) = −p d(a3) = −wρ d(a3)

a3 dρ+ 3a2ρ da = −wρ3a2da

dρ

ρ
= −3 (1 + w)

da

a
integrate both sides

log ρ = −3 (1 + w) log a+ const.

Therefore, for a barotropic fluid, the density evolves with scale factor as

ρ = const.× a−3 (1+w)

Matter (“Dust”)

p = 0, w = 0, ρ ∝ a−3

Simple dilution of galaxies (or dark matter particles) by cosmic expansion.

Radiation

p = 1
3
ρ, w = 1

3
, ρ ∝ a−4

Dilution of photons by volume factor a−3 and redshift factor a−1.

Curvature
In Friedmann Eqn H2 = (8π/3)GNρ − k/a2, so curvature acts like a density component
where ρ ∝ a−2. From ρ ∝ a−3(1+w) we conclude

p = −1
3
ρ, w = −1

3
, ρ ∝ a−2

Network of cosmic strings has a similar scaling. Also recall Milne universe (curvature
driven): linear expansion, no acceleration, no deceleration.

Vacuum energy

p = −ρ, w = −1, ρ = const.

Vacuum energy (e.g. from quantum fluctuations) is invariant (scalar) under cosmic ex-
pansion, a property of vacuum. No dilution by cosmic expansion. Leads to accelerated
expansion.
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2.5 Simple Friedmann-Lemâıtre-Robertson-Walker (FLRW)
models of the universe

2.5.1 Solutions for single-component EoS

Assume the Friedmann Eqn is dominated by a single-component barotropic fluid

(

ȧ

a

)2

=
8π

3
GN ρ =

8π

3
GN ρ0

(a0

a

)3 (1+w)

= H2
0

(a0

a

)3(1+w)

Use effectively redshift instead of scale factor

y ≡ 1

1 + z
=

a

a0

y = 0 big bang

y = 1 today

Friedmann Eqn in these variables

(

ẏ

y

)2

= H2
0 y

−3(1+w)

dy

dt
= H0 y

−
3(1+w)

2
+1 = H0 y

−
3w+1

2

H0dt = y
3w+1

2 dy

For w > −1 power-law behavior

H0t =
2

3 (w + 1)
y

3(w+1)
2 or y =

a

a0

=

[

3(w + 1)

2
H0t

]
2

3(w+1)

Age obtained with t→ t0 and y → 1

t0 =
2

3 (w + 1)
H−1

0

Scaling of energy density with time: use ρ ∝ a−3(1+w) and t ∝ a
3(w+1)

2 and find

ρ ∝ t−2

for any barotropic fluid, independently of w > −1.

For w = −1 exponential expansion

H0dt =
dy

y
⇒ H0t = log y + const.

y = const. × eH0t or a(t) = a0e
H0t
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Case EoS Scaling of ρ Evol. of a(t) Age [H−1

0 ]

Radiation p = 1
3
ρ a−4 t1/2 1

2

Matter p = 0 a−3 t2/3 2
3

Curvature p = −1
3
ρ a−2 t 1

Vacuum p = −ρ const. eH0t ∞

If all of these components are present, radiation will dominate in the early universe, matter
later, curvature later, and vacuum energy in the end.

In the absence of vacuum energy, curvature (if any) dominates in the end: The universe re-
collapses (positive curvature) or develops toward the Milne solution (negative curvature).

2.5.2 Epoch of matter domination

The epoch of matter dominance is crucial for structures to develop. If radiation or vacuum
energy dominates, the action of gravity can not lead to the growth of structures (see later
in this course). Small density fluctuations can lead to stars, galaxies etc. only if there is a
sufficiently long phase of matter domination.

Assuming the dynamics of the universe today is indeed dominated by 27% matter and 73%
vacuum energy, at which redshift were the two contributions equal?

Matter density varies with (1 + z)3, so vacuum matter equality happens at

27 (1 + z)3

73
= 1 ⇒ zΛM = 0.39

In the more distant past, radiation dominated. Let us ignore neutrinos for a first estimate
and consider only photons. Present-day cosmic microwave background (CMB)

T0 = 2.725 K = 0.235 meV

Energy density of thermal photon radiation

ργ = 2

∫

d3k

(2π)3

ω

eω/T − 1
=

2 (4π)

