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Introduction 

String Theory (and its compactifications) come with a number of scalar fields whose  
vacuum expectation values determine the properties of the effective theory 

1

 values of couplings, masses of states, value of the EFT cut-off … →

Families of EFTs from string theory parametrized by the values of the scalar fields 

Structure of  gives information about general properties of the theory ℳϕi

 scalar field space  → ℳϕi

 allowed values for , different perturbative descriptions, dualities … . → ϕi

ℳϕi
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Introduction 
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What do we know about the structure of ? ℳ
 comes equipped with a metric which can be computed in a perturbative limit of the theory 

    (e.g. perturbative string theory regime) 
→

ℳϕi
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What do we know about the structure of ? ℳ
 comes equipped with a metric which can be computed in a perturbative limit of the theory 

    (e.g. perturbative string theory regime) 
→

ℳϕi

Pert
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tive
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e I

With enough supersymmetry, moduli space geometry exactly known!  
      metric can be evaluated at any point in moduli space. →

With less supersymmetry can sometimes rely on non-renormalization theorems to describe  
moduli space away from perturbative limits:
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What do we know about the structure of ? ℳ
 comes equipped with a metric which can be computed in a perturbative limit of the theory 

    (e.g. perturbative string theory regime) 
→

ℳϕi
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 Example 4d N=2: Moduli space factorizes into vector- and hypermultiplet sector  
                             and only one factor contains the string coupling  tree-level exact. →

Question: What about the more realistic cases in 4d with minimal (or no) supersymmetry?  

With enough supersymmetry, moduli space geometry exactly known!  
      metric can be evaluated at any point in moduli space. →

With less supersymmetry can sometimes rely on non-renormalization theorems to describe  
moduli space away from perturbative limits:



 Max Wiesner                      Exploring the Interior of N=1 Field Spaces                        Ringberg Workshop                      03/18/2024

Warm-up: Type IIA Calabi—Yau compactifications
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Question: What about the more realistic cases in 4d with minimal (or no) supersymmetry?  
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Warm-up: Type IIA Calabi—Yau compactifications

3

Gather some intuition from 4d N=2 first — Specifically Type IIA Compactifications on CY 3-fold X3

• Moduli space spanned by:                                                  - Type II dilaton + axionic partner  
- Complex structure moduli of  + axionic partners 

- (complexified) Kähler moduli of  

X3

X3 vector multiplets

hypermultiplets

Question: What about the more realistic cases in 4d with minimal (or no) supersymmetry?  
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Warm-up: Type IIA Calabi—Yau compactifications
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Gather some intuition from 4d N=2 first — Specifically Type IIA Compactifications on CY 3-fold X3

• Moduli space spanned by:                                                  - Type II dilaton + axionic partner  
- Complex structure moduli of  + axionic partners 

- (complexified) Kähler moduli of  

X3

X3 vector multiplets

hypermultiplets

• N=2 supersymmetry ensures factorization    . ℳ = ℳHM × ℳVM

 vector multiplet moduli space is tree-level exact.   
 can trust the structure derived from string CFT  

         mirror symmetry to complex structure moduli of 

→
→

↔ X̃3

Question: What about the more realistic cases in 4d with minimal (or no) supersymmetry?  
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Warm-up: Type IIA Calabi—Yau compactifications
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Gather some intuition from 4d N=2 first — Specifically Type IIA Compactifications on CY 3-fold X3

• Moduli space spanned by:                                                  - Type II dilaton + axionic partner  
- Complex structure moduli of  + axionic partners 

- (complexified) Kähler moduli of  

X3

X3 vector multiplets

hypermultiplets

• N=2 supersymmetry ensures factorization    . ℳ = ℳHM × ℳVM

 vector multiplet moduli space is tree-level exact.   
 can trust the structure derived from string CFT  

         mirror symmetry to complex structure moduli of 

→
→

↔ X̃3

• Thanks to factorization can describe small volume regime of ℳVM

q2 = e2πit2

q1 = e2πit1

- can infer singularity structure from mirror  

Question: What about the more realistic cases in 4d with minimal (or no) supersymmetry?  
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Warm-up: Type IIA Calabi—Yau compactifications

3

Gather some intuition from 4d N=2 first — Specifically Type IIA Compactifications on CY 3-fold X3

• Moduli space spanned by:                                                  - Type II dilaton + axionic partner  
- Complex structure moduli of  + axionic partners 

- (complexified) Kähler moduli of  

X3

X3 vector multiplets

hypermultiplets

q2 = e2πit2

q1 = e2πit1

- can infer singularity structure from mirror  

- at small volume get phases different from CY phase, e.g. orbifold 
phases, Landau-Ginzburg or hybrid phases.  

CY Phase 

Orbifold  
Phase 

Hybrid LG  
Phase

LG Phase

Question: What about the more realistic cases in 4d with minimal (or no) supersymmetry?  

