
2.3 Expanding or contracting space (2 Nov. 2009)

2.3.1 Robertson–Walker metric

A maximally symmetric (isotropic and homogeneous) space–time is finally given by the
Robertson–Walker metric where a → a(t).

ds2 = dt2 − a2(t)

(

dr2

1 − k r2
+ r2dΩ2

)

with k =











+1 positive curvature

0 flat space

−1 negative curvature

The different elements mean

• Time t is clock time of a comoving observer.

• Comoving coordinates (r, θ, ϕ) remain fixed for an observer locally at rest (no peculiar
velocity).

• Cosmic scale factor a(t) changes with time if the space is not static. Except for a
perfectly flat space, a(t) is the instantaneous radius of curvature.

To the approximation that our physical universe is on average described by such a space,
all the information is encoded in the time evolution of the cosmic scale factor a(t). Its
dynamics is given by the Friedmann equation (see below).

2.3.2 Do atoms grow?

Assuming all of space grows, how can we tell? Is everything growing with it, such as atoms
or people?

Local physics can always be viewed in the tangent Minkowski space to our space–time and
ordinary physics applies. In an atom, the local Coulomb interaction is much larger than
the “pull” by cosmic expansion (see first homework assignment).

The properties and size of atoms is determined by quantum mechanics, particle masses
and Coulomb’s law.

Atomic frequencies provide an absolute scale, light waves an absolute length scale.

Local metric always dominated by local mass distributions, not by cosmic average metric.
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2.3.3 Hubble’s law

The cosmic scale factor a(t) is an increasing function of time (we live in an expanding
universe).

At some time t one defines two quantities describing the first derivative and curvature of
this function

H =
ȧ

a
Expansion or Hubble parameter

q = − äa

ȧ2
= − ä

H2a
Deceleration parameter

where H, q, a, ȧ and ä are all functions of t.

All quantities today receive an index 0. So t0 is the present time after the big bang. In
particular

H0 = H(t0) = Hubble constant

Measured value: 74.2 ± 3.6 km s−1 Mpc−1

Taylor expansion of a(t) around the present time t0

a(t)

a0

= 1 + H0 (t − t0) − 1
2
q0 [H0 (t − t0)]

2 + . . .

The notion of a “deceleration parameter” and the choice of a negative sign in the quadratic
term derives from the assumption that the cosmic expansion should be slowing down (then
q0 would be a positive number). Today we know that q0 is actually negative and the cosmic
expansion is accelerating.

Figure 1: Evolution of the cosmic scale factor, assuming the expansion is always deceler-
ating.
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Let r be the comoving distance between two galaxies, each of them locally at rest. For
r ≪ 1 the coordinate distance is

Dc = a0 r

It grows with time as

vrec = Ḋc = ȧ0 r =
ȧ0

a0

a0r = H0Dc

The growth of coordinate distance is interpreted as a recession velocity of one galaxy from
the other.

This simple interpretation is only true on small scales such that the recession velocity is
small compared to the speed of light.

2.3.4 Cosmic reshift

If one galaxy recedes from another we expect a kinematical redshift (Doppler effect) of the
light emitted in one galaxy (E) and absorbed in another (A).

How to interpret if both galaxies are locally at rest and space between them grows according
to the Robertson-Walker metric?

Light propagation: ds2 = 0

Assume E to be at coordinate origin, so light moves radially and dΩ = 0.

