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1 Cosmic expansion without center

According to Hubble’s law all galaxies show on average a recession velocity that increases
linearly with distance: vrec = H0D. Use the linearity of this relation to show that an observer
on any other galaxy will likewise see himself in the apparent center of the expansion. The
Hubble flow looks the same to all observers.

2 Doppler effect (kinematical redshift)

Consider light of wavelength λ emitted by a source that moves relative to an observer. Which
wavelength or frequency is measured by the observer? Consider in particular the limiting cases
of (i) parallel motion (the source moves along the line of sight) and (ii) transverse motion.
Interpretation of the results?

3 Redshift by gravitation

(i) A photon moves along a gravitational field (acceleration g, approximately homogeneous).
After overcoming a height difference H, what is the photons’s redshift? [Hint: Use the equi-
valence between a homogeneous gravitational field and an accelerated system of reference
(“Einstein elevator”). In the freely falling frame the absorber acquires a velocity during the
time that passes between emission and absorption of the light wave.] Express the result as a
difference between the gravitational potentials at the emission and absorption points.

(ii) How large is therefore the redshift of a spectral line emitted from a star of radius R
and mass M , observed at a large distance? The solar mass is M⊙ = 2×1030 kg and its radius
R⊙ = 6.96 × 105 km. How large is the redshift here? For a neutron star, typical values are
MNS = 1.4M⊙ und RNS = 12 km. Redshift here in the Newtonian approximation?
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4 Friction by Hubble expansion

Consider a body (e.g. a galaxy) moving with a nonrelativistic speed v relative to the Hubble
flow (“peculiar velocity”). It will slow down relative to the Hubble flow by cosmic expansi-
on. (i) How large is the deceleration as a function of v and of the Hubble parameter H0?
(ii) Compare the result for the Earth on its orbit with the gravitational acceleration caused
by the Sun? (H0 = 74 km s−1 Mpc−1, M⊙ = 2 × 1030 kg, average Earth-Sun distance 150
million km). (iii) How do these numbers compare in a hydrogen atom relative to the Coulomb
acceleration, assuming a typical distance and velocity of the electron?
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Units and Dimensions

In the astrophysical context, frequently occurring units of length are centimeters, (light)
seconds, light years, and parsecs. Conversion factors are given in Table 1. For example, 1 pc =
3.26 ly. Moreover, the cgs system remains in common use.

Using both centimeters and (light) seconds as units of length implies a system of units
where the speed of light c is dimensionless and equal to unity. In these lectures I always use
natural units where Planck’s constant h̄ and Boltzmann’s constant kB are also dimensionless
and equal to unity. This implies that (length)−1, (time)−1, mass, energy, and temperature
can all be measured in the same units by virtue of x = ct, E = mc2, E = h̄ω, ω = 2π/t, and
E = kBT . In Table 2 conversion factors are given. For example, 1 K = 0.862×10−4 eV or
1 erg = 0.948×1027 s−1. Also note that 1 erg = 10−7 Joule. In cosmology, the only constant of
nature that remains dimensionful is Newton’s constant. In natural units it has the dimension
of an inverse squared mass,

GN =
1

m2
Pl

(1)

with
mPl = 1.221 × 1019 GeV (2)

the “Planck mass” mPl. In principle, one can also choose units where all energies, masses
etc. are measured in units of the Planck mass. Sometimes the Planck mass is defined as the
“reduced Planck mass” by mPl → mPl/

√
8π = 2.44 × 1018 GeV.

Tabelle 1: Conversion factors between different units of length.

cm s ly pc

cm 1 0.334×10−10 1.06×10−18 0.325×10−18

s 2.998×1010 1 0.317×10−7 0.973×10−8

ly 0.946×1018 3.156×107 1 0.307

pc 3.08×1018 1.028×108 3.26 1

Tabelle 2: Conversion factors in the system of natural units.

s−1 cm−1 K eV amua erg g

s−1 1 0.334×10−10 0.764×10−11 0.658×10−15 0.707×10−24 1.055×10−27 1.173×10−48

cm−1 2.998×1010 1 0.2289 1.973×10−5 2.118×10−14 3.161×10−17 0.352×10−37

K 1.310×1011 4.369 1 0.862×10−4 0.926×10−13 1.381×10−16 1.537×10−37

eV 1.519×1015 0.507×105 1.160×104 1 1.074×10−9 1.602×10−12 1.783×10−33

amu 1.415×1024 0.472×1014 1.081×1013 0.931×109 1 1.492×10−3 1.661×10−24

erg 0.948×1027 0.316×1017 0.724×1016 0.624×1012 0.670×103 1 1.113×10−21

g 0.852×1048 2.843×1037 0.651×1037 0.561×1033 0.602×1024 0.899×1021 1

aAtomic mass unit.
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The most confusing issue is that of electromagnetic field strengths. The square of a field
strength is an energy density (erg/cm3) which, in natural units, is (energy)4 or (length)−4.
Thus, an electric or magnetic field may be measured, for example, in eV2 or cm−2. In natural
units, electric charges are dimensionless numbers.

However, there is a general ambiguity in the definition of charges and field strengths
because only their product (a force on a charged particle) is operationally defined. All physical
quantities stay the same if the charges are multiplied with an arbitrary number and the field
strengths are divided by it. However, the fine-structure constant α ≈ 1/137 is dimensionless
in all systems of units, and its value does not depend on this arbitrary choice. If e is the charge
of the electron one has α = e2/4π in the rationalized system of (natural) units which is always
used in modern works on field theory. The energy density of an electromagnetic field is then
1

2
(E2 + B2). In the older literature and also in the plasma physics literature, unrationalized

units are used where α = e2 and the energy density is (E2 + B2)/8π.
In the astrophysical literature the cgs system remains very popular where magnetic fields

are measured in Gauss (G). Confusingly, this system happens to be an unrationalized one.
Field strengths given in Gauss can be translated into our rationalized natural units by

1 G →

√

1 erg/cm3

4π
= 1.953×10−2 eV2 = 0.502×108 cm−2, (3)

where I have converted erg and cm−1 into eV according to Table 2. The energy density of
a magnetic field of strength 1 G is, therefore, 1

2
(1.953×10−2 eV2)2 = 1.908×10−4 eV4 =

3.979×10−2 erg cm−3 = (1/8π) erg cm−3. Note also that a field strength of 1 G corresponds,
in SI units, to 10−4 Tesla.

It is sometimes useful to measure very strong magnetic fields in terms of a critical field
strength Bcrit which is defined by the condition that the quantum energy corresponding to
the classical cyclotron frequency h̄ (eB/mec) of an electron equals its rest energy mec

2 so that
in natural units

Bcrit = m2
e
/e. (4)

Note that the Lorentz force on an electron in this field is proportional to eBcrit so that the
electron charge cancels. Hence, Eq. (4) is the same in a rationalized or unrationalized system
of units. In our rationalized units e =

√
4πα = 0.303 so that Bcrit = (0.511 MeV)2/0.303 =

0.862 × 1012 eV2 which, with Eq. (3), corresponds to 4.413 × 1013 G.
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