• N=2 supersymmetry ensures factorization    . ℳ = ℳHM × ℳVM

 vector multiplet moduli space is tree-level exact.   
 can trust the structure derived from string CFT  

         mirror symmetry to complex structure moduli of 

→
→

↔ X̃3

• Thanks to factorization can describe small volume regime of ℳVM

- can infer singularity structure from mirror  
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What about genuine N=1 theories? 
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Question: What remains of this in genuine N=1 theories? 
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What about genuine N=1 theories? 

5

Question: What remains of this in genuine N=1 theories? 

• Take e.g. F-theory on elliptically fibered Calabi-Yau fourfold  . 

• Scalar field space spanned by  
- complex structure moduli of    
- complexified volumes of divisors of 

X4 : T2 → B3

X4

B3

:    Kähler form on   
:  Generators of  
:  Type IIB RR four-form 

J B3
Da Eff1(B3)
C4

Ti =
1
2 ∫Da

J ∧ J + i∫Da

C4

[Grimm ’10] 
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Question: What remains of this in genuine N=1 theories? 

:    Kähler form on   
:  Generators of  
:  Type IIB RR four-form 

J B3
Da Eff1(B3)
C4

Ti =
1
2 ∫Da

J ∧ J + i∫Da

C4

• In large volume regime ( ): supersymmetry breaking effects are diluted  

    (…  plays the role of 4d dilaton) 

• In this limit the moduli space is described by 

𝒱B3
→ ∞

𝒱B3

K = − log∫X4

Ω ∧ Ω̄ − log∫B3

J3
B3

[Grimm ’10] 

• Take e.g. F-theory on elliptically fibered Calabi-Yau fourfold  . 

• Scalar field space spanned by  
- complex structure moduli of    
- complexified volumes of divisors of 

X4 : T2 → B3

X4

B3
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What about genuine N=1 theories? 

5

Question: What remains of this in genuine N=1 theories? 

:    Kähler form on   
:  Generators of  
:  Type IIB RR four-form 

J B3
Da Eff1(B3)
C4

Ti =
1
2 ∫Da

J ∧ J + i∫Da

C4

• In large volume regime ( ): supersymmetry breaking effects are diluted  

    (…  plays the role of 4d dilaton) 

• In this limit the moduli space is described by 

𝒱B3
→ ∞

𝒱B3

K = − log∫X4

Ω ∧ Ω̄ − log∫B3

J3
B3

• What happens away from the overall large volume limit? 1. small curve limit for some curves in   

2. Mixing between c.s. and Kähler sector

B3

[Grimm ’10] 

• Take e.g. F-theory on elliptically fibered Calabi-Yau fourfold  . 

• Scalar field space spanned by  
- complex structure moduli of    
- complexified volumes of divisors of 

X4 : T2 → B3

X4

B3
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Structure of Kähler field space

6

• Consider first small curve limits in .  

• Naively might expect a similar pattern as in Type IIA  shrinking genus-0 curves also fall in three 
classes?

B3

→

-   

-   

-

𝒩C|B3
= 𝒪(−1) ⊕ 𝒪(−1)

𝒩C|B3
= 𝒪(−2) ⊕ 𝒪(0)

𝒩C|B3
= 𝒪(−3) ⊕ 𝒪(1)

IIA on  
CY3:

[Witten ’96]
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• Consider first small curve limits in .  

• Naively might expect a similar pattern as in Type IIA  shrinking genus-0 curves also fall in three 
classes?

B3

→

-   

-   

-

𝒩C|B3
= 𝒪(−1) ⊕ 𝒪(−1)

𝒩C|B3
= 𝒪(−2) ⊕ 𝒪(0)

𝒩C|B3
= 𝒪(−3) ⊕ 𝒪(1)

only curve shrinks  can trust classical 
geometry in Type IIA (flop transition)

→

IIA on  
CY3:

[Witten ’96]
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Structure of Kähler field space

6

• Consider first small curve limits in .  

• Naively might expect a similar pattern as in Type IIA  shrinking genus-0 curves also fall in three 
classes?

B3

→

-   

-   

-

𝒩C|B3
= 𝒪(−1) ⊕ 𝒪(−1)

𝒩C|B3
= 𝒪(−2) ⊕ 𝒪(0)

𝒩C|B3
= 𝒪(−3) ⊕ 𝒪(1)

IIA on  
CY3:

• What happens in the small volume limit for such curves inside the base  of F-theory? B3

• From Type IIA perspective: expect a conifold singularity  at . ΔC = 0 vol(C) = 0

[Witten ’96]

only curve shrinks  can trust classical 
geometry in Type IIA (flop transition)

→

• Curve has  such that locally (for small  ) see enhanced supersymmetry. K̄ ⋅ C = 0 C

 can we use this to our benefit? →
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Locally enhanced SUSY in 6d F-theory

7

To gain intuition consider analogue situation in 6d N=(1,0) compactifications of F-theory
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Locally enhanced SUSY in 6d F-theory

7

To gain intuition consider analogue situation in 6d N=(1,0) compactifications of F-theory

• Consider F-theory on elliptically fibered Calabi-Yau threefold  . π : X3 → B2

• Analogue of flop curve in 4d is (-2)-curve satisfying . K̄B2
⋅ C = 0
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Locally enhanced SUSY in 6d F-theory

7

To gain intuition consider analogue situation in 6d N=(1,0) compactifications of F-theory

• Example: base  of    D3-brane on  gives M-string ℙ1
b 𝔽2 → ℙ1

b see [Morrison, Vafa ’96] 

• M-string sees locally enhanced N=(2,0) supersymmetry  small  limit can be identified with 
geometry of  singularity in K3. 

