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Abstract

The aim of these lecture notes is to present a basic introduction to the string theory
Swampland. The first two lectures will be a quick introduction to string theory. The third
lecture will cover a simple circle compactification and will form the first encounter with the
Swampland Distance Conjecture. In the fourth lecture we will consider the gauge field part
of the compactification and will encounter the Weak Gravity Conjecture.
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1 Introduction

String theory postulates that at sufficiently high energy scales the relevant degrees of freedom

for describing the universe are extended in nature rather than point-like. The best understood,

but not necessarily the most fundamental, of these extended objects are one-dimensional strings.

These strings posses the remarkable property that after quantisation they lead to the force of
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gravity. In this sense string theory is a theory which combines quantum physics with gravitational

physics, and is therefore a valuable window into the nature of quantum gravity. It is a very rich

theory, and we certainly do not fully understand it. Nonetheless, from what we do understand

we have learned a huge amount about the nature of quantum gravity.

Strings are expected to be very small, so with an associated energy scale around the Planck

scale

Mp ∼ 1018GeV . (1.1)

One thing which this implies is that we do not expect to probe strings directly, for example,

by creating them in accelerators. One might be tempted to dismiss them completely by saying

that we can always work with an Effective Quantum Field Theory (EQFT) at energy scales far

below the Planck mass, and by the principle of separation of scales string effects should only

induce small corrections to this theory. This is certainly true to some extent, we do not need

to know string theory to calculate processes in the Standard Model. The Standard Model is a

special EQFT because we can determine its parameters experimentally.1 When we think about

physics beyond the Standard Model, there is a vast space of effective theories that we could

consider. In that case we would like some guidance as to which type of theories are theoretically

consistent. One such guide is the fact that whatever theory we consider it should be able to

consistently couple to quantum gravity. To determine this we need a sufficiently detailed theory

of quantum gravity where we can ask such quantitative questions. String theory is the only

framework where we can do this.

One might have hoped that string theory would have been sufficiently constrained to single

out some very specific low-energy effective theory as the only one compatible with quantum

gravity. This may still be the case, remember that we do not yet fully understand string theory.

However, within our current understanding, there is no principle which we know that can pick

out a specific such theory. Rather, it appears that the range of low-energy effective theories that

can arise in string theory is huge. This is the so-called Landscape of string theory. Ironically,

while the Landscape is huge, there is still not a single known way to embed the Standard Model,

of particle physics and cosmology, in string theory. So while our universe is in principle consistent

with string theory, in practice we still do not know how its embedding could work in detail. It

is therefore an important and interesting task to work out the ‘details’ of this embedding, and

this is a large part of the research field of String Phenomenology.

In these lectures we will be concerned with a related, though qualitatively different, question.

Namely, are there low-energy effective field theories which appear perfectly self-consistent within

the usual rules of quantum field theory but yet cannot be in the Landscape of string theory?

So theories which could never be consistent within string theory, and therefore quite likely, in

quantum gravity. Such inconsistent theories are termed to be in the string theory Swampland [1].

There is good evidence to suggest that the Swampland is infinitely larger than the Landscape,

or in other words, there are infinitely more self consistent effective quantum field theories than

those which could arise from string theory. An illustration of the set of effective quantum field

theories with respect to the Landscape and Swampland is shown in figure 1. It is clear that

determining which type of theories are in the Swampland, rather than the Landscape, would

be a very valuable guide to physics beyond the Standard Model. If an effective theory cannot

1Even though we can measure the parameters it is still, of course, an interesting and worthwhile question to
ask why they have the values that they do.
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Figure 1: A schematic illustration of the space of self-consistent effective quantum field theories.
The sub-set which could arise from string theory is the string Landscape, while all the other
theories are in the string Swampland.

be consistently coupled to quantum gravity it is much less likely to be on the right path to

describing nature.

Determining the rules for which theories are in the string theory Landscape and which are

in the Swampland is a difficult task. Not least because we do not fully understand string theory

itself, and so how could we claim that an effective low-energy theory would be incompatible

with it? For this reason many of the Swampland criteria, so criteria for an effective theory

to be consistent with string theory, are termed only as conjectures rather than proven rules.

Nonetheless, there are good reasons to still take them seriously. The first is that often, while not

proven, there is significant evidence for some of the conjectures2. For example, one Swampland

criterium is that an EQFT can not have an exact continuous global symmetry. While this is still

not proven, it is widely accepted within theoretical physics. The second reason to seriously study

Swampland criteria is that they could lead us to new microscopic principles. So we can view

them as interesting properties of string theory that seem to be hinting at some new microscopic

physics. Indeed, AdS/CFT was first discovered as a particular setup in string theory, but is

by now a much more general microscopic principle of quantum gravity. Yet another reason is

that Swampland criteria are useful guides for where to search in the Landscape for particular

types of theories. So even if we cannot prove that a certain type of EQFT could not arise from

string theory, in studying this problem we can gain insights into what are the obstructions to

embedding in string theory and what are the more promising avenues.

In practice, the lectures will only touch upon the subject of the string theory Swampland.

The first two lectures will provide a very quick introduction to string theory. In the third lecture

we will encounter the first Swampland criterium which is known as the Swampland Distance

Conjecture [2, 3]. It states that when a scalar field has a very large expectation value, at least as

large as Mp, there must be a tower of states which become exponentially light as the expectation

2There are a number of Swampland-type conjectures in the literature, some with more evidence for them than
others. In these lectures we will only consider conjectures which have significant evidence for them.
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value is increased further. In the fourth lecture we will encounter the Swampland criterium

known as the Weak Gravity Conjecture [4]. This says that in an effective theory with a U(1)

gauge symmetry there must exist a charged particle with a charge larger than its mass in Planck

units. So theories which do not respect these two properties are said to be in the Swampland

rather than the Landscape.

The bulk of the lectures will cover basic aspects of string theory. This is standard material

and is covered by almost all textbooks on the subject, see for example [5]. I also recommend

the very nice online notes in [6]. The subject of the Swampland is much more advanced. There

is some discussion of it in the textbook [7]. There are also some reviews [8], but they are rather

advanced.

In these notes we set ~ = c = 1. We work in mostly-plus signature for the metric, so the

flat-space metric is

ηµν = diag (−,+,+, ...,+) . (1.2)

Our units are chosen such that, in whatever number of dimensions we are working in, the

(reduced) Planck mass is set to one Mp = 1. We will sometimes reinstate it when it plays an

important role.

2 Lecture 1: The classical bosonic string

To begin let us consider a point particle. We let it propagate in D-dimensional spacetime, so on

R1,D−1. To describe the motion of the particle we can split the coordinates into X0 = t and Xi,

where i = 1, ..., D−1. Then its motion is associated to a world-line γ which specifies the Xi
(
X0
)

as a function of X0. We can also describe the particle world-line in relativistic coordinates by

using a world-line parameter τ so that γ specifies Xµ (τ), where µ = 0, 1, ..., D − 1,

γ : τ ↪→ Xµ (τ) ∈ R1,D−1 . (2.1)

These ways of describing the particle motion are illustrated in figure 2.

2.1 The Nambu-Goto action for a particle

In Minkowski space the line element is taken as

ds2 = ηµνdX
µdXν . (2.2)

We can then write an action for the particle, called the Nambu-Goto action, which is just the

length of its (time-like) worldline

SNG = −m
∫
γ

√
−ds2 = −m

∫
γ

(
−Ẋ2

) 1
2
dτ , (2.3)

where Ẋ2 = ηµνẊ
µẊν and Ẋµ = ∂Xµ

∂τ . The constant parameter m will be related to the mass

of the particle.

To see that this action correctly describes the motion of the particle we can associate to it a

Lagrangian

SNG = −m
∫
γ
dτL (τ) . (2.4)
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Figure 2: Figure illustrating the world-line of a particle.

