Priv.-Doz. Dr. Johanna Erdmenger Steffen Müller

Introduction to Gauge/Gravity Duality

Examples IX

To hand in Friday 13th January in the examples class

I. Thermodynamics of the AdS Schwarzschild black hole

Consider the following metric of a (d+1) dimensional asymptotically AdS Schwarzschild black hole

$$ds^{2} = \frac{L^{2}}{r^{2}} \left(f(r)d\tau^{2} + \frac{dr^{2}}{f(r)} + dx^{i}dx_{i} \right) ,$$

with $f(r) = 1 - \left(\frac{r}{r_H}\right)^d$.

a) Determine the Ricci tensor $R_{\mu\nu}$ and the Ricci scalar R (It is not necessary to do a calculation, a good argument is enough)!

(2 points)

b)* Consider the (euclidean) action

$$S_E = -\frac{1}{2\kappa^2} \int d^{d+1}x \sqrt{g} \left(R - 2\Lambda \right) + \frac{1}{2\kappa^2} \int_{r \to 0} d^d x \sqrt{\gamma} \left(-2K + \frac{2(d-1)}{L} \right) \,,$$

where $\Lambda = -d(d-1)/(2L^2)$ is the cosmological constant, $\gamma_{\mu\nu}$ is the induced metric on the boundary $r \to 0$, n^{μ} is an outward pointing normal vector to the boundary and $K = \gamma^{\mu\nu} \nabla_{\mu} n_{\nu}$ is the trace of the extrinsic curvature.

Compute the on-shell action by plugging the metric of the AdS Schwarzschild black hole into the euclidean action S_E .

Result: the euclidean on-shell reads

$$S_E = -\frac{(4\pi)^d L^{d-1}}{2\kappa^2 d^d} V_{d-1} T^{d-1} \, .$$

where V_{d-1} is the (spatial) volume of the corresponding field theory.] (4 points)

c) Compute the partition function

$$Z = \exp\left(-S_E\right)$$

as well as the free energy F and the entropy S

$$F = -T \log Z$$
, $S = -\frac{\partial F}{\partial T}$

(4 points)

^{*}This is a very tedious exercise. Note, however, that the result is given at the end of the exercise b). Therefore you can skip exercise b) and continue with exercise c).