→ C
A1

• Consider F-theory on elliptically fibered Calabi-Yau threefold  . π : X3 → B2

• Analogue of flop curve in 4d is (-2)-curve satisfying . K̄B2
⋅ C = 0
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To gain intuition consider analogue situation in 6d N=(1,0) compactifications of F-theory

• Example: base  of    D3-brane on  gives M-string ℙ1
b 𝔽2 → ℙ1

b see [Morrison, Vafa ’96] 

• M-string sees locally enhanced N=(2,0) supersymmetry  small  limit can be identified with 
geometry of  singularity in K3. 

→ C
A1

• For  obtain  and additional complex structure deformations associated to  give  

   four scalar fields that pair up with Kähler modulus to give 5 scalar fields in N=(2,0) matter multiplet.  

ϵ ≠ 0 X (0)
3 : T2 → 𝔽0 ϵ

• Enhanced SUSY manifests itself in  having additional (non-polynomial) deformationsX (2)
3 = T2 → 𝔽2

ζη + ξ2 = 0 → ζη + ξ2 = ϵτ2F2 ⊂ ℙ3 :

• Consider F-theory on elliptically fibered Calabi-Yau threefold  . π : X3 → B2

• Analogue of flop curve in 4d is (-2)-curve satisfying . K̄B2
⋅ C = 0
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• For  obtain  and additional complex structure deformations associated to  give  

   four scalar fields that pair up with Kähler modulus to give 5 scalar fields in N=(2,0) matter multiplet.  

ϵ ≠ 0 X (0)
3 : T2 → 𝔽0 ϵ

• Use deformations to ‘move around’ singularity, upon turning  ϵ = 0 → ϵ ≠ 0

D3 |ℙ1
b⊂𝔽2

⟶ D3 |ℙ1
A⊂𝔽0

− D3 |ℙ1
B⊂𝔽0

• Enhanced SUSY manifests itself in  having additional (non-polynomial) deformationsX (2)
3 = T2 → 𝔽2

ζη + ξ2 = 0 → ζη + ξ2 = ϵτ2F2 ⊂ ℙ3 :

• Consider F-theory on elliptically fibered Calabi-Yau threefold  . π : X3 → B2

• Analogue of flop curve in 4d is (-2)-curve satisfying . K̄B2
⋅ C = 0
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To gain intuition consider analogue situation in 6d N=(1,0) compactifications of F-theory

• Consider F-theory on elliptically fibered Calabi-Yau threefold  . π : X3 → B2

• Example: base  of    D3-brane on  gives M-string ℙ1
b 𝔽2 → ℙ1

b see [Morrison, Vafa ’96] 

• M-string sees locally enhanced N=(2,0) supersymmetry  small  limit can be identified with 
geometry of  singularity in K3. 

→ C
A1

• Enhanced SUSY manifests itself in  having additional (non-polynomial) deformationsX (2)
3 = T2 → 𝔽2

• For  obtain  and additional complex structure deformations associated to  give  

   four scalar fields that pair up with Kähler modulus to give 5 scalar fields in N=(2,0) matter multiplet.  

ϵ ≠ 0 X (0)
3 : T2 → 𝔽0 ϵ

• Use deformations to ‘move around’ singularity, upon turning  ϵ = 0 → ϵ ≠ 0

D3 |ℙ1
b⊂𝔽2

⟶ D3 |ℙ1
A⊂𝔽0

− D3 |ℙ1
B⊂𝔽0

‘N=2 string’ ‘N=1 string’ ‘N=1 string’→

ζη + ξ2 = 0 → ζη + ξ2 = ϵτ2F2 ⊂ ℙ3 :

• Analogue of flop curve in 4d is (-2)-curve satisfying . K̄B2
⋅ C = 0
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Back to 4d!

8

What happens now in 4d N=1?

• Since  for flop curve, this curve can be viewed as analogue of 6d case just 

reviewed. 

K̄B3
⋅ C = 0
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Back to 4d!
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What happens now in 4d N=1?

• Since  for flop curve, this curve can be viewed as analogue of 6d case just 

reviewed. 

K̄B3
⋅ C = 0

• Consider local geometry:

C
−C
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Back to 4d!

8

What happens now in 4d N=1?

• Since  for flop curve, this curve can be viewed as analogue of 6d case just 

reviewed. 

K̄B3
⋅ C = 0

• Consider local geometry:

C
−C

• Locally looks like Type IIB on Calabi-Yau threefold  small volume limit should be 
locally describable as Type IIB hypermultiplet moduli space. 