The canonical momentum is then

pµ =
∂L

∂Ẋµ
=

mẊµ(
−Ẋ2

) 1
2

. (2.5)

We therefore arrive at the constraint

p2 +m2 = 0 , (2.6)

which shows that m is indeed the mass of the particle. The equation of motion for Xµ in turn

gives

mẌµ = 0 , (2.7)

so the particle is freely propagating.

2.2 The Polyakov action for a particle

We can also consider a different action for the particle, called the Polyakov action. It is defined

as

SP =
1

2

∫
γ
dτe (τ)

[
1

e (τ)2 Ẋ
2 −m2

]
. (2.8)

The degree of freedom e (τ) is called the world-line metric. Its equation of motion gives

Ẋ2 +m2e (τ)2 = 0 . (2.9)

Since this is an algebraic constraint we can use it to eliminate the world-line metric in the

Polyakov action which gives

SP =
1

2

∫
γ
dτe (τ)

[
−2m2

]
= −m

∫
γ

(
−Ẋ2

) 1
2
dτ = SNG . (2.10)

Therefore, the Polyakov and Nambu-Goto actions are classically equivalent. However, the utility

of the Polyakov action is that it is much easier to quantise.
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Figure 3: Figure illustrating the worldsheet of a string.

2.3 The String Worldsheet

We now go through the same process we did for the particle but for a string. A string sweeps

out a two-dimensional worldsheet Σ parameterised by two coordinates (σ, τ). So we have

Σ : (σ, τ) ↪→ Xµ (σ, τ) ∈ R1,D−1 . (2.11)

We take the coordinates to have the ranges

0 ≤ σ ≤ 2π , τ ∈ R , (2.12)

We will mostly be concerned with closed, rather than open, strings. We therefore identify

σ ' σ + 2π . (2.13)

The coordinates therefore parameterise the string worldsheet as shown in figure 3. We will often

denote

{σ, τ} ≡ ξa , a = 0, 1 . (2.14)

We want to describe the dynamics of the string through an action. The associated Polyakov

action is

SP = −T
2

∫
Σ
d2ξ (−det h)

1
2 hab (ξ) ∂aX

µ (ξ) ∂bX
ν (ξ) ηµν . (2.15)

Here hab (ξ) is the worldsheet metric. T is the string tension, which is often denoted in terms of

a parameter α′ as

T ≡ 1

2πα′
. (2.16)

Note that other similar scales are the string length ls and the string scale Ms, defined as

ls ≡
√
α′ , Ms ≡

1

2π
√
α′
. (2.17)

6



Object Degrees of freedom

hab
1
2D (D + 1)

Diffeomorphisms D

Weyl 1

Table 2.1: Table showing the degrees of freedom in the metric and symmetries in D-dimensions.

The mass dimensions of the coordinates are [Xµ] = −1 and [ξa] = 0.

We should think of the worldsheet action (2.15) as specifying a two-dimensional theory with

scalar fields Xµ (ξ). Such theories are called sigma models. The space-time in which the string

propagates, parameterised by the Xµ, is known as the Target space of the worldsheet theory.

The metric on that spacetime, here ηµν , is the metric on the field space of the scalar fields Xµ.

So strings propagating in different target spaces have different metrics on the scalar field spaces.

2.4 The worldsheet symmetries

The worldsheet theory (2.15) is invariant under local diffeomorphisms

ξa → ξ̃a (ξ) . (2.18)

It is also invariant under Weyl transformations, which are defined as

δXµ = 0 , hab → h̃ab = e2Λ(ξ)hab . (2.19)

To see this directly note that under (2.19) we have
√
−det h→ e2Λ(ξ)

√
−det h.

The worldsheet symmetries can be used to completely fix the worldsheet metric hab. It is

worth looking at this generally. For a D-dimensional theory, we can count the number of degrees

of freedom in the metric, a symmetric tensor, and in the diffeomorphism and Weyl symmetries,

these are shown in table 2.1. We see that for D = 2, so a string, the number of symmetry

parameters is the same as the degrees of freedom of the metric. Using the symmetries we can

therefore set

hab = ηab =

(
−1 0
0 1

)
. (2.20)

This is called flat gauge.

It is important to note that even though we can gauge away the metric we must still impose

its equations of motion. The equations of motion for the metric correspond to the vanishing of

the energy momentum tensor of the theory

Tab = 0 , (2.21)

where

Tab ≡
4π√
−det h

δSP
δhab

. (2.22)

The resulting constraint (2.21) is called a Virasoro constraint, and it will play an important role

when we quantise the string.

From table 2.1 we see that strings are special extended objects. For D > 2 we cannot use

the symmetries of the Polyakov action to remove the metric degrees of freedom. This makes the
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extended objects with D > 2 much more difficult to quantise. From a modern perspective, we

do not think of strings as any more ‘fundamental’ than other extended objects, but what makes

them special is that they can be readily quantised.

In flat gauge the Polyakov action reduces to the action of a set of free scalar fields

SP =
T

2

∫
Σ
dσdτ

[
(∂τX)2 − (∂σX)2

]
. (2.23)

It is convenient to go to so-called light-cone coordinates

ξ± ≡ τ ± σ , ∂± ≡
1

2
(∂τ ± ∂σ) . (2.24)

In light-cone coordinates the Polyakov action reads

SP = T

∫
Σ
dξ+dξ−∂+X∂−X . (2.25)

The equations of motion for the Xµ are readily obtained

∂+∂−X
µ = 0 . (2.26)

We can therefore write Xµ as a sum of left-moving and right-moving waves along the string

Xµ = Xµ
L

(
ξ+
)

+Xµ
R

(
ξ−
)
. (2.27)

And we must impose periodic boundary conditions Xµ (τ, σ = 0) = Xµ (τ, σ = 2π). The most

general solution is

Xµ
R

(
ξ−
)

=
1

2
(xµ + cµ) +

1

2
α′pµRξ

− + i

√
α′

2

∑
n∈Z , n 6=0

1

n
αµne

−inξ− ,

Xµ
L

(
ξ+
)

=
1

2
(xµ − cµ) +

1

2
α′pµLξ

+ + i

√
α′

2

∑
n∈Z , n 6=0

1

n
α̃µne

−inξ+ . (2.28)

Here xµ, cµ, pµL, pµR, αµn and α̃µn are constants. Periodicity in σ implies

pµL = pµR ≡ p
µ . (2.29)

If we average Xµ over the string we have

qµ ≡ 1

2π

∫ 2π

0
dσXµ = xµ + α′pµτ . (2.30)

So xµ is the centre of mass position, and pµ is the target space momentum.

It will be important for later to note that even after the gauge fixing the worldsheet metric,

there are still residual symmetries

ξ± → ξ̃±
(
ξ±
)
. (2.31)

These are associated to so-called conformal Killing vectors.3

3Note that these are an infinitesimal subset of diffeomorphisms because the transformations restrict to only
one coordinate. This is consistent with the earlier counting argument in table 2.1.
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3 Lecture 2: The string spectrum

In this lecture we study the spectrum of excitations of the string. So far we have considered the

string in a classical sense, but in order to study the spectrum of excitations we need to quantise

it. We will do this using so-called light-cone quantisation. The starting point is to introduce

target-space light-cone coordinates

X± ≡ 1√
2

(
X0 ±XD−1

)
, Xi , i = 1, ..., D − 2 . (3.1)

The target-space metric then becomes

η+− = η−+ = −1 , ηij = δij . (3.2)

And this gives an inner product

X2 = −2X+X− + ẊiẊi . (3.3)

Consider now the expansion for X+, this reads

X+ (τ, σ) = x+ + α′p+τ + i

√
α′

2

∑
n∈Z , n 6=0

1

n
α+
n e
−inξ− + i

√
α′

2

∑
n∈Z , n 6=0

1

n
α̃+
n e
−inξ+ .(3.4)

Recall that we have a residual infinite dimensional symmetry (2.31) after going to light-cone

gauge. We can use this to set all the oscillator modes of the X+ to zero. In that gauge we then

have

X+ (τ, σ) = x+ + α′p+τ . (3.5)

Now recall that we must impose the Virasoro constraints (2.21) on the theory. It can be shown

that these imply

∂±X
− =

1

α′p+

(
∂±X

i
)2

. (3.6)

Therefore, we see that also the X− oscillators are given in terms of the transverse oscillators in

Xi. So only the transverse oscillators are independent degrees of freedom.