(2π)3
T 4

∫

dx
x3

ex − 1
=
T 4

π2

π4

15
=
π2

15
T 4

The coefficient is the radiation constant in natural units giving ργ = aT 4.Usually given as

a =
π2

15

k4
B

h̄3c3
= 7.5657 × 10−15 erg cm−3 K−4

With the above value for T0 we find

ρCMB = 0.261 eV cm−3 ⇒ ΩCMB =
ρCMB

ρcrit

= 4.5 × 10−5 ≪ 1
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Since ργ ∝ (z + 1)4 and ρM ∝ (z + 1)3 and assuming today ΩM = 0.27 the redshift of
matter and radiation equality is

4.5 × 10−5 (z + 1)4

0.27 (z + 1)3
= 1 ⇒ zeq + 1 = 6000

Including neutrinos increases the radiation density roughly by a factor of 2 and therefore
delays the redshift of matter–radiation equality to (see later in these lectures)

zeq = 3580

This corresponds to a photon temperature at that time of Teq = 0.84 eV = 9800 K. (Not
much hotter than the surface of the Sun with 5778 K.)

Derivation of the radiation content

The energy content of the electromagnetic radiation field is

ργ = 2
∑

modes k

f(k) h̄ωk

where the factor 2 comes from two polarization states, h̄ωk with ω = c|k| is the frequency,
and f(k) is the occupation number of mode k. In a thermal medium we have the Bose-
Einstein result f = (eh̄ω/kBT − 1)−1. The summation is replaced by an integration as

∑

modes k

→
∫

D(k) d3k where D(k) is the density of modes

In a volume V with length L, the modes are proportional to exp(±2πj/L) with j = 1, 2, . . .
and so the momentum difference between neighboring modes is ∆k = 2π/L. Hence the
density of modes per unit volume V is

D(k) =
1

V

1

(∆k)3
=

1

(2π)3

leading to the above expression.
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2.5.3 Realistic late-time models (matter plus vacuum energy)

Let us study late-time models of the universe, i.e. after the epoch of matter-radiation
equality. The radiation density is then less and less important and the only relevant
ingredients are matter and vacuum energy. Friedmann Eqn then

(

ȧ

a

)2

=
8π

3
GN

(

ρM
a3

0

a3
+ ρΛ

)

− k

a2

where ρM is the present-day matter density and ρΛ that of vacuum energy.

Express present-day densities in terms of critical density and present-day Ω parameters

ρ0
M,Λ = ΩM,Λ ρ

0
crit = ΩM,Λ

H2
0

8π GN/3

Today: ȧ/a = H0 and a = a0

H2
0 = H2

0 (ΩM + ΩΛ) − k

a2
0

⇒ − k

a2
0

= H2
0 (1 − ΩM − ΩΛ)

Introduce curvature term

ΩK ≡ 1 − ΩM − ΩΛ

Friedmann Eqn then

(

ȧ

a

)2

= H2
0

[

ΩM

(a0

a

)3

+ ΩK

(a0

a

)2

+ ΩΛ

]

Curvature term plays the role of some type of fluid. Note that by definition

ΩM + ΩK + ΩΛ = 1

Use relative coordinate (effectively redshift) and re-scaled time coordinate

y ≡ a

a0

=
1

1 + z
and τ ≡ H0t and ẏ ≡ dy

dτ

Friedmann Eqn then

ẏ2 =
ΩM

y
+ ΩK + ΩΛy

2 ⇒ ẏ2 − ΩM

y
− ΩΛy

2 = 1 − ΩM − ΩΛ = ΩK

This is of the form

kinetic energy + potential energy = const.

Friedmann Eqn can be written like a mass point moving in a potential. (No surprise
considering our Newtonian “derivation”.)
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Negative vacuum energy: ΩΛ < 0

A particle in the potential V (y) = −ΩM y−1 −ΩΛ y
2 eventually turns around, the universe

returns to y = 0. The universe recollapses and ends in a “big crunch.”

Positive vacuum energy: ΩΛ > 0

Potential has a maximum, so several generic solutions are possible.

• ΩK above maximum of potential
Universe expands forever, at some point accelerated expansion.

• ΩK has Einstein value
Three solutions possible. One bound state that asymptotically reaches the maximum.
One static solution (Einstein). One accelerated expansion solution.

• ΩK below Einstein value
One bound state that recollapses. One unbound state with accelerated expansion
and no big bang in the past.
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Second homework assignment: Identify the different solutions, depending on 0 ≤ ΩM <∞
and −∞ < ΩΛ < +∞.