→

• In small volume limit for  should encounter locally enhanced supersymmetry; string 
obtained as  has enhanced supersymmetry. 

C
D3C
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Back to 4d!
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What happens now in 4d N=1?

• Since  for flop curve, this curve can be viewed as analogue of 6d case just 

reviewed. 

K̄B3
⋅ C = 0

• Consider local geometry:

C
−C

• Locally looks like Type IIB on Calabi-Yau threefold  small volume limit should be 
locally describable as Type IIB hypermultiplet moduli space. 

→

• Classically: locus  is a singular (conifold singularity)  
BUT: hypermultiplet moduli space cannot have conifold singularities!

vol(C) = 0

• In small volume limit for  should encounter locally enhanced supersymmetry; string 
obtained as  has enhanced supersymmetry. 

C
D3C
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Back to 4d!

8

What happens now in 4d N=1?

• Since  for flop curve, this curve can be viewed as analogue of 6d case just 

reviewed. 

K̄B3
⋅ C = 0

• Consider local geometry:

C
−C

• Locally looks like Type IIB on Calabi-Yau threefold  small volume limit should be 
locally describable as Type IIB hypermultiplet moduli space. 

→

• Classically: locus  is a singular (conifold singularity)  
BUT: hypermultiplet moduli space cannot have conifold singularities!

vol(C) = 0

 hypermultiplet moduli space has constant curvature. 

 conifold singularity resolved at quantum level. 

→
→

[Ooguri, Vafa ’96] 

• In small volume limit for  should encounter locally enhanced supersymmetry; string 
obtained as  has enhanced supersymmetry. 

C
D3C
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Local description of small volume limit

9

• What are the scalar fields making up the N=2 hypermultiplet associated to ? C
 N=1 effective theory only gives two scalar fields →

tC = ∫C
J ξC = (∫C

C4)
∨

(Periods of  and  over  are fixed to )C2 B2 C 0
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Local description of small volume limit

9

• What are the scalar fields making up the N=2 hypermultiplet associated to ? C
 N=1 effective theory only gives two scalar fields →

tC = ∫C
J ξC = (∫C

C4)
∨

(Periods of  and  over  are fixed to )C2 B2 C 0

• Need two additional scalar fields to complete the N=2 hypermultiplet 

(Analogue of non-polynomial deformations in 6d case giving )X (2)
3 → X (0)

3
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Local description of small volume limit

9

• What are the scalar fields making up the N=2 hypermultiplet associated to ? C
 N=1 effective theory only gives two scalar fields →

tC = ∫C
J ξC = (∫C

C4)
∨

(Periods of  and  over  are fixed to )C2 B2 C 0

• Need two additional scalar fields to complete the N=2 hypermultiplet 

(Analogue of non-polynomial deformations in 6d case giving )X (2)
3 → X (0)

3

• Consider factorization of flop: 

C C′￼

C′￼′￼

• Get a new fourfold  such that  and volumes of curves 
are identified as 

X̂4 δh1,1 = h1,1(X̂4) − h1,1(X4) = 1
tC = tC′￼− tC′￼′￼
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• What are the scalar fields making up the N=2 hypermultiplet associated to ? C
 N=1 effective theory only gives two scalar fields →

tC = ∫C
J ξC = (∫C

C4)
∨

(Periods of  and  over  are fixed to )C2 B2 C 0

• Need two additional scalar fields to complete the N=2 hypermultiplet 

(Analogue of non-polynomial deformations in 6d case giving )X (2)
3 → X (0)

3

• Consider factorization of flop: 

C C′￼

C′￼′￼

• Get a new fourfold  such that  and volumes of curves 
are identified as 

X̂4 δh1,1 = h1,1(X̂4) − h1,1(X4) = 1
tC = tC′￼− tC′￼′￼

D3 |C ⟶ D3 |C′￼
− D3 |C′￼′￼



 Max Wiesner                      Exploring the Interior of N=1 Field Spaces                        Ringberg Workshop                      03/18/2024

Local description of small volume limit

9

• What are the scalar fields making up the N=2 hypermultiplet associated to ? C
 N=1 effective theory only gives two scalar fields →

tC = ∫C
J ξC = (∫C

C4)
∨

(Periods of  and  over  are fixed to )C2 B2 C 0

• Need two additional scalar fields to complete the N=2 hypermultiplet 

(Analogue of non-polynomial deformations in 6d case giving )X (2)
3 → X (0)

3

• Consider factorization of flop: 

C C′￼

C′￼′￼

• Get a new fourfold  such that  and volumes of curves 
are identified as 

X̂4 δh1,1 = h1,1(X̂4) − h1,1(X4) = 1
tC = tC′￼− tC′￼′￼

D3 |C ⟶ D3 |C′￼
− D3 |C′￼′￼

‘N=2 string’ ‘N=1 string’ ‘N=1 string’→
(analogue of splitting in 6d) 
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Local description of small volume limit
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• Consider factorization of flop: 

