
1 What is Astroparticle Physics (26 Oct. 2009)

No lecture notes.

2 Expanding Universe (27 Oct. 2009)

2.1 Basic picture

2.1.1 Galaxies and their distribution

Galaxies are the basic building blocks of the visible matter distribution in the universe.

Edwin Hubble (1889–1953) observed Cepheid variable stars in Andromeda (M31) with the
100 inch Hooker Telescope on Mt. Wilson (∼ 1924) and estimated the distance.

→ Andromeda is an external galaxy, not some “nebula”

→ End of “Great cosmological debate about the scale of the universe” (cf. April 1920
Harlow Shapley and Heber D. Curtis at the Smithonian in Washington, DC)

Today we know that on cosmological scales galaxies are roughly uniformly distributed.

Figure 1: Left: Spiral galaxy NGC 2997. Right: Edwin Hubble (1889–1953) who formu-
lated the law of systematic galactic recession velocities.
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2.1.2 Redshift of spectral lines

Spectral lines emitted by distant galaxies are systematically redshifted (Wirtz 1918, Lund-
mark 1920–21, Slipher 1912–mid 1920s)

Redshift of a spectral line with wavelenth λ (E = Emission, A = Absorption)

z + 1 =
λA

λE

=
ωE

ωA

Simplest interpretation as a Doppler effect.

If the relative velocity between E and A is v, the Doppler shift is

z + 1 =

√

1 + v

1 − v
= 1 + v + O(v2)

We always use natural units with the speed of light c = 1, otherwise use v/c in this formula.

So for small redshifts z = v/c = v in natural units.

In natural units, velocities are dimensionless like the redshift. Conversely, in the cosmo-
logical literature one often finds redshifts expressed as a velocity in units of km/s.

The stellar object with the largest redshift is the gamma-ray burst GRB090423 (23 April
2009) with z = 8.3, see http://arXiv.org/abs/0906.1577. (The corresponding Doppler
effect is v = 0.977, so evidently a relativistic interpretation is necessary.)

Redshift can be caused by three different physical effects

• Kinematical (Doppler effect)

• Gravitational

• Cosmological (expanding universe)

For a given object, all three effects can be simultaneously important.

See first homework assignment for a derivation of the kinematical and gravitational redshift.
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2.1.3 Hubble’s law

The redshift of every galaxy is on average proportional to its distance (valid for small z,
the only ones observed by Hubble)

z = v = H0 D

with H0 the Hubble constant. Its value was very uncertain for a long time and so it was
often written in terms of a fudge factor h as

H0 = h 100 km s−1 Mpc−1 .

From a new cosmic distance ladder the most recent value is [arXiv:0905.0695]

H0 = (74.2 ± 3.6) km s−1 Mpc−1 .

Units: 1 Mpc = 106 pc and 1 pc = 3.26 lyr = 3.08 × 1018 cm.

1 Mpc is a typical distance between galaxies, e.g. the distance to Andromada (closest
external galaxy) is about 0.75 Mpc.

Figure 2: Definition of parsec by parallax of 1 arcsec of a star relative to the fixed stars.
The mean Earth-Sun distance is 1 Astronomical Unit (1 AU = 149.60 × 106 km).
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2.1.4 Hubble time

Hubble’s law is obvious if all galaxies began moving at the same time at the same place:
the faster galaxies have traveled further and thus have a larger distance today. In this
picture the motion began in the past at a time

tH =
D

v
=

D

H0D
= H−1

0
= 4.2 × 1017 s = 13.2 Gyr . (1)

In linear approximation this is the expansion age of the universe.

It agrees well with other age determinations, e.g. radioactive dating of meteorites, the ages
of the oldest globular clusters etc.

The solar system and Earth are approx. 4.6 Gyr old, i.e. not very much younger than the
universe.

Hubble’s original value of 500 km s−1 Mpc−1 was much too large due to a number of errors,
e.g. the confusion of Cepheid variable stars with W Virginis stars.

The resulting expansion age was far too short, so assuming a beginning of the universe
seemed implausible, leading to the “steady-state cosmology” of Bondi, Hoyle and Gold
(1948). This scenario assumed the “Perfect Copernican Principle”, i.e. the universe looks
roughly the same at all times. It was assumed that matter and new galaxies were sponta-
neously produced from empty space.

“Big bang” was a derogatory term coined by Fred Hoyle (an outstanding cosmologist of
his time) in about 1950 in a BBC broadcasting.