Using the comoving χ coordinate (for small distances r ≈ χ)

ds2 = 0 = dt2 − a2(t) dχ2 ⇒ dt

a(t)
= dχ

Coordinate distance between emitter and absorber

χ =

∫ χ

0

dχ′ =

∫ tA

tE

dt

a(t)

Is independent of tE because coordinates are fixed in a co-moving system.
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Look at the same integral some time ∆tE later

χ =

∫ tA+∆tA

tE+∆tE

dt

a(t)

Both integrals are the same, so the two end-point regions also must be the same

∫ tE+∆tE

tE

dt

a(t)
=

∫ tA+∆tA

tA

dt

a(t)

For small ∆t the integrals are to lowest order

∆tE
a(tE)

=
∆tA
a(tA)

⇒ aA

aE

=
∆tA
∆tE

Interpret ∆tE ∼ 1/νE of a light signal, i.e. ∆tE as the time difference between wave crests

aA

aE

=
νE

νA

=
λA

λE

= 1 + z

Ratio of wavelengths between emission and absorption represents ratio of cosmic scale fac-

tors between those epochs.

Example: Highest-redshift object thus far observed is at z = 8.3. When the light was
emitted the universe was a factor 1 + z = 9.3 smaller than it is today.
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2.3.5 Interpretation as Doppler effect

The definition of the Hubble constant and cosmic redshift imply

1

1 + z
= 1 − z + . . . =

a

a0

= 1 + H0(t − t0) + . . .

and thus to linear order, using Dc = t0 − t,

z = −H0(t − t0) = H0Dc Hubble’s law

The r.h.s. was shown earlier to be the apparent recession velocity vrec = Ḋc = H0Dc so
that indeed to lowest order

z = vrec

Therefore, it is perfectly consistent to interpret the cosmic redshift at small distances as a
Doppler effect.

On small scales, the expanding universe can be interpreted as motion of galaxies in static
(Minkowski) space, or equivalently as expansion of space with fixed objects.

2.3.6 Quantum-mechanical “derivation”

A body with energy E and momentum p

E = h̄ω

p = h̄k, |k| = λ−1

Wave pattern drawn on rubber balloon gets stretched: The wavelength of a photon gets
redshifted.

λA

λE

=
aA

aE

Even true for nonrelativistic particles with p = mv

vE

vA

=
aA

aE

A galaxy with peculiar velocity v relative to the cosmic rest frame gets slowed down (Hubble
friction)

v̇

v
= − ȧ

a
= −H

Note: It is the momentum of a particle that gets redshifted, not its energy. For relativistic
particles (photons) this is the same. For massive particles (e.g. neutrinos) or macroscopic
bodies the distinction is important.

Of course, all of these results can be derived rigorously from the GR equations of motion.
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2.3.7 Measures of distance

The universe expands monotonically. Therefore, any cosmological epoch is uniquely char-
acterized by its redshift.

As measures of “distance,” different quantities can be useful

• Lookback time ∆tz

• Coordinate distance Dc

• Brightness distance DL

• Angle distance DA

Assume the cosmological model is given, i.e. we know a(t) where a0 = a(t0) is the present-
day scale factor and t0 the age of the universe, t = 0 the big bang. The redshift is

z(t) + 1 =
a0

a(t)

Lookback time

Inverting the monotonically decreasing function z(t) yields the lookback-time

∆tz = t0 − tz where tz = t(z) .

This is the time of travel taken by a light signal to reach us if it was emitted at a cosmic
epoch z.

Coordinate distance

Light travel is characterized by ds = 0. Taking the observer to be at the origin of polar
coordinates we have dΩ = 0 along the light ray from the source to the observer. From the
Robertson-Walker metric follows

dr√
1 − kr2

=
dt

a(t)

Multiplying with a0 provides on the l.h.s. the differential of the coordinate distance

Dc = a0

∫ rz

0

dr√
1 − kr2

=

∫ tz

t0

dt
a0

a(t)
=

∫ tz

t0

dt [z(t) + 1]

Flat space (k = 0): Dc = a0r

22



Brightness (luminosity) distance

An object of known intrinsic luminosity Lintrinsic appears dimmer in the sky if it is more
distant. In the Newtonian case the energy flux (energy per unit area and unit time) received
by an observer at distance D is

F =
Lintrinsic

4πD2
⇒ D =

√

Lintrinsic

4πF

If we know Lintrinsic (for an astrophysical “standard candle” such as supernovae of type Ia)
and we measure F , we infer the brightness distance or luminosity distance DL from this
formula.