C C′￼

C′￼′￼

• Get a new fourfold  such that  and volumes of curves 
are identified as 

X̂4 δh1,1 = h1,1(X̂4) − h1,1(X4) = 1
tC = tC′￼− tC′￼′￼

D3 |C ⟶ D3 |C′￼
− D3 |C′￼′￼

‘N=2 string’ ‘N=1 string’ ‘N=1 string’→
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Local description of small volume limit

10

• Consider factorization of flop: 

C C′￼

C′￼′￼

• Get a new fourfold  such that  and volumes of curves 
are identified as 

X̂4 δh1,1 = h1,1(X̂4) − h1,1(X4) = 1
tC = tC′￼− tC′￼′￼

D3 |C ⟶ D3 |C′￼
− D3 |C′￼′￼

‘N=2 string’ ‘N=1 string’ ‘N=1 string’→
• Theory on  should be realized on sublocus in deformation space of  X4 X̂4

⟹ δχ = χ(X̂4) − χ(X4) = 6(δh1,1 + δh3,1 − δh2,1) = 0



 Max Wiesner                      Exploring the Interior of N=1 Field Spaces                        Ringberg Workshop                      03/18/2024

Local description of small volume limit

10

• Consider factorization of flop: 

C C′￼

C′￼′￼

• Get a new fourfold  such that  and volumes of curves 
are identified as 

X̂4 δh1,1 = h1,1(X̂4) − h1,1(X4) = 1
tC = tC′￼− tC′￼′￼

D3 |C ⟶ D3 |C′￼
− D3 |C′￼′￼

‘N=2 string’ ‘N=1 string’ ‘N=1 string’→
• Theory on  should be realized on sublocus in deformation space of  X4 X̂4

⟹ δχ = χ(X̂4) − χ(X4) = 6(δh1,1 + δh3,1 − δh2,1) = 0

• This suggests   from Type IIB perspective  associated to 
periods of  and . 

δh2,1 = δh1,1 = 1 → h2,1(X̂4)
C2 B2

 these are the deformations that complete the would-be N=2 hypermultiplet. →

[(Greiner), Grimm ’14-’17]
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Embedding of  in ℳX4
ℳX̂4

11

• Theory on  should be realized on sublocus in deformation space of . X4 X̂4

 at large  turning on deformations associated to  brings us from  to → t = ∫C
J δh2,1 X4 X̂4

   should generically not be a singular locus.  → ℳX4
⊂ ℳX̂4
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• Theory on  should be realized on sublocus in deformation space of . X4 X̂4

 at large  turning on deformations associated to  brings us from  to → t = ∫C
J δh2,1 X4 X̂4

   should generically not be a singular locus.  → ℳX4
⊂ ℳX̂4

  both strings  and  should have finite tension. → D3 |C′￼ D3 |C′￼′￼
C′￼

C′￼′￼

C

• Expectation:  embedded for   ℳX4
⊂ ℳX̂4

T(D3 |C′￼′￼) = t′￼=
1
2

(Minimal classical tension for D3-brane on C’) 

• Classical flop boundary at . TD3|C = TD3|C′￼− TD3|C′￼′￼= 0
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Embedding of  in ℳX4
ℳX̂4

11

• Theory on  should be realized on sublocus in deformation space of . X4 X̂4

 at large  turning on deformations associated to  brings us from  to → t = ∫C
J δh2,1 X4 X̂4

   should generically not be a singular locus.  → ℳX4
⊂ ℳX̂4

  both strings  and  should have finite tension. → D3 |C′￼ D3 |C′￼′￼
C′￼

C′￼′￼

C

• Expectation:  embedded for   ℳX4
⊂ ℳX̂4

T(D3 |C′￼′￼) = t′￼=
1
2

(Minimal classical tension for D3-brane on C’) 

• Classical flop boundary at . TD3|C = TD3|C′￼− TD3|C′￼′￼= 0

•  locally described by N=2 hypermultiplet moduli space  no singularity ℳX̂4
→

  tension  finite at the quantum level. → TD3|C
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Singularities: Local vs. Global 

12

• Classical field space  :ℳX4

C′￼

C′￼′￼

C

t
ΔC +∞−∞

• Translates to field space  :ℳX̂4

t′￼

t′￼′￼

ℳX4

ΔC
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• Classical field space  :ℳX4

C′￼

C′￼′￼

C

t
ΔC +∞−∞

• Translates to field space  :ℳX̂4

t′￼

t′￼′￼

ℳX4

• Local hypermultiplet moduli space geometry tells us that  does not exist beyond classical 
level.

ΔC

• Still, even though supersymmetry is enhanced locally it is still broken to N=1 globally. 

ΔC
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Singularities: Local vs. Global 

12

• Classical field space  :ℳX4

C′￼

C′￼′￼

C

t
ΔC +∞−∞

• Translates to field space  :ℳX̂4

t′￼

t′￼′￼
ΔC

ℳX4

• Local hypermultiplet moduli space geometry tells us that  does not exist beyond classical 
level.