The discovery of the cosmic microwave background by Penzias and Wilson in 1965 was the
crucial observation making the big-bang theory the standard scenario of the early universe.

A beginning of the universe solves Olbers’ paradox of why the night sky is dark.

2.1.5 Hubble distance

This is the distance light can travel in a Hubble time, setting the spatial scale of the visible
universe

DH = tH ∼ 4 Gpc

where we have used, as ever, natural units with c = 1.

This distance is only a rough scale. The concept of distance requires some thought in an
expanding universe.

We do not have any information about what is going on outside of the Hubble horizon.
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2.1.6 Expansion without center

The recession of all galaxies away from us may seem like we are at the center of some great
explosion.

The linearity of the Hubble expansion law implies that an observer on a different galaxy
likewise sees himself at the center of a uniform expansion. (See first homework assignment.)
Everybody may think he is at the center of the universe.

2.1.7 Rubber-balloon picture of cosmic expansion

The uniform Hubble expansion can be interpreted in two different ways.

• In the Newtonian picture, space is static. The Hubble motion of galaxies is like an
explosion into space. Redshift is interpreted as a kinematical Doppler effect.

• Galaxies are fixed in space (except for “peculiar motions” relative to an average
coordinate system), and the space between galaxies grows. This “inflating rubber
balloon” picture of the universe is the one borne out from Einstein’s general theory
of relativity (GR). Redshift is interpreted as a “stretching” of light waves by the
expansion of space.

On small scales both pictures are equivalent, but on large scales only the second picture
provides a consistent description in the framework of GR.

Figure 3: The apparent recession of galaxies from each other interpreted by the analogy of
an inflating balloon. The galaxies themselves, represented by letters, do not expand, they
only separate from each other.
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2.1.8 Forces relevant in cosmology

We know about four fundamental forces of nature, which are

1. Electromagnetic interaction.
Coulomb force is long range, but is screened if on average there are equal numbers
of positive and negative charges.

2. Weak interaction.
It is not weak, but short-ranged because of massive Z and W gauge bosons (as
opposed to massless photon).

3. Strong interaction (“Color interaction”).
At distances larger than roughly a nucleon radius all objects must be color neutral
(“confinement”) → no macroscopic long range force (perfect screening).

4. Gravitation.
Weakest of all interactions, but can not be screened because all mass and energy
gravitates, no “negative charges,” adds up coherently over large distances.

The electromagnetic, weak and strong forces are all understood as gauge theories in the
spirit of Maxwell’s theory of electromagnetism and we have a complete quantum theory.

They can be unified at different distance scales, being different low-energy manifestations
of the same grand-unified interaction.

Gravitation does not fit into this pattern, can not be unified with the other interactions,
and no quantum theory of gravity exists.
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2.1.9 Does gravity really dominate?

To compare the strengths of the two possible long-range forces (Coulomb and gravitation),
consider two masses (galaxies) M1,2 = N1,2mu where mu is the atomic mass unit and N1,2

the “baryon numbers.”

Assume these galaxies carry electric charges Q1,2 = L1,2e with L1,2 integers and e the
elementary unit charge.

Newtonian potential at distance D

ΦN = −GNM1M2

D
= −

(

mu

mPl

)2
N1N2

D

Coulomb potential

ΦC = −Q1Q2

4πD
= −α

L1L2

D
where α = e2/4π ≈ 1/137

The requirement that the Coulomb potential should be much smaller reads

∣

∣

∣

∣

ΦC

ΦN

∣

∣

∣

∣

= α

(

mPl

mu

)2
L1L2

N1N2

≪ 1

Assuming the excess charge density is the same in both galaxies, L/N ≡ L1/N1 = L2/N2

and with mu = 0.931 GeV and mPl = 1.22 × 1019 GeV this means

L/N ≪ 10−18 .

Theoretically one expects L/N = 0 because charge conservation implies that it is difficult
to imagine the creation of a charge asymmetry in the universe.

Experimentally, the isotropy of cosmic rays implies the absence of large-scale electric fields
and seems to imply [Orito and Yoshimura, PRL 54 (1985) 2457]

L/N <∼ 10−30 .

Therefore, gravitation indeed is the dominating force in the universe.

7



2.1.10 Gravitation

Gravitational interaction can not be screened.

Newtonian 1/r potential leads to infinite potential in an infinite universe.

The Hubble recession velocities become relativistic at approx. the Hubble distance.

→ Need a relativistic theory of gravitation

→ Einstein’s General Theory of Relativity (GR) the prime candidate.