The solution is shown here. The thick solid lines mark the static Einstein solutions. In
certain regions one has two solutions (Rc—recollapses and Ex—expands forever. The
expanding solutions in the two-solution parameter space have no big bang in the past.
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Observationally allowed regions of ΩM and ΩΛ at 68.3, 95.4 and 99.7% confidence level
obtained from the cosmic microwave background (CMB) temperature fluctuations, baryon
acoustic oscillations (BAO) in large-scale structure data, and from the supernova (SN)
brightness-distance relation. Also shown is the combined allowed region. Figure from
Kowalski et al. 2008, http://arxiv.org/abs/0804.4142, published in Astrophysical Jour-
nal 686 (2008) 749–778.
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2.5.4 Matter-only explicit solution

Rewrite Friedmann Eqn in terms of y and t as

H0 dt =
dy

√

1 + ΩM(y−1 − 1) + ΩΛ(y2 − 1)
where y =

a

a0

=
1

1 + z

First consider “traditional case” without vacuum energy

H0 dt =
dy

√

1 − ΩM + ΩM y−1

This can be integrated explicitly for the three curvature cases (negative ΩM < 1, flat
ΩM = 1, positive ΩM > 1).

With the “development angles” 0 ≤ ψ < ∞ and 0 ≤ θ ≤ 2π the explicit solutions can be
written in parametric form as

ΩM < 1 :
a

a0

=
ΩM

1 − ΩM

coshψ − 1

2
, H0t =

ΩM

(1 − ΩM)3/2

sinhψ − ψ

2

ΩM = 1 :
a

a0

=

(

3H0t

2

)2/3

ΩM > 1 :
a

a0

=
ΩM

ΩM − 1

1 − cos θ

2
, H0t =

ΩM

2(ΩM − 1)3/2

θ − sin θ

2

In the positively curved case (ΩM > 1) the scale factor reaches a maximum of

amax

a0

=
ΩM

ΩM − 1

and then re-collapses. In the other cases it expands forever. (“Geometry determines
destiny.”)
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2.5.5 Explicit solution for flat universe

At present evidence, the matter-only case is only of historical interest because the universe
seems to be flat with high precision and its dynamics is today dominated by vacuum energy.
So we consider the case ΩK = 0 and therefore after radiation is no longer important we use

H0 dt =
dy

√

ΩM y−1 + ΩΛ y2
where ΩM + ΩΛ = 1

With the transformation x ≡ y3 this can be directly integrated and yields (with the lower
boundary condition t = 0 and y = 0)

H0 t =
2

3

1√
ΩΛ

log

(

√

ΩΛy3 +
√

ΩM + ΩΛy3

√
ΩM

)

Invert explicitly

a

a0

= y =

(

ΩM

ΩΛ

)1/3

sinh2/3
(

3
2

√

ΩΛH0t
)

Recall that sinh x = 1
2
(ex − e−x).

At early times this is approximately

y = Ω
1/3
M

(

3
2
H0t
)2/3

Late times

y =

(

ΩM

4ΩΛ

)1/3

exp
(

√

ΩΛH0t
)

The universe first decelerates, later accelerates
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There is an inflection point where the curvature (second derivative) vanishes and where
the universe begins accelerating

∂2y

∂t2
= 0 ⇒ H0tacc =

Acosh(2)

3
√

ΩΛ

=
log
(

2 +
√

3
)

3
√

ΩΛ

The corresponding scale factor and redshift is

yacc =
aacc

a0
=

(

ΩM

2ΩΛ

)1/3

zacc =

(

2ΩΛ

ΩM

)1/3

− 1

Expansion age today (set y = 1 in H0t formula)

H0 t0 =
2

3

1√
ΩΛ

log

(

1 +
√

ΩΛ√
ΩM

)

=
1

3
√

ΩΛ

log

(

1 +
√

ΩΛ

1 −
√

ΩΛ

)
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For an empty universe (Milne case) the expansion is linear and the expansion age is exactly
H−1

0 . In the flat case, which parameters reproduce this age?

The condition H0t0 = 1 reads

e3
√

ΩΛ =
1 +

√
ΩΛ

1 −
√

ΩΛ

With the numerical solution

ΩΛ = 0.737125

Compare with the best observational estimate according to Komatsu et al. (2008),
http://arxiv.org/abs/0803.0547, published in Astrophysical Journal Supplements 180
(2009) 330–376,

ΩΛ = 0.726 ± 0.015

Therefore, within current errors the present-day values of ΩM and ΩΛ are such that the
age of the universe is exactly H−1

0 . Of course, this must be a coincidence.

For ΩΛ = 0.73, the inflection point where the universe begins accelerating is at

tacc = 0.514H−1
0

aacc = 0.570 a0

zacc = 0.755

Therefore, the transition occurred in the not very distant cosmic past.
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