Expanding universe: Every photon reaching us is redshifted by the factor (1+z). The rate
of photon emission at the source is also redshifted by the same factor

Lapparent ∝ Lintrinsic/(1 + z)2

From Robertson-Walker metric and dt = 0, the differential of an area transverse to the
radial direction is

dA = a2(t)r2 dθ sin θ dϕ

and therefore the surface area of a sphere at our distance

A = 4π a2
0 r2 ⇒ F =

Lintrinsic

4π (1 + z)2 r2 a2
0

Brightness distance therefore

DL = (1 + z) r a0 ⇒ Flat space: DL = (1 + z) Dc

Angle distance

In Newtonian physics the angle θ subtended by an object shrinks with distance. If Rintrinsic

is the known size of an object (“standard rod”) and if it is oriented transverse to the
direction of an observer, the angle distance is

DA =
Rintrinsic

θ

Use Robertson-Walker metric with dt = 0. Transverse to radial direction: dr = 0. Without
loss of generality take dϕ = 0. Then dℓ = a(t) r dθ and

Rintrinsic = a(t) r θ

where t is the time of emission of the light

a(t) = a0/(1 + z)
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Therefore

DA =
r a0

1 + z
⇒ Flat space: DA = Dc/(1 + z)

Angle distance always smaller than brightness distance

DA

DL

=
1

(1 + z)2

Flat universe:

DL = (1 + z) Dc

DA =
1

1 + z
Dc

In contrast to the luminosity distance, the angle distance does not increase monotonically
with redshift. Beyond some redshift, the angular size of objects increases with redshift
(“gravitational lensing by the universe”).

However, this effect has not been unambiguously observed because in astrophysics there
are no reliable standard rods. Galaxies evolve and are not the same in the early universe.

Concrete examples for different distance measures is specific cosmological models will be
calculated in the second homework assignment.

Tolman’s test

Consider surface brightness of an object: Energy emitted per unit time and unit surface
area of the object.

Surface brightness ∝ D2
L

D2
A

=
1

(1 + z)4

Does not depend on cosmological model, but only on redshift. First proposed by Richard
Tolman (1930).

Difficult to observe: No good standard sources (evolution of galaxies!).
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2.4 Dynamics: Friedmann Equation

2.4.1 Birkhoff’s Theorem

The dynamics of the universe is determined by its energy content (energy curves space–
time). Need to know how matter affects space–time.

In GR, the connection between energy-momentum tensor and curvature tensor given by
Einstein equation.

For maximally symmetric case, a heuristic Newtonian derivation is possible using Birkhoff’s
theorem.

Birkhoff: Assume a spherical cavity in a homogeneous mass distribution. Within the cavity
the metric is given by the Minkowski metric.

Analogous to the Gauss argument that within a spherical mass shell there is no gravita-
tional field. (Consequence of 1/r potential.)

In cosmology: Assuming Robertson-Walker metric (isotropy and homogeneity) we may use
Newtonian mechanics and Newtonian gravity on scales that are small compared with the
Hubble distance.
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2.4.2 Friedmann equation from Newtonian argument

Choose arbitrary point of universe as the center of an isotropic and homogeneous mass
distribution with density ρ. Use a dimensionless radial variable r and an arbitrary scale
factor a with dimension of length.

Consider radial motion of a test mass (“galaxy”) m.

Radial velocity: v = r ȧ

Kinetic energy: T =
mv2

2
=

m (r ȧ)2

2

Enclosed mass: M =
4π

3
ρ (ra)3

Potential energy: Φ = −GN

Mm

ra
= −4π

3
GN ρ (ra)2 m

Total energy: Etot = −k m r2

2

Here k is an arbitrary parameter chosen to reproduce the total energy.