Basic idea: Equivalence between inertial and gravitational mass, between acceleration and
gravitation.

Locally there is a “freely falling” frame (inertial frame) where gravitational effects disappear

→ Uniform motion of test bodies.

Can mimic homogeneous gravitational fields by an accelerated frame (“Einstein elevator”)

True gravitational fields can not be transformed away globally

→ Curved trajectories of test bodies by curvature of space–time

Test bodies move on geodesics (shortest distance) in curved space–time

Conversely: Masses (or rather energy-momentum tensor of all matter and fields) curves
space–time.
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2.2 Curved space–time

2.2.1 The metric

The metric is used to describe the internal geometric properties of curved space–time.

In an inertial frame special relativity applies and the Minkowski metric is

ds2 = c2dt2 − dx2 − dy2 − dz2 .

The “distance” ds between neighboring events is invariant against coordinate transforma-
tions.

Invariance of the speed of light in all frames

ds2 = 0 ⇒
(

dr

dt

)2

= c2 = 1

In a non-inertial frame ds2 becomes a general quadratic form of the coordinates.

Example: Coordinate system rotating with angular speed ω

ξ = +x cosωt + y sin ωt

η = −x sin ωt + y cos ωt

ζ = z

has the metric

ds2 =
[

1 − ω2(ξ2 + η2)
]

dt2 − dξ2 − dη2 − dζ2 + 2ω(ηdξ − ξdη) dt .

In general the proper distance is a quadratic form

ds2 = gµνdxµdxν

with summation over µ, ν = 0, 1, 2, 3 implied.

Inertial frame: x0 = t, x1 = x, x2 = y, x3 = z.

4 × 4 matrix gµν and its derivatives contains all geometric information.

In flat (Minkowski) space–time we have

gµν = ηµν =









+1
−1

−1
−1









9



In general gµν = gνµ (symmetric)

• 10 functions of coordinates

• 1 positive, 3 negative eigenvalues: det g < 0

Locally the metric can always be transformed to ηµν , approximating space–time locally by
Minkowski space.

Effect of real gravitational fields: No global transformation gµν → ηµν (10 functions, 4 co-
ordinates!)

Special choice is possible: “Synchronized” or “Gaussian normal” coordinates:

g0i = gi0 = 0 (i = 1, 2, 3) and g00 = 1 (4 conditions)

implying

gµν = ηµν =

(

+1 0
0 −γij

)

with γij the spatial metric and the invariant distance (i, j = 1, 2, 3)

ds2 = dt2 − γij dxidxj .

Gravitational effects manifest themselves in a non-trivial spatial metric.

Figure 4: Synchronous system given by world lines of freely falling observers. The universal
time coordinate corresponds to the clock time of the freely falling observers.
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2.2.2 Curved space

What does one mean with curved space?

For example, a rolled-up sheet of paper is not curved in the following sense. Need to
consider intrinsic properties.

Simple example: 2-surfaces. Draw circle (locus of all points with the same distance ℓ from
the center) and measure circumference C.

Euclidean space: C/ℓ = 2π

On the surface of a globe: C/ℓ < 2π

Figure 5: Globe with radius a. On it is a circle with radius ℓ within the 2-surface formed
by the globe, while it has radius ρ in the embedding 3-space.

For a sphere the Gaussian curvature is K = a−2.

The general definition for any 2-dimensional hypersurface is

K =
3

π
lim
ℓ→0

2πℓ − C

ℓ3

For the globe we recover K = a−2 noting that ρ = a sin χ, χ = ℓ/a, and the expansion
sin χ = χ − χ3/6 + O(χ5).

This concept of curvature can be generalized to higher dimensional spaces, for example our
three-dimensional space.
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Another possibility is to use the sum of angles in a triangle

Sum of angles











> 180◦ positive curvature

= 180◦ Euclidean space (flat space)

< 180◦ negative curvature

Figure 6: Three cases of curvature for a 2-dim hypersurface embedded in 3-dim Euclidean
space.
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2.2.3 Homogeneous and isotropic curved spaces

Observations indicate isotropy and homogeneity of the universe on large scales.

Copernican principle: all points are equivalent (no special location).

Isotropy about every point → homogeneity (translational invariance).

Cosmological principle: Universe is spatially homogeneous and isotropic around every
point.

The “perfect Copernican principle” (including time invariance) is no longer assumed for
the universe—evidently there was a beginning and the universe.