The usefulness of the target-space light-cone gauge is therefore that only the Xi contain

physically independent oscillators. This is useful because it automatically projects out two

polarizations of the string which are unphysical. This is completely analogous to how a Maxwell

field in four dimensions only has two physical polarizations.

The action in light-cone gauge reads

SLC =
1

4πα′

∫
Σ
dτdσ

[(
∂τX

i
)2 − (∂σXi

)2
+ 2

(
−∂τX+∂τX

− + ∂σX
+∂σX

−)]
=

1

4πα′

∫
Σ
dτdσ

[(
∂τX

i
)2 − (∂σXi

)2]− ∫ dτp+∂τq
−

≡
∫
dτL , (3.7)

where we define

q− ≡ 1

2π

∫ 2π

0
dσX− . (3.8)
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From this Lagrangian we can define canonical momenta

p− ≡
∂L

∂q̇−
= −p+ , Πi ≡

∂L

∂Ẋi
=

Ẋi

2πα′
. (3.9)

We then quantize the theory by introducing the canonical commutation relations[
Xµ (τ, σ) ,Πµ

(
τ, σ′

)]
= iηµνδ

(
σ − σ′

)
, (3.10)

which give [
xi, pi

]
= iδij ,[

p+, q−
]

= i ,[
αim, α

j
n

]
= mδn+m,0δij ,[

α̃im, α̃
j
n

]
= mδn+m,0δij . (3.11)

We therefore follow the usual procedure for quantisation, as in quantum field theory, by promoting

the oscillator modes to operators acting on a Hilbert space. The αi−n with n > 0 are creation

operators acting on a vacuum state |0, p〉. While the αin with n > 0 are annihilation operators.

Recall that there are no oscillators to quantise for X+, while the X− oscillators are given in

terms of the Xi. Explicitly this reads

α−n =
1

2
√

2α′p+

m=∞∑
m=−∞

αin−mα
i
m . (3.12)

When we quantise the theory the ordering of the α’s matters, and so we should write things in

terms of normal ordered products and a normal ordering constant a which we needs to determine

α−n =
1

2
√

2α′p+

(
m=∞∑
m=−∞

: αin−mα
i
m : −aδn,0

)
, (3.13)

where

: αimα
i
n :≡

{
αimα

i
n for m ≤ n

αinα
i
m for n < m

. (3.14)

This is the canonical quantisation procedure.

3.1 Criticality and Lorentz Invariance

The quantisation of the theory was performed in special target-space light-cone coordinates. It

is therefore not clear that the quantum theory respects Lorentz invariance. Indeed, we will see

that requiring the preservation of target-space Lorentz invariance also in the quantum theory

will place rather stringent constraints on the theory.

In general, the generators of Lorentz transformations are

Jµν =

∫ 2π

0
dσ (XµΠν −XνΠµ) ≡ lµν + Eµν + Ẽµν , (3.15)
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where

lµν = xµpν − xνpµ ,

Eµν = −i
∞∑
n=1

1

n

(
αµ−nα

ν
n − αν−nαµn

)
,

Ẽµν = −i
∞∑
n=1

1

n

(
α̃µ−nα̃

ν
n − α̃ν−nα̃µn

)
. (3.16)

Now the Lorentz algebra reads

[Jµν , Jρσ] = iηµρJνσ + iηνσJµρ − iηµσJνρ − iηνρJµσ . (3.17)

In particular, [
J−i, J−j

]
= iη−−J ij + iηijJ−− − iη−jJ i− − iηi−J−j = 0 . (3.18)

However, an explicit calculation yields

[
J−i, J−j

]
= − 1

(p+)2

∞∑
m=1

∆m

(
αi−mα

j
m − α

j
−mα

i
m

)
+ ˜(...) , (3.19)

where

∆m ≡ m
26−D

12
+

1

m

[
D − 26

12
+ 2 (1− a)

]
. (3.20)

Therefore, we find that maintaining Lorentz invariance at the quantum level requires

D = 26 , a = 1 . (3.21)

This is a rather remarkable result. It shows that while the classical string is consistent in any

number of dimensions, the quantum bosonic string is only consistent in 26 dimensions. The

restriction on the number of dimensions is called criticality. In fact, there are many different

ways to arrive at this criticality result.

We will not go into this during these lectures but for the Superstring, so a string theory

incorporating supersymmetry, the critical number of dimensions changes to 10.

3.2 The quantum string spectrum

Having quantised the string we can now examine its spectrum. The classical Hamiltonian is

given by

H = p−q̇
− +

∫ 2π

0
dσΠiẊ

i − L

=
1

4πα′

∫ 2π

0
dσ
[(
∂τX

i
)2

+
(
∂σX

i
)2]

=
α′

2
pipi +

1

2

∞∑
n=−∞

(
αi−nα

i
n + α̃i−nα̃

i
n

)
. (3.22)
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This is related to X− through the Virasoro constraint (3.6)

∂τX
− =

1

2p+α′

[(
∂τX

i
)2

+
(
∂σX

i
)2]

, (3.23)

so that

p− =
1

2πα′

∫ 2π

0
dσ∂τX

− =
H

α′p+
. (3.24)

In quantising we need to normal order the α, so we have

p+p− =
1

α′

[
N⊥ + Ñ⊥ − 2a+

α′

2
pipi

]
, (3.25)

where we define

N⊥ ≡
∞∑
n=1

: αi−nα
i
n : , Ñ⊥ ≡

∞∑
n=1

: α̃i−nα̃
i
n : . (3.26)

The mass in the target-space is given by

M2 = −p2 = 2p+p− − pipi =
2

α′

(
N⊥ + Ñ⊥ − 2a

)
. (3.27)

Finally, we note that for the closed string we have a symmetry of translations along σ, and this

can be shown to imply the level matching condition

N⊥ = Ñ⊥ , (3.28)

so the expression for the mass becomes

M2 =
4

α′
(N⊥ − 1) . (3.29)

Here we used the fact that the normal ordering constant is fixed by criticality to a = 1 (3.21).

Now we can examine the spectrum on the string according to how many oscillators are

present:

N⊥ = 0

Here we have

M2 = − 4

α′
. (3.30)

This is a tachyonic mode, which means that it is signalling an instability in the bosonic string.

For superstrings this mode will be absent, and so such strings are stable. It will not play an

important role in these lectures and so we will not discuss it further.

N⊥ = 1

In this case we have

M2 = 0 . (3.31)
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This is therefore the massless spectrum of the quantum bosonic string. It is given by

ξijα̃
i
−1α

j
−1 |0, p〉 , i, j = 1, ..., 24 . (3.32)

We can decompose the tensor ξij into irreducible representations of SO(24) as

ξij = g(ij) +B[ij] + Φ , (3.33)

where g(ij) is traceless symmetric, B[ij] is anti-symmetric and Φ is a scalar (corresponding to

the trace).

We therefore find a massless, transversely polarised, symmetric tensor field gij . This is a

graviton! Indeed, it can be shown that it has spin 2. So the quantum bosonic string contains

gravitational modes in its spectrum.

We also find an anti-symmetric massless tensor B[ij] termed the Kalb-Ramond field. We will

return to this field later when we discuss compactifications.

The massless scalar Φ is called the dilaton. It actually determines the coupling constant for

string interactions.

N⊥ > 1

These are massive oscillator string modes, with a mass starting at Ms. They are crucial for

showing the finiteness of string theory scattering amplitudes. But we will not study them

further.