ΔC

• Still, even though supersymmetry is enhanced locally it is still broken to N=1 globally. 

 complex moduli space (instead of quaternionic) and still expect     
singularities 
→ dimℂ = 1

t
ΔC +∞−∞

t
Δ′￼ +∞−∞ Δ′￼′￼
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Singularities: Local vs. Global 

13

• From perspective of  singularities      and         associated to shrinking exceptional divisor  X̂4 E

t
ΔC +∞−∞

t
+∞−∞ Δ′￼′￼

Δ′￼ Δ′￼′￼

Δ′￼
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Singularities: Local vs. Global 

13

• From perspective of  singularities      and         associated to shrinking exceptional divisor  X̂4 E

C′￼

C′￼′￼

C

• Inside   :ℳX̂4
t′￼

t′￼′￼

t
ΔC +∞−∞

t

Δ′￼

+∞−∞ Δ′￼′￼

Δ′￼ Δ′￼′￼

E
Δ′￼′￼

Δ′￼

ℳX4
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Singularities: Local vs. Global 
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• From perspective of  singularities      and         associated to shrinking exceptional divisor  X̂4 E

C′￼

C′￼′￼

C

• Inside   :ℳX̂4
t′￼

t′￼′￼

ℳX4

• Possible reason for singularity  ( ): N=1 strings  ( ) becomes tensionless  Δ′￼′￼ Δ′￼ D3 |C′￼′￼ D3 |C′￼

t
ΔC +∞−∞

t

Δ′￼

+∞−∞ Δ′￼′￼

Δ′￼ Δ′￼′￼

E
Δ′￼′￼

Δ′￼

ℳX4

T(D3 |C′￼)

T(D3 |C′￼′￼)

1
2

1
2
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Singularities: Local vs. Global 

13

• From perspective of  singularities      and         associated to shrinking exceptional divisor  X̂4 E

C′￼

C′￼′￼

C

• Inside   :ℳX̂4
t′￼

t′￼′￼

ℳX4

• Possible reason for singularity  ( ): N=1 strings  ( ) becomes tensionless  Δ′￼′￼ Δ′￼ D3 |C′￼′￼ D3 |C′￼

t
ΔC +∞−∞

t

Δ′￼

+∞−∞ Δ′￼′￼

Δ′￼ Δ′￼′￼

E
Δ′￼′￼

Δ′￼

ℳX4

T(D3 |C′￼)

T(D3 |C′￼′￼)

1
2

1
2

Upshot:

1. Small volume limit already for N=2 curves  
quite interesting.  

2. Singularity structure different from naive 
Type IIA vector multiplet moduli space 
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What about other types of curves? 

14

• So far: only considered very simple case of curves of “Type ” 𝙵

• Should also consider small volume limit for other type of curves and can differentiate 

K̄(B3) ⋅ C < 0 K̄(B3) ⋅ C = 0 K̄(B3) ⋅ C > 0

Type  (flop curves)𝙵

- or - 

Type  with normal 
bundle 

𝙼
𝒪(−2) ⊕ 𝒪
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What about other types of curves? 

14

• So far: only considered very simple case of curves of “Type ” 𝙵

• Should also consider small volume limit for other type of curves and can differentiate 

K̄(B3) ⋅ C < 0 K̄(B3) ⋅ C = 0 K̄(B3) ⋅ C > 0

Type  (flop curves)𝙵

- or - 

Type  with normal 
bundle 

𝙼
𝒪(−2) ⊕ 𝒪

•  Shrinking Type  curve  divisor shrinks to curve 

•  Supersymmetry even further enhanced compared to Type  

string (analogue of curve on (-2)-curve in 6d) 

• Can shrink the curve without encountering any quantum 

correction. 

𝙼 →

𝙵
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What about other types of curves? 

14

• So far: only considered very simple case of curves of “Type ” 𝙵

• Should also consider small volume limit for other type of curves and can differentiate 

K̄(B3) ⋅ C < 0 K̄(B3) ⋅ C = 0 K̄(B3) ⋅ C > 0

Main example: flip 
curves in the base B3

[Denef, Douglas, Florea, Grassi, Kachru ’05]
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What about other types of curves? 

14

• So far: only considered very simple case of curves of “Type ” 𝙵

• Should also consider small volume limit for other type of curves and can differentiate 

K̄(B3) ⋅ C < 0 K̄(B3) ⋅ C = 0 K̄(B3) ⋅ C > 0

Main example: flip 
curves in the base B3

•  Similar in spirit to Type  curves but involves 

going through an orbifold singularity.  

• No additional supersymmetry preserving 

deformations.  

• But: Splitting of string  can be described in 

the same spirit as splitting of N=2 string — 

though qualitatively different. 

𝙵

D3C

[Denef, Douglas, Florea, Grassi, Kachru ’05]
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What about other types of curves? 

14

• So far: only considered very simple case of curves of “Type ” 𝙵

• Should also consider small volume limit for other type of curves and can differentiate 

K̄(B3) ⋅ C < 0 K̄(B3) ⋅ C = 0 K̄(B3) ⋅ C > 0

Example: curves  and  
encountered previously. 