Conservation of energy

T + V = Etot

m (rȧ)2

2
− 4π

3
GNρ (ra)2m = −k m r2

2

From this follows directly

H2 =

(

ȧ

a

)2

=
8π

3
GN ρ − k

a2
Friedmann Equation

The scale a is arbitrary, so choose it such that k = ±1 or 0.
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In Newtonian picture:

• k = +1: Total energy negative, m will eventually fall back.

• k = −1: Total energy positive, m is not bound, will escape.

• k = 0: Total energy zero, m has exactly escape velocity.

In GR picture:

• k is curvature parameter of Robertson-Walker metric.

The cosmic expansion rate is larger for a larger cosmic density that exerts greater gravity.
Un-intuitive? Actually is a question of initial condition. Take k = 0, i.e. flat case, or in
Newtonian physics, body with exactly escape velocity. For larger gravitating mass, the
escape velocity is larger, so the system must have received a larger initial kick.

27



2.4.3 Sketch of GR derivation (3 Nov. 2009)

Curved space–time influences motion of particles and gravitating mass–energy curves space–
time.

In general relativity (GR), all physics encoded in the metric and its derivatives as a function
of the chosen coordinates.

Metric
Roughly corresponds to gravitational potential)

gµν

Affine connection (Christoffel sympols)
Roughly corresponds to gravitational fields. With ∂γ = ∂/∂xγ

Γα
µν = 1

2
gαβ (∂νgβµ + ∂µgβν − ∂βgµν)

Curvature tensor
Space–time “flat” exactly when Rαβγδ = 0

Rαβγδ = 1
2
(∂α∂δgβγ + ∂β∂γgαδ − ∂α∂γgβδ − ∂β∂δgαγ) + gµν

(

Γµ
βγΓ

ν
αδ − Γµ

αγΓ
ν
βδ

)

Local frame can always be chosen such that gαβ = ηαβ and Γγ
αβ = 0, but not Rαβγδ = 0.

Real gravitational fields can not be globally transformed away and show up as curvature.
Other measures of curvature

Ricci tensor Rαγ = gβδRαβγδ (symmetric)

Scalar curvature R = gαγRαγ = gβδgαγRαβγδ

Einstein tensor Gαβ = Rαβ − 1
2
gαβ R

Einstein tensor the only rank-2 tensor that obeys the “contracted Bianchi identities” and
is therefore “divergence free.”

Motion of particles

In special relativity: Without external forces, particles move uniformly on straight lines
(no acceleration)

d2xα

ds2
= 0

Remains true in a local inertial frame. In the presence of real gravitational fields one needs
to account for transition from one inertial frame to another by “affine connections”

d2xα

ds2
+ Γα

µν

dxµ

ds

dxν

ds
= 0
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Can be derived by principle of least action

δ

∫ 2

1

ds = 0

Proper time along trajectory is extreme.

Einstein equation

Matter influences space–time, so assume

Measure of curvature = κGN × Measure of gravitating mass-energy density

Candidate for r.h.s. is energy-momentum tensor Tαβ, is symmetric and divergence free. An
observer with four-velocity U measures

Density of four momentum TαβUβ

Energy density ρ = TαβUαUβ

L.h.s. should also be a tensor of rank 2 that has the properties

• Symmetric

• Divergence free

• Vanishes for flat space time

• Constructed from Rαβγδ and gαβ and nothing else

• Linear in Rαβγδ for a natural measure of curvature

Einstein tensor Gαβ the only candidate.

Comparison with Newtonian limit yields constant of proportionality and thus the Einstein

equation

Gαβ =
8πGN

c4
Tαβ = 8πGN Tαβ in natural units

Friedmann equation special case for maximally symmetric case (isotropic and homoge-
neous).

Cosmological term

Einstein equation unique if we insist that r.h.s. vanishes in vacuum (Newtonian experience).
If not, one more tensor available for r.h.s., i.e. metric itself times a constant

Gαβ = 8πGN Tαβ + Λ gαβ

Cosmological term would not influence local physics, only relevant on cosmic scales.