3.3 The low-energy effective action

We see that the string has a set of massless fields and some very massive fields. We can therefore

write a low-energy effective theory describing the massless fields. The effective action for this

theory is given by

SD = 2πMD−2
s

∫
dDX

√
−Ge−2Φ

(
R− 1

12
HµνρH

µνρ + 4∂µΦ∂µΦ

)
. (3.34)

We have written the action for general dimension D so that we can treat both the bosonic string

D = 26 and the superstring D = 10, since both contain this massless spectrum. We have also

restored Lorentz invariance. We have written the metric for the gravity theory as G, with an

associated Ricci scalar R. The H is defined as

Hµνρ ≡ ∂[µBνρ] , (3.35)

where the square brackets denote anti-symmetrisation of the indices. The action is therefore

composed purely of the kinetic terms for the fields, as expected since they are massless.

Note that in the case of the bosonic string there is also a tachyon mode, which we neglect

here. We are only studying the dynamics of the massless modes. This is not really consistent,

but can be done completely consistently for the superstring with D = 10.
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The action allows for vacuum configurations of the fields Gµν , B[νρ] and Φ. These can be

thought of as coherent states of the string excitation modes. In such a non-trivial background

the string worldsheet theory is modified to

SP = −T
2

∫
Σ
d2ξ (−det h)

1
2 hab (ξ) ∂aX

µ (ξ) ∂bX
ν (ξ) ηµν

→ −T
2

∫
Σ
d2ξ (−det h)

1
2

[
hab (ξ) ∂aX

µ (ξ) ∂bX
ν (ξ)Gµν

+ iB[µν]∂aX
µ (ξ) ∂bX

ν εab + α′ΦR(2)
]
. (3.36)

Here εab is the anti-symmetric unit tensor, and R(2) is the two-dimensional Ricci scalar.

The resulting worldsheet theory is much more difficult to quantise. This is why we can only

study the string from the worldsheet perspective in full detail for small curvature backgrounds

(as well as some specific other backgrounds for which we can solve the worldsheet theory).

4 Lecture 3: Compactification and the Swampland Distance
Conjecture

We have seen that the bosonic string lives in 26 dimensions. The superstring lives in 10

dimensions. These both seem to be directly incompatible with the observed universe. However,

this need not be the case. The point is that the additional dimensions may be compact and

small, so that they have yet to be observed. This naturally leads to thinking about string theory

in a space-time which has a compact direction. The simplest such setting is the case where one

of the dimensions is in the shape of a circle. We will study this in this section and this will lead

to our first encounter with a Swampland criterium.

4.1 Compactification of field theory on a circle

We consider D = d+ 1 dimensional space-time. The spatial direction Xd is taken to be compact

in the shape of a circle so is periodically identified

Xd ' Xd + 1 . (4.1)

We are interested in looking at the effective theory in the d non-compact dimensions.

First, recall that we are working in Planck units, which in this case we therefore set as

Md
p = 1, where Md

p denotes the d-dimensional Planck mass. The periodicity of Xd is set to one

in those units.

We can write the metric on the D-dimensional space as

ds2 ≡ GMNdX
MdXN = e2αφgµνdX

µdXν + e2βφ
(
dXd

)2
. (4.2)

So here we have introduced the coordinates XM which are D-dimensional, so M = 0, ..., d, while

µ = 0, ..., d − 1. The D-dimensional metric is GMN and we take it as a product metric. The

d-dimensional metric is gµν . In practice we will take this to be ηµν but we keep it general for
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now. The metric has a parameter φ which can be regarded as a d-dimensional scalar field. The

constants α and β are chosen to be

α2 =
1

2 (d− 1) (d− 2)
, β = − (d− 2)α . (4.3)

Let us look at the circumference of the circle, denoted 2πR, it is given by

2πR ≡
∫ 1

0

√
GdddX

d = eβφ . (4.4)

We see that the radius of the circle is a dynamical field in d-dimensions. We will be interested

in the behaviour of the d-dimensional theory under variations of the expectation value of the

field φ, which amounts to variations of the size of the circle.

The first thing we want to do is decompose the D-dimensional Ricci scalar RD for the metric

(4.2). We have ∫
dDX

√
−GRD =

∫
ddX
√
−g
[
Rd − 1

2
(∂φ)2

]
. (4.5)

We observe that indeed φ picks up dynamics, and that it is canonically normalised.

Now consider introducing a massless D-dimensional scalar field Ψ. Since the dth dimension

is periodic so must Ψ be, therefore we can decompose it as

Ψ
(
XM

)
=

∞∑
n=−∞

ψn (Xµ) e2πinXd
. (4.6)

The modes ψn are d-dimensional scalar fields. The mode ψ0 is called the zero-mode of Ψ, while

the ψn are called Kaluza-Klein (KK) modes. Note that the momentum is quantized along the

compact direction

− i ∂

∂Xd
Ψ = 2πnΨ . (4.7)

For simplicity we now restrict to gµν = ηµν . Since Ψ is massless in D-dimensions, it equation of

motion is

∂M∂MΨ =
(
e−2αφ∂µ∂µ + e−2βφ∂2

Xd

)
Ψ = 0 . (4.8)

This gives the equations of motion for the ψn modes[
∂µ∂µ −

(
1

2πR

)2( 1

2πR

) 2
d−2

(2πn)2

]
ψn = 0 . (4.9)

We can therefore read off the mass of the KK modes as

M2
n =

( n
R

)2
(

1

2πR

) 2
d−2

. (4.10)

So in the d-dimensional theory the KK modes are a massive tower of states with increasing

masses as in (4.10).
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4.2 Compactification of string theory on a circle

Now let us repeat this exercise in string theory by considering strings on a circle of radius R.

We would like to connect with our results in sections 2 and 3, but those were performed for a

metric

ds2 = ηMNdX
M
(s)dX

N
(s) , (4.11)

rather than (4.2). The subscripts on XM
(s) are to remind us that we are working with the metric

(4.11). For now we will proceed with the metric (4.11) and take the Xd
(s) direction as R-periodic

Xd
(s) ' X

d
(s) + 2πR . (4.12)

We will reconnect to the metric (4.2) later.

We consider the bosonic mode expansion, as in (2.28), but now we will not impose yet

XM
(s) (σ + 2π, τ) = XM

(s) (σ, τ) on the linear terms in σ. So we have

XM
(s) (τ, σ) = xµ + α′pMτ +

α′

2

(
pML − pMR

)
σ + oscillators . (4.13)

We have allowed here for independent left-moving and right-moving momenta, and the overall

momentum of the string is half their sum

pM =
1

2

(
pMR + pML

)
. (4.14)

Recall that because the Xd direction is compact this is quantised. The appropriate quantisation,

as we will soon see, is

pd =
n

R
. (4.15)

In non-compact space we imposed Xµ
(s) (σ + 2π, τ) = Xµ

(s) (σ, τ) which lead to pµR = pµL, but for

a circle we may have a winding string

Xd
(s) (σ + 2π, τ) = Xd

(s) (σ, τ) + w2πR , (4.16)

with w ∈ Z. The string is wrapping around the circle w times, as illustrated in figure 4. For

such a winding string we therefore have

α′

2

(
pdL − pdR

)
= wR . (4.17)

Now consider the mass spectrum for the string on such a background. We again go to

target-space light-cone gauge. The Hamiltonian (3.22) now reads

H =
α′

2

[
1

4

(
pdL − pdR

)2
+ pαpα +

(
pd
)2
]

+
(
N⊥ + Ñ⊥ − 2

)
, (4.18)

where we split the index i = {α, d}. Note that we no longer have the level matching condition

(3.28), but instead have

N⊥ − Ñ⊥ = nw . (4.19)
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Figure 4: Figure showing a string winding around a circler dimension 3 times.