Use synchronized coordinates and find the most general spatial metric γij for isotropic and
homogeneous spaces.

Will depend on only one parameter, the radius of curvature a (“scale factor of the uni-
verse”).

Our heuristic derivation begins with a spherical space of constant positive curvature.

Embed this space in a 4-dim Euclidean space with Cartesian coordinates x1, . . . , x4 (time
not included!).

A three-dimensional spherical space of radius a is defined by

a2 =
4
∑

i=1

x2

i .

The distance between neighboring points in 4-dim space is (Pythagoras)

dℓ2 =
4
∑

i=1

dx2

i .

Eliminate the 4th dimension by

x2

4
= a2 −

3
∑

i=1

x2

i , noting that
3
∑

i=1

x2

i ≤ a2 .

Differentiation provides

2x4dx4 = −2
3
∑

i=1

xidxi or dx4 = − 1

x4

3
∑

i=1

xidxi
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Therefore

dx2

4
=

1

x2
4

(

3
∑

i=1

xidxi

)2

=
1

x2
4

3
∑

i,j=1

xixjdxidxj

so that we can eliminate x4 completely from the differential distance

dℓ2 =
3
∑

i=1

dx2

i +

3
∑

i,j=1

xixjdxidxj

a2 −
3
∑

i=1

x2

i

= dxidxi +
xixjdxidxj

a2 − xixi

using the summation convention and co- and contravariant 3-dim vectors (no difference in
cartesian coordinates). All elements of the spatial metric are in this way fixed.

Isotropy → polar coordinates 0 ≤ ρ ≤ a, 0 ≤ θ ≤ π, and 0 ≤ ϕ ≤ 2π with

x1 = ρ sin θ cos ϕ

x2 = ρ sin θ sin ϕ

x1 = ρ cos θ

This provides the differential

dℓ2 =
a2

a2 − ρ2
dρ2 + ρ2dΩ2 where dΩ2 ≡ dθ2 + sin2 θdϕ2

Flat space corresponds to the limit a → ∞ and thus to

dℓ2 = dρ2 + ρ2dΩ2

A 3-dim space with constant negative curvature can not be obtained by a simple embedding
in 4-dim space, actually one needs a 5-dim Euclidean embedding space. In the end one
finds the same expression for the metric of the 3-dim space with a2 → −a2 or

dℓ2 =
a2

a2 + ρ2
dρ2 + ρ2dΩ2

Figure 7: The usual polar coordinates in 3 dimensions.
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One often uses a dimensionless coordinate r = ρ/a with

0 ≤ r ≤ 1 positive curvature

0 ≤ r < ∞ flat or negative curvature

The metric is then

dℓ2 = a2

(

dr2

1 − k r2
+ r2dΩ2

)

with k =











+1 positive curvature

0 flat space

−1 negative curvature

Positive and negatively curved spaces have an absolute length scale associated with them,
the curvature radius a.

For a flat space, a is an arbitrary length scale.

The polar coordinates (ρ, θ, ϕ) can be viewed as being polar coordinates in a Euclidean
space that is tangential to the curved space. For the globe of Fig. 5, a point on its surface
can be described by ρ and the azimuth angle ϕ.

These coordinates are not unique—the upper and lower half spheres have the same coor-
dinates.

Instead of ρ one can use the unique coordinate χ with ρ = a sin χ and the range 0 ≤ χ ≤ π.
It plays the role of a zenith angle in the higher-dimensional embedding space.

For χ ≪ 1 we have r = ρ/a = χ.

In (χ, θ, ϕ) coordinates, the metric is

dℓ2 = a2
(

dχ2 + r2

χ dΩ2
)

with rχ =











sin χ positive curvature

χ flat space

sinh χ negative curvature

2.2.4 Coordinate distance

The distance between the coordinate origin and a point at (r, θ, ϕ) is

ℓ = aχ = a

∫ r

0

dr′√
1 − kr′2

= a











asin(r) positive curvature (k = +1)

r flat space (k = 0)

Asinh(r) negative curvature (k = −1)
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2.2.5 Topology

Positively curved space is always closed (compact).

Other spaces can be closed by nontrivial topology, e.g. torus.

It is an observational question if our space is periodic, e.g. by searching for ghost images
of galaxies.

It seems that a possible periodicity must be on scales exceeding our visible universe because
periodic features have not been detected.

Some speculations hold that true space has more than 3 dimensions. The extra ones are
assumed to be compactified at some small scale. In high-energy particle collisions one
could probe the additional dimensions of space.
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