C′￼ C′￼′￼C′￼

C′￼′￼

C E
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• Should also consider small volume limit for other type of curves and can differentiate 

K̄(B3) ⋅ C < 0 K̄(B3) ⋅ C = 0 K̄(B3) ⋅ C > 0

Example: curves  and  
encountered previously. 

C′￼ C′￼′￼C′￼

C′￼′￼

C E

𝒩C|B3
= 𝒪(−1) ⊕ 𝒪(0)

𝒩C|B3
= 𝒪(−2) ⊕ 𝒪(1)

divisor shrinks to curve

divisor shrinks to point

• Possibilities genus 0 curve 
with  K̄ . C = 1
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• So far: only considered very simple case of curves of “Type ” 𝙵

• Should also consider small volume limit for other type of curves and can differentiate 

K̄(B3) ⋅ C < 0 K̄(B3) ⋅ C = 0 K̄(B3) ⋅ C > 0

Example: curves  and  
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C′￼ C′￼′￼C′￼

C′￼′￼

C E

𝒩C|B3
= 𝒪(−1) ⊕ 𝒪(0)

𝒩C|B3
= 𝒪(−2) ⊕ 𝒪(1)

divisor shrinks to curve

divisor shrinks to point

• Take first case: Can the geometric description still be trusted? 
                               look at corrections to effective action→

• Possibilities genus 0 curve 
with  K̄ . C = 1
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Genuine N=1 effects — Case I

15

Focus on curves with : K̄ . C > 0

𝒩C|B3
= 𝒪(−1) ⊕ 𝒪(0)

𝒩C|B3
= 𝒪(−2) ⊕ 𝒪(1)
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divisor shrinks to point
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                               look at corrections to effective action→

• Possibilities genus 0 curve 
with  K̄ . C = 1
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𝒩C|B3
= 𝒪(−2) ⊕ 𝒪(1)

divisor shrinks to curve

divisor shrinks to point

• Take first case: Can the geometric description still be trusted? 
                               look at corrections to effective action→

• For a curve with normal bundle  there needs to exist a 

divisor  such that 

𝒩C|B3
= 𝒪(−1) ⊕ 𝒪(0)

D ⊂ B3

𝒱D = tC (tC̃ + …) tC := 𝒱C

• Possibilities genus 0 curve 
with  K̄ . C = 1

15



 Max Wiesner                      Exploring the Interior of N=1 Field Spaces                        Ringberg Workshop                      03/18/2024

Genuine N=1 effects — Case I
Focus on curves with : K̄ . C > 0

𝒩C|B3
= 𝒪(−1) ⊕ 𝒪(0)

𝒩C|B3
= 𝒪(−2) ⊕ 𝒪(1)

divisor shrinks to curve

divisor shrinks to point

• Take first case: Can the geometric description still be trusted? 
                               look at corrections to effective action→

• For a curve with normal bundle  there needs to exist a 

divisor  such that 

𝒩C|B3
= 𝒪(−1) ⊕ 𝒪(0)

D ⊂ B3

𝒱D = tC (tC̃ + …) tC := 𝒱C

•  receives corrections at : 𝒱D 𝒪(α′￼2)

𝒱corr.
D = 𝒱D [1 + α2 ((κ3 + κ5)

𝒵
𝒱B3

)] + α2 (𝒵̃i log 𝒱(0)
B3

+ κ7𝒵D) . 𝒵D = ∫X4

c3(X4) ∧ π*(D)

[Grimm, Keitel, Mayer, Pugh, Savelli, Weissenbacher ’13-’19] 

• Possibilities genus 0 curve 
with  K̄ . C = 1

15



 Max Wiesner                      Exploring the Interior of N=1 Field Spaces                        Ringberg Workshop                      03/18/2024

Genuine N=1 effects — Case I

• Possibilities genus 0 curve 
with  K̄ . C = 1

Focus on curves with : K̄ . C > 0

𝒩C|B3
= 𝒪(−1) ⊕ 𝒪(0)

𝒩C|B3
= 𝒪(−2) ⊕ 𝒪(1)

divisor shrinks to curve

divisor shrinks to point

• Take first case: Can the geometric description still be trusted? 
                               look at corrections to effective action→

• For a curve with normal bundle  there needs to exist a 

divisor  such that 

𝒩C|B3
= 𝒪(−1) ⊕ 𝒪(0)

D ⊂ B3

𝒱D = tC (tC̃ + …) tC := 𝒱C

•  receives corrections at : 𝒱D 𝒪(α′￼2)

𝒱corr.
D = 𝒱D [1 + α2 ((κ3 + κ5)

𝒵
𝒱B3

)] + α2 (𝒵̃i log 𝒱(0)
B3

+ κ7𝒵D) . 𝒵D = ∫X4

c3(X4) ∧ π*(D)

Suppressed at sufficiently large 𝒱B3

 
for  
𝒱D → 0

tC → 0 Relevant correction

[Grimm, Keitel, Mayer, Pugh, Savelli, Weissenbacher ’13-’19] 

15
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Genuine N=1 effects — Case I
•  receives corrections at : 𝒱D 𝒪(α′￼2)