Then the d-dimensional mass is given by −pµpµ = 2p+p− − pαpα which, for states with no

oscillators excited, leads to (
M (s)
n,w

)2
=
( n
R

)2
+

(
wR

α′

)2

. (4.20)

We would like to connect this result with the effective action (4.5). However, to do that we

need to change from the metric (4.11) to the metric (4.2). This is called going from the string

frame to the Einstein frame. The difference is the factor of e2αφ multiplying the gµν directions.

To get the Einstein frame mass for the states we simply note that pµpµ has one inverse factor of

the metric and so we need to multiply masses by a factor of e2αφ =
(

1
2πR

) 2
d−2 .

This does not quite do the full job. If we look at the effective action coming from string

theory (3.34) we see that there is an overall factor of the exponential of the dilaton e−2Φ. An

important object is the d-dimensional dilaton Φd defined as

Φd ≡ Φ− 1

2
log (2πRMs) . (4.21)

We would like to look at variations of R which keep Φd fixed. This means that we must vary

e−2Φ ∼ 1

2πRMs
. (4.22)

But if we consider the definition of the d-dimensional Planck mass Md
p coming from the string

effective action (3.34) (
Md
p

)d−2

2
≡ 2πMD−2

s e−2Φ , (4.23)

we see that in order to stay in the Einstein frame Md
p = 1 we have to choose our units such that

Ms ∼ (2πR)
1
d−2 . (4.24)

This will then affect the mass of the winding modes in (4.20) because of the factor of α′.
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Performing the change of frames then finally leads to the Einstein frame mass

(Mn,w)2 =

(
1

2πR

) 2
d−2 ( n

R

)2
+ (2πR)

2
d−2

(
wR

α′

)2

. (4.25)

We see that this indeed matches the simple field theory calculation for the KK masses (4.10).

4.3 The Swampland Distance Conjecture

We can now study the d-dimensional effective theory. The action is given in (4.5), and this must

be supplemented by the spectrum (4.25). We are particularly interested in how the spectrum of

states behaves under variations of the expectation value of the field φ. This is easy to determine

from the simple relation (4.4). The possible expectation values of field φ define a field space,

which in this case has one infinite real dimension. So we can consider

−∞ < φ <∞ . (4.26)

Let us define a variation of φ from some initial value φi to some final value φf as

∆φ = φf − φi . (4.27)

We now note that there are two infinite towers of massive states in this theory. The tower of KK

modes, with masses given by Mn,0 in (4.25), and a tower of winding modes given by M0,m. We

can associate to each tower a mass scale, which is the universal factor multiplying the integers n

and m. Using (4.4) we can write these mass scales as

MKK ∼ eγφ , Mw ∼ e−γφ , (4.28)

where

γ =
√

2

(
d− 1

d− 2

) 1
2

> 0 . (4.29)

We therefore can make the following observation. For any ∆φ there exists an infinite tower of

states, with some associated mass scale M , which becomes light at an exponential rate in ∆φ

M (φi + ∆φ) ∼M (φi) e
−γ|∆φ| . (4.30)

This is illustrated in figure 5. There are some important things to note about this observation

• The tower of states which becomes light is the KK tower if ∆φ < 0 while it is the winding

tower if ∆φ > 0. So some tower of states always become light no matter what the sign of

∆φ is.

• The behaviour (4.30) is deeply string theoretic. It is not true in quantum field theory

because one set of states are winding states which are absent in field theory.

• The product of the mass scales of the two towers is independent of φ.

• The exponent γ in the mass is a constant of order one.

• The field φ is canonically normalised, so the behaviour of the mass scales is exponential in

the proper distance in φ field space.
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Figure 5: Figure showing the mass scale, on a log plot, for the KK and winding towers as a
function of the scalar field φ expectation value. The gradient of the slope is the exponent γ.
The Z2 symmetry in the figure is due to T-duality.

• If |∆φ| → ∞ then an infinite number of states become massless, which means that there

is no description of that locus in a d-dimensional quantum field theory.4

The last point has a continuous analogue. If we consider the effective field theory which has

some finite number of states below a cutoff Λ, then this field theory can only hold for a finite

range of expectation values of φ.

The behaviour (4.30) is very interesting and it is natural to wonder if there is a deep reason

behind it, and if so, then if it is a general property of string theory. There is good reason to

expect that the answer is positive to both of these questions. One clue is in the origin of the

two towers, the KK and winding modes. These towers a deeply related, indeed there is a Z2

symmetry which interchanges them. This is called T-duality, and it is most directly seen in the

string frame where we observe that the mass spectrum (4.20) is invariant under the action

T− duality : R↔
√
α′

R
. (4.31)

It can be shown that this is not only a symmetry of the mass spectrum, but of the full string

theory. In fact it can be embedded into a gauge symmetry which becomes manifest at the

self-dual radius R =
√
α′

R . Duality is a very deep property of string theory. There are many more

dualities than T-duality. Indeed, all known string theories are themselves related by dualities. It

is then natural to expect that there are many different towers of states which are dual, and this

duality is such that as one moves in the parameter space of the theory, which in string theory

means in the scalar field space, the product of the mass scale of the dual towers stays constant

and so one must become light in any direction. As we move an infinite distance in parameter

space the tower must become massless.

4We can describe it as a D-dimensional theory. Remarkably, this is true for either a very large or very small
radius of the circle.
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Figure 6: Figure showing a schematic illustration of string moduli space. The distance from
any point P in the bulk of moduli space to any point Qi, or Q′i, is infinite. Mlightest denotes the
mass scale of the lightest tower of states in the theory, and this goes to zero at any point Qi.
Points Qi and Q′i are related by duality and the light towers of states are interchanged between
them.

This kind of reasoning, and various simple examples in string theory, let to the proposal

of the Swampland Distance Conjecture (SDC) in [2]. The conjecture is at heart analogous to

(4.30) but can be phrased more generally and precisely as follows.

• Consider a theory with a moduli spaceM which is parametrised by the expectation values

of some field φi which have no potential. Starting from any point P ∈ M there exists

another point Q ∈M such that the geodesic distance between P and Q, denoted d (P,Q),

is infinite.

• There exists an infinite tower of states, with an associated mass scale M , such that as

d (P,Q)→∞ we have

M (Q) ∼Mpe
−γd(P,Q) , (4.32)

where γ is some positive constant.

Note that because this is an asymptotic statement about infinite distance d (P,Q)→∞ the mass

scale value at P is not important. The behaviour of the conjecture is illustrated schematically

in figure 6

This is our first encounter with a Swampland conjecture. It typifies many of the general

properties of conjectures about the Swampland.

• It is supported by constructions in string theory.

• There are no known counter-examples to it in string theory.

• There are some general, but imprecise, arguments for why it may be expected to hold

generally.
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• It goes beyond quantum field theory.

Following further investigation in string theory, a stronger version of the SDC was proposed

as the Refined SDC in [3]. We will not motivate it here but only state it. It states that

• The constant γ is always of O (1).

• The exponential behaviour of the mass scale of the tower of states sets in already for

d (P,Q) ∼ O(1) . In particular this means that the conjecture amounts to a stronger

statement

M (Q) ∼M (P ) e−γd(P,Q) . (4.33)

• It holds also for scalar fields which have a potential, so not only moduli.

It is worth thinking generally about the SDC and its refined version. First, from the

perspective of quantum field theory it is quite surprising. We have seen that the conjecture

can only hold due to string theory, or more generally, quantum gravity. Typically, the mass

scale associated to such physics is Mp, and one might expect that working at energy scales far

below the Planck mass would mean that we lose sensitivity to such physics. But the energy

scale associated to the conjecture, M , is exponentially lower than Mp. Therefore, it claims that

the usual rules of effective quantum field theory break down at an exponentially lower energy

scale than expected whenever a field develops a large expectation value.