Einstein initially admitted this term to be able to construct static solutions for universe.
After discovery of cosmic expansion called this his “greatest blunder.” However, today it
seems that a cosmological term dominates the expansion of the universe.
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Interpretation as vacuum energy

The energy-momentum tensor of a perfect fluid in isotropic, homogeneous space is (in
terms of energy density ρ and pressure p)

Tµν = (ρ + p)UµUν − p gµν

where U = (1, 0, 0, 0) for a comoving observer.

Minkowski space: T = diag(ρ, p, p, p).

Express r.h.s. of Einstein Eqn locally with Minkowski metric

8πGN









ρ
p

p
p









+ Λ









+1
−1

−1
−1









Cosmological term can be interpreted as vacuum energy with properties

ρvac =
Λ

8πGN

and pvac = −ρvac

Vacuum energy density can be positive or negative.

In quantum field theory, vacuum energy is expected to arise from vacuum fluctuations, but
value much too large (or even infinite).

Yakov Zel’dovich (1914–1987), a leading Soviet cosmologist (and theoretical brain behind
the Soviet atomic and hydrogen bombs) first pointed out that the observed properties of the
universe constrain the allowed value for vacuum energy caused by quantum fluctuations.
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2.4.4 Critical density and Ω parameter

For k = 0 (flat universe) Friedmann Eqn implies a unique relationship between ρ and H

H2 =
8π

3
GN ρcrit

ρcrit =
H2

8πGN/3

Present-day universe: H0 = h 100 km s−1 Mpc−1

ρ0
crit =

H2
0

8πGN/3
= h2 1.88 × 10−29 g cm−3 = h2 1.054 × 104 eV cm−3

Best measured value h = 0.742 ± 0.036

ρ0
crit = (1.04 ± 0.10) × 10−29 g cm−3 = (0.580 ± 0.056) × 104 eV cm−3

Or roughly 6 atomic mass units per cubic meter.

Express all densities in terms of critical density or in terms of expansion rate as

Ω =
ρ

ρcrit

=
8π

3

GNρ

H2

Often the Ω parameter is only used at the present epoch, in which case one uses ρ0
crit and

H0 on the r.h.s., but for now we consider Ω to be a function of cosmic time t.

From Friedmann equation follows

Ω = 1 +
k

(aH)2
= 1 +

k

ȧ2

One consequence is that a flat universe always stays flat, Ω = 1 is a fixed point.

If k = ±1, and if the expansion is decelerating, ȧ2 shrinks, therefore 1/ȧ2 grows, i.e., the
deviation of Ωtot from unity grows.

For accelerated expansion the opposite is true and Ωtot approaches unity: accelerated
expansion “flattens” the curvature.

Correspondence between the following cases

ρ < ρcrit Ω < 1 k = −1 negatively curved
ρ = ρcrit Ω = 1 k = 0 flat
ρ > ρcrit Ω > 1 k = +1 positively curved
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Friedmann equation can also be written as

H2a2 =
k

Ω − 1

If Hubble parameter and gravitating mass-energy density are measured separately, radius
of curvature can be determined as

a =
1

H
√

|Ω − 1|

Today we know from the CMB temperature fluctuations, to be discussed later, that today

Ω0 = 1.011 ± 0.012 ⇒ |1 − Ω0| <∼ 0.023 ⇒ a0
>∼ 7 H−1

0

2.4.5 Empty space (Milne universe)

In empty space ρ = 0 and the Friedmann equation is

H2 =

(

ȧ

a

)2

= − k

a2
⇒ ȧ2 = −k

Flat geometry: k = 0 → Static Euclidean space.

Positively curved empty space not possible.

k = −1 (Milne universe)

ȧ = ±1

Scale factor grows or shrinks with the speed of light.

Expanding Milne universe:

a(t) = t

In this case the expansion is linear and the age of the universe is exactly t0 = H−1
0 .
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