There are a number of interesting phenomenological implications of the SDC. In particular

within the context of early universe cosmology. One central example is in relation to the

magnitude of primordial gravitational waves produced during inflation. Here there exists an

important relation between an observable, the so-called tensor-to-scalar ratio r, which measures

the magnitude of gravitational waves produced during inflation, and the variation of the inflaton

expectation value. The Lyth bound states that

∆φ

Mp
> O(1)

√
r

0.01
. (4.34)

Where ∆φ is the variation of the inflaton expectation value during inflation. The current

experimental bounds on r are r < 0.07. Therefore, it can very well be that a future measurement

of r would imply that the inflaton varied its expectation value by more than Mp which would

mean that the Refined SDC could be applied to it. In that case the conjecture would imply that

the cut-off scale of the model of inflation must be exponentially smaller than the Planck mass.

However, the tensor-to-scalar ratio is also related to the energy scale of inflation Minf as

Minf ∼
( r

0.1

) 1
4

10−3Mp . (4.35)

So a larger r also needs a high energy scale of inflation. We conclude that the (Refined) SDC

implies an exponential tension between the two ingredients required for a large tensor-to-scalar

ratio and therefore may place an upper bound on its possible magnitude in string theory.
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5 Lecture 4: The gauge fields and the Weak Gravity Conjecture

In the previous lecture we considered the reduction of string theory on a metric (4.2). The

metric encoded the parameter φ which became a dynamical field in the lower d-dimensional

theory. There is another degree of freedom in the metric which becomes a d-dimensional gauge,

rather than scalar, field Aµ. It is associated to mixed terms as

ds2 = e2αφgµνdX
µdXν + e2βφ

(
dXd +AµdX

µ
)2

. (5.1)

Dimensionally reducing the Ricci scalar now gives∫
dDX

√
−GRD =

∫
ddX
√
−g
[
Rd − 1

2
(∂φ)2 − 1

4
e−2(d−1)αφF(A),µνF

µν
(A)

]
, (5.2)

where F(A),µν = 1
2∂[µAν] is the gauge field kinetic term. We therefore see that the lower

dimensional theory has a propagating U(1) gauge field with gauge coupling

g(A) = e(d−1)αφ =
1

2πR

(
1

2πR

) 1
d−2

. (5.3)

The gauge symmetry associated to the gauge field, with a local gauge parameter λ (Xν), is

coming from the circle isometry

Aµ → Aµ − ∂µλ (Xν) , Xd → Xd + λ (Xν) . (5.4)

Recall the KK expansion for the a D-dimensional field (4.6). From the gauge symmetry

transformation (5.4) we therefore see that the KK modes ψn are charged under the KK U(1)

gauge field Aµ. Their charge is

q(A)
n = 2πn , (5.5)

which, as expected, is quantised. We now note that there is a relation between the charge and

mass of the KK modes

g(A)q
(A)
n = Mn,0 , (5.6)

where the KK mass is as in (4.25).

Let us now consider the String theory effective action (3.34). If we compactify this action on

a circle we will obtain a gauge field coming from the gravitational sector as in (5.2). However,

we will also obtain a second gauge field Vµ coming from the Kalb-Ramond B-field with one

index along the Xd direction

Vµ ≡ B[µd] . (5.7)

The kinetic terms for Vµ come from dimensional reduction of the kinetic terms of the Kalb-

Ramond field. This gives∫
ddX
√
−g
[
Rd − 1

4
e−2(α+β)φF(V ),µνF

µν
(V )

]
. (5.8)

The factor in front of kinetic terms comes from reducing
√
−GHµνdH

µνd so that

e−2(α+β)φ = e2αφ︸︷︷︸√
−G

e−4αφ︸ ︷︷ ︸
(Gµν)2

e−2βφ︸ ︷︷ ︸
Gdd

. (5.9)
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We therefore find a gauge coupling of

g(V ) = e(α+β)φ = 2πR

(
1

2πR

) 1
d−2

. (5.10)

The states that are charged under Vµ are the winding modes of the string. To see this we can

evaluate directly the Polyakov action (3.36) for a string wrapping the Xd direction w times (in

the Einstein frame). Because the string wraps Xd we can set σ = 2π
w X

d and so

SP = −T
2

∫
Σ
dτdσ

[
2iVµ∂τX

µ∂σ

(wσ
2π

)]
= −i w

2πα′

∫
γ
dτ (∂τX

µ)Vµ . (5.11)

This is just the world-line action of a particle with charge

q(V )
w =

w

2πα′
(2πR)

2
d−2 , (5.12)

where we have included the extra factor of (2πR)
2
d−2 coming from (4.24). We therefore have

g(V )q
(V )
w = M0,w , (5.13)

where the winding mass is as in (4.25).

We therefore find that there are two gauge fields in d-dimensions Aµ and Vµ and there are

states charged under them, KK modes and winding modes respectively. Further, the charged

states have interesting relations between their charges and masses (5.13) and (5.6). We will

investigate these properties in the context of the Swampland below. But before that we note

that there is a symmetry in the theory where we exchange the gauge fields Aµ and Vµ and the

KK and winding modes. This is in fact just the T-duality symmetry we encountered already.

5.1 The Completeness Conjecture

The first thing we notice is that each of the gauge fields Aµ and Vµ has states charged under it.

In fact all the possible integer charges with respect to each gauge field are populated by states.

This is not something one would necessarily expect from a QFT perspective. For example, we

can easily have a QFT gauge theory with no charged matter at all, or only two charged states

of charges 3 and 157. The fact that we find that all the possible charges under the gauge fields

have states associated to them is conjectured to be general in string theory. This is termed

the Completeness Conjecture [9]. It states that in a quantum theory of gravity all the possible

charges under a gauge symmetry are populated by states. Of course, these states may be very

heavy and not accessible from a low energy effective field theory perspective.

5.2 The No Global symmetries Conjecture

We see that if we send the gauge coupling to zero, gA → 0, or gV → 0, the mass scale of the

full infinite tower goes to zero.5 This means that an infinite number of states become massless.

5This is true for the appropriately normalised gauge coupling, which is such that the charges of the states are
integers.
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This signals the complete breakdown of any effective QFT since it would need to include an

infinite number of degrees of freedom.

If we start with a gauge symmetry and send its gauge coupling g to zero, then that symmetry

effectively becomes a global symmetry. One way to see this is to note that the kinetic term of

the gauge field goes to infinity
1

4g2
FµνF

µν g→0−−−→∞. (5.14)

Therefore, the actual dynamical gauge field stops propagating and only the gauge symmetry

selection rules remain, which therefore is the same as a global symmetry.

Connecting the two observations we see that if we try to turn a gauge symmetry into a global

symmetry we find an obstruction with an infinite number of states becoming massless. In fact,

we can understand the role of these states quite nicely. The infinite tower of KK modes becoming

massless implies that we need to describe the theory in terms of an additional dimension. In

the higher dimensional theory the U(1) is actually part of the gravitational dynamics and is

therefore associated to the local symmetry of diffeomorphisms. Indeed, we can see this also by

the fact that the gauge symmetry is associated to the isometry of the circle (5.4), but this is a

space-time symmetry which is embedded in diffeomorphisms. Therefore, in this sense, quantum

gravity is obstructing the existence of a global symmetry by gauging it. Indeed, this is the only

way that such a global symmetry can be obstructed because the other possibility, that it is

broken, is not allowed since it is a limit of a gauge symmetry.

Again we note that this is a property of quantum gravity. In QFT there are no light states

as we take gV → 0, and therefore there is no obstruction to this global symmetry limit.

These are examples of a general conjecture which states that in a quantum theory of gravity

there are no global symmetries, see for example [10] for a review.

5.3 The Weak Gravity Conjecture

We have seen that string theory, or more generally quantum gravity, obstructs the global

symmetry limit of gauge theories g → 0 by making states light. The Weak Gravity Conjecture

(WGC) [4] is an attempt to quantify this by relating the magnitude of the gauge coupling of

U(1) gauge fields with certain mass scales.

We will first study the WGC in four space-time dimensions. It is a Swampland constraint

on U(1) gauge theories coupled to gravity, so we will consider the action∫
d4X
√
−g
[
R

2
− 1

4g2
FµνF

µν

]
. (5.15)

The WGC is a statement about the charged spectrum of this theory, it has two parts, the

so-called electric and magnetic WGC.

• The electric WGC says that a theory with a U(1) gauge symmetry must contain a charged

particle with a mass m and charge q such that the following inequality is satisfied

m ≤
√

2gqMp . (5.16)
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• The magnetic WGC says that the cutoff scale of the effective theory Λ is approximately

bounded by the gauge coupling

Λ . gMp . (5.17)

In our string theory example we can see that both (5.16) and (5.17) are satisfied. The first is

actually satisfied by an infinite number of states, for the gauge field Aµ by the KK tower (5.6)

and for Vµ by the winding modes tower (5.13). Actually, since the string theory example is

not in four dimensions the quantitative relation to the four-dimensional statement is slightly

modified and is discussed in section 5.5. The qualitative relations are still correct.

The electric WGC (5.16) is also responsible for the name of the conjecture. There are two

forces present in the theory (5.15), gravity and a U(1) electromagnetic force. A charged particle

will couple to both of these forces. The coupling strength to the gravitational force is m√
2Mp

,

while the coupling strength to the U(1) force is gq.6 The inequality (5.16) is therefore the

statement that the WGC particle should couple to the U(1) force at least as strong as it does to

gravity. So that for that particle, gravity is always the weakest force acting on it. It is rather

important to emphasise that this does not imply that gravity should be the weakest force acting

on any particle in the theory. Rather, it is the weakest force on at least one particle.

We also see that the magnetic WGC (5.17) is satisfied because Λ is associated with the mass

scale of the KK or winding towers. So it is the mass scale where an infinite number of modes

begin to appear. Note that this is not a sharp cutoff statement, one can go above Λ by including

some of the KK or winding modes in the effective theory. However, it is a cutoff in the sense

that going to higher energies than gMp necessitates introducing an increasing number of degrees

of freedom into the theory.

5.4 The Weak Gravity Conjecture and Black Holes

The WGC is also a good point to introduce a different aspect of Swampland conjectures, which

is that while the initial evidence for them comes from string theory it is sometimes possible to

present general arguments for why they should hold. The WGC is a nice example of this since

it first arose as a (related) observation in string theory [12] but later formulated in a manner

independent of string theory in [4]. It is important to state though, that while the WGC is

a swampland constraint which comes close to having a general argument for it, in fact, the

argument we will present is not strong enough to convincingly imply both (5.16) and (5.17).

Indeed, there is no general very convincing argument for the WGC. Nonetheless, since the

argument presented in [4] comes close it is certainly worth discussing it.

The starting point is to consider black hole solutions to the theory (5.15). In particular

one can construct charged semi-classical black holes called Reissner-Nordstrom (RN) black

holes. We will not discuss these solutions here, but will state one property of them. Their

Arnowitt-Deser-Misner (ADM) mass MADM is the black hole mass as measured at infinity in its

flat space asymptotics. Similarly, their charge Q is the charge measured by surrounding the

black hole by a sphere and measuring the electric flux through it. Then the solutions satisfy the

so called extremality bound

MADM ≥
√

2gQMp . (5.18)

6Recall that gravitational attraction is m2

8πM2
pr

2 while electromagnetic repulsion is g2q2

4πr2
.
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Figure 7: Figure illustrating the discharge process of black holes. A pair of positively charged
particle and its negatively charged anti-particle are created in the electric field outside the black
hole. The anti-particle falls into the black hole, decreasing its charge, while the particle escapes
to infinity.

Black holes which saturate the inequality are termed extremal black holes.

Charged black holes can, in general, discharge themselves by emitting charged particles.

This is a quantum process, and is analogous, though slightly different, to how black holes can

lose mass by emitting photons as Hawking radiation. One way to see this is that because the

black hole is charged there is an electric field outside its horizon, and in this field it is possible

to Schwinger pair create a charged particle anti-particle pair, and the anti-particle can fall into

the black hole decreasing its charge while the particle escapes to infinity. This is illustrated in

figure 7.

Imagine that the black hole was able to completely discharge itself by emitting N particles

of mass m and charge q. Then by charge and energy conservation we would have

Q = Nq , MADM ≥ Nm . (5.19)

Eliminating N in this we have
q

m
≥ Q

MADM
. (5.20)

So by charge and energy conservation the black hole can only discharge if there exists a particle

for which the charge-to-mass ratio is larger than than of the black hole. The black hole with the

maximal charge-to-mass ratio is an extremal black hole where the inequality (5.18) is saturated.

Therefore, extremal black holes can only discharge if there exists a particle which satisfies the

WGC (5.16). Or in other words, the WGC is equivalent to the statement that extremal black

holes should be able to discharge through emitting particles.

If we could motivate the idea that black holes should be able to discharge, we could motivate

the WGC. Unfortunately, there is no convincing argument that RN black holes must be able to

discharge. So while the WGC can be tied to black hole physics in this way, it does not lead to a
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strong argument for the WGC.7

In the original paper [4] an argument was presented for black hole discharge which is based

on a classic argument against global symmetries in quantum gravity (see, for example [10]). It

is worthwhile going through this to see that it does not quite work, but that it does provide an

interesting perspective on some of our earlier results.

Let us first outline the argument for the absence of global symmetries in quantum gravity.

The idea is to consider black holes charged under a U(1) global, rather than gauge, symmetry.

For a global symmetry there is no extremality bound relating the charge and mass of the black

hole (5.18). This means that the black hole will continue to lose mass through Hawking radiation

until it leaves the semi-classical regime where Hawkings’ calculation is valid. This occurs when

its horizon is of order the Planck length, and its mass is of order the Planck mass. Further,

because there is no electric field outside the black hole, there is no semi-classical way for the

black hole to discharge itself from the global symmetry charge. By the time it reaches the

Planck regime it can no longer discharge its global symmetry charge because it does not have

enough mass left to emit a sufficient number of charged particles. Therefore, what remains is

a Planck mass remnant state which is completely stable due to its global symmetry charge.

Since the initial black hole could have an arbitrary global charge, the theory contains an infinite

number of stable remnant states with a mass below the Planck mass. So black holes can turn

one charged particle below Mp into an infinite number of charged particles below Mp. Having

an infinite number of states below a fixed mass scale is considered to be inconsistent. This is

not theorem, but, for example, any lopp computation would diverge from an infinite number of

states running in the loop. Another argument is that such a situation would lead to a violation

of the covariant entropy bound [10]. The process leading to an infinite number of remnants in

the presence of a global symmetry is illustrated in figure 8.

Now in [4] a modification of this argument was applied to a U(1) gauge, rather than global,

symmetry. It was assumed that black holes are not able to discharge, so the WGC is violated.

Then the only difference between the gauge and global symmetry case is the extremality bound

(5.18). The bound means that one cannot increase the charge of the black hole and still have it

decay to the same mass. Nonetheless, if say g ∼ 10−100 then we would still obtain 10100 stable

remnants below Mp. the number of remnants goes to infinity as g → 0. It is therefore tempting

to argue that this would be catastrophic and so we should insist that black holes must be able

to discharge and thereby avoid the remnants in the first place.

However, recall that in the string theory setting when we sent g → 0 we indeed actually did

find an infinite number of massless charged states. So there cannot be a fundamental issue with

the remnants existing. We interpreted these states as signalling the breakdown of the effective

theory description and instead one had to utilise some other theory (in the example string theory

case this theory was a higher-dimensional theory). Indeed, we can see that the magnetic WGC

(5.17) tells us the effective theory cutoff is going to zero Λ→ 0. Therefore, it is plausible that

the better way to interpret the infinite remnants, or states, as g → 0 is not as a fundamental

inconsistency but rather as a statement that the effective theory must break down at any finite

cutoff scale Λ > 0, and must be replaced by some other theory. Another way to put it is that

for any finite value of g one can consistently utilise some effective field theory below a cutoff

scale Λ which is sufficiently low. The global symmetry limit is the one where Λ → 0. So the

7At least not for RN black holes. In [13] it was argued that for black holes coupled to scalar fields there may
exist limits in parameter space where the discharge of extremal black holes can be argued for.
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Figure 8: Figure illustrating how in the presence of a U(1) global symmetry, black hole
formation and decay would lead to an infinite number of stable remnant states below a fixed
mass scale.

statement that there are no global symmetries in quantum gravity is better interpreted as the

statement that a global symmetry would imply the cutoff of the theory must be at zero energy.

With these subtleties explained, we see that there are currently no strong black-hole based

arguments for the Weak Gravity Conjecture and this remains an open problem. This is a first

order picture, there are various interesting ideas in the literature about general arguments for

different interpretations of the WGC, but covering them is beyond the scope of these notes.

5.5 The Weak Gravity Conjecture more precisely∗ (optional)

In this section we will give a more precise and general relation between the WGC and (5.6).

The starting point is the action∫
ddX
√
−g
[
Rd

2
− 1

4
(∂φ)2 − 1

4e2
e−δφFµνF

µν

]
, (5.21)

The WGC is based on the requirement for Black Holes to be able to decay. The charge to mass

ratio of an extremal black hole depends on the number of dimensions that the black hole lives in.

Further, the particular black hole of interest in this theory actually has a dilatonic hair form the

scalar field φ. The WGC therefore is modified from the four-dimensional version in the absence

of scalar fields. For this particular setup this modification was calculated in [11] and reads

q2g2
A ≥

[
d− 3

d− 2
+
δ2

2

]
m2 . (5.22)

Here g2
A = e2eδφ, m is the mass of the WGC particle and q is its charge. Let us apply this to

our setup (5.2) with the WGC particle being the KK modes. We have

δ = 2 (d− 1)α , e2 = 2 . (5.23)

28



We therefore find (5.22) gives

2q2eδφ ≥
[
d− 3

d− 2
+
d− 1

d− 2

]
q2eδφ = 2q2eδφ . (5.24)

We therefore see that the KK modes saturate the more general WGC bound. This is actually

the more precise interpretation of the equality (5.6).

6 Problem set 1: Associated to lecture 1

Problem 1

In the lectures we utilised the Polyakov action for the string. In this problem we expand on

some properties of this action, in particular relating to the energy-momentum tensor.

• Calculate the energy momentum tensor, defined as

Tab ≡
4π√
−det h

δSP
δhab

, (6.1)

for the Polyakov action (2.15).

• The equation of motion for the worldsheet metric hab implies the energy-momentum tensor

should vanish Tab = 0. Use this to show the classical equivalence of the Polyakov and

Nambu-Goto actions for the string.

• Show that the equations of motion for the Xµ are

hab∇a (∂bX
µ) = 0 . (6.2)

Use this to show that the conservation of the energy momentum tensor ∇aTab = 0.

• Use the conformal invariance of the Polyakov action to show that the energy-momentum

tensor is traceless (without using any equations of motion).

Problem 2

This problem studies the symmetries of the Polyakov action.

• Show that the Polyakov action (2.15) is invariant under worldsheet diffeomorphisms (2.18).

• Consider the transformations

ξa → ξ̃a = ξa − εa , hab → h̃ab = habe
2Λ . (6.3)

Show that for εa satisfying

∇aεb +∇bεa −∇cεchab = 0 , (6.4)

there is a choice of Λ which leaves the metric invariant. Vectors εa satisfying (6.4) are

called Conformal Killing Vectors.

• Write down the conformal Killing vectors in light-cone coordinates.
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7 Problem set 2: Associated to lectures 2 and 3

Problem 1

• The Virasoro constraints in light-cone coordinates read

T++ = T−− = 0 . (7.1)

In target-space light-cone coordinates, show that this implies

∂±X
− =

1

α′p+

(
∂±X

i
)2

. (7.2)

• In terms of oscillators, show that this leads to (3.12).

Problem 2

• Show how the decomposition of the N = 1 states of the closed string (3.33) is written

explicitly in terms of the oscillator αi−1 and α̃i−1.

• Take the angular momentum operator (3.15) and consider a string state with no centre of

mass angular momentum lµν = 0. The resulting angular momentum is then associated to

the spin of the state. Consider polarizing the string oscillators along the i = 2, 3 directions,

so we excite only α2,3. Show that the relevant spin operator for massless states is then

S23 = −i
(
α2
−1α

3
1 − α3

−1α
2
1

)
− i
(
α̃2
−1α̃

3
1 − α̃3

−1α̃
2
1

)
. (7.3)

• Use this to calculate the spin of the different massless fields in (3.33).

Problem 3

• Show that the metric ansatz (4.2) leads to the effective d-dimensional action (4.5).

Problem 4

The Swampland Distance Conjecture is associated to the proper distance traversed in field space.

Consider parameterising the path between P and Q in terms of a scalar field t which need not

be canonically normalised

P : t = 1 , Q : t =∞ . (7.4)

Take the kinetic term of t to be gtt (t) (∂t)2.

• For gtt ∼ tε, what are the bounds on the constant ε for the proper distance in field space

d (P,Q) to be infinite?

• Calculate gtt for the case where t = R, the radius of the circle. Are R→ 0 and R→∞ at

finite or infinite distance?
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• Consider the dilaton field Φ in the effective action (3.34). Are the points Φ = 0 and

Φ = ±∞ separated by infinite or finite distance? What is the physical meaning of Φ = ±∞
in string theory? (Bonus: Can you name a Hollywood movie where (3.34) appears?)

• (Hard, advanced) What are the two dual infinite towers of states which become light for

type IIA superstring theory in the weak and strong coupling limits?

Problem 5* (Optional, for string theory enthusiasts)

• Show equation (3.19) in the notes.

8 Problem set 3: Associated to lecture 4

Problem 1

• Show that the metric ansatz (5.1) leads to the effective d-dimensional action (5.2).

Problem 2

• Consider the string on a circle of radius R. By explicitly acting with oscillator creation

operators on the vacuum, show that the massless spectrum for general values of R contains

two gauge bosons Aµ and Vµ.

• Show that at the special value of R =
√
α′ there are an additional 4 new gauge bosons.

• By calculating the charges of the new states under the original U(1) gauge bosons, show

that at R =
√
α′ the gauge symmetry enhances from U(1)× U(1) to SU(2)× SU(2).

Problem 3

• Write the metric and electric field profile for an electrically charged Reissner-Nordstrum

black hole. Explain the meaning of the extremality bound (5.18).

• The extremality bound (5.18) can be derived in an approximate way as follows. Write

down the natural length scale r associated to a black hole of mass M . What is the energy

stored in the electric field resulting from bringing in a charge Q from infinity to a sphere

of the radius r? The mass of the black hole should be at least that energy, show that this

leads to the extremality bound.

• Consider not a RN black hole but a charged black hole solution to the four-dimensional

version of the theory (5.2) which has the additional coupled scalar φ. With the previous

derivation of the extremality bound in mind, would you expect that the charge-to-mass

ratio of an extremal black hole in this theory to be smaller or larger than that of a RN

black hole with the same charge? How does this relate to the more general proposal for

the WGC (5.22)?
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Problem 4

• The WGC states that gravity should be the weakest force. Consider a four-dimensional

theory which has a real scalar field φ rather than a gauge field∫
d4X
√
−g
[
R

2
− (∂φ)2

]
. (8.1)

A scalar field also acts as a force. What is the coupling constant, as appears in a Coulomb

type force, of a particle of mass m (φ) to the scalar φ?

• Show that the statement that gravity should be the weakest force for a particle implies

that for that particle we have

∂φm (φ) ≥ m (φ) . (8.2)

• What can we deduce form (8.2) regarding the form of m (φ) as we send φ → ∞? How

does this relate to the behaviour of a mass scale in a different Swampland conjecture?
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