𝒱corr.
D = 𝒱D [1 + α2 ((κ3 + κ5)

𝒵
𝒱B3

)] + α2 (𝒵̃i log 𝒱(0)
B3

+ κ7𝒵D) . 𝒵D = ∫X4

c3(X4) ∧ π*(D)

Suppressed at sufficiently large 𝒱B3

 
for  
𝒱D → 0

tC → 0 Relevant correction

[Grimm, Keitel, Mayer, Pugh, Savelli, Weissenbacher ’13-’19] 

16

• Does  vanish for curve with ? 𝒵D K̄ ⋅ C = 1
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Genuine N=1 effects — Case I
•  receives corrections at : 𝒱D 𝒪(α′￼2)

𝒱corr.
D = 𝒱D [1 + α2 ((κ3 + κ5)

𝒵
𝒱B3

)] + α2 (𝒵̃i log 𝒱(0)
B3

+ κ7𝒵D) . 𝒵D = ∫X4

c3(X4) ∧ π*(D)

Suppressed at sufficiently large 𝒱B3

 
for  
𝒱D → 0

tC → 0 Relevant correction

• Consider smooth Weierstrass model over  and curve , then B3 : ℙ1 → B2 C ⊂ B2

𝒵D = c3(X4) ⋅X4
π*(D) = c1(B3)2 ⋅B3

D = . . . = 4 c1(B3) ⋅B3
C

[Grimm, Keitel, Mayer, Pugh, Savelli, Weissenbacher ’13-’19] 

16

• Does  vanish for curve with ? 𝒵D K̄ ⋅ C = 1
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Genuine N=1 effects — Case I
•  receives corrections at : 𝒱D 𝒪(α′￼2)

𝒱corr.
D = 𝒱D [1 + α2 ((κ3 + κ5)

𝒵
𝒱B3

)] + α2 (𝒵̃i log 𝒱(0)
B3

+ κ7𝒵D) . 𝒵D = ∫X4

c3(X4) ∧ π*(D)

Suppressed at sufficiently large 𝒱B3

 
for  
𝒱D → 0

tC → 0 Relevant correction

• Consider smooth Weierstrass model over  and curve , then B3 : ℙ1 → B2 C ⊂ B2

𝒵D = c3(X4) ⋅X4
π*(D) = c1(B3)2 ⋅B3

D = . . . = 4 c1(B3) ⋅B3
C

• For curve with  dominates  cannot trust the classical field space geometry for ! K̄ ⋅B3
C ≠ 0 → 𝒱C → 0

[Grimm, Keitel, Mayer, Pugh, Savelli, Weissenbacher ’13-’19] 

16

• Does  vanish for curve with ? 𝒵D K̄ ⋅ C = 1
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Genuine N=1 effects — Case I
•  receives corrections at : 𝒱D 𝒪(α′￼2)

𝒱corr.
D = 𝒱D [1 + α2 ((κ3 + κ5)

𝒵
𝒱B3

)] + α2 (𝒵̃i log 𝒱(0)
B3

+ κ7𝒵D) . 𝒵D = ∫X4

c3(X4) ∧ π*(D)

Suppressed at sufficiently large 𝒱B3

 
for  
𝒱D → 0

tC → 0 Relevant correction

• Does  vanish for curve with ? 𝒵D K̄ ⋅ C = 1

• Consider smooth Weierstrass model over  and curve , then B3 : ℙ1 → B2 C ⊂ B2

𝒵D = c3(X4) ⋅X4
π*(D) = c1(B3)2 ⋅B3

D = . . . = 4 c1(B3) ⋅B3
C

• For curve with  dominates  cannot trust the classical field space geometry for ! K̄ ⋅B3
C ≠ 0 → 𝒱C → 0

• Consistency check: for curve with  correction vanish and we can still trust the  
                                geometric picture. 

𝒩 = 𝒪(−2) ⊕ 𝒪(0)

[Grimm, Keitel, Mayer, Pugh, Savelli, Weissenbacher ’13-’19] 

“Type  string”𝙼

16
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Genuine N=1 effects — Case II

17

Consider now  and . K̄B3
⋅ C = 2 𝒩C|B3

= 𝒪(0) ⊕ 𝒪(0)

  is fiber of rationally-fibered   theory dual to heterotic string on CY3. → C B3 : C → B2 ↔

[MW ’22]

[Morrison, Vafa ’97; Lee, Lerche, Weigand ’19]



 Max Wiesner                      Exploring the Interior of N=1 Field Spaces                        Ringberg Workshop                      03/18/2024

Genuine N=1 effects — Case II
Consider now  and . K̄B3

⋅ C = 2 𝒩C|B3
= 𝒪(0) ⊕ 𝒪(0)

  is fiber of rationally-fibered   theory dual to heterotic string on CY3. → C B3 : C → B2 ↔

What happens in the limit of small  at constant volume ?C 𝒱B3

• All divisor volumes receive corrections as

𝒱corr.
D = 𝒱D [1 + α2 ((κ3 + κ5)

𝒵
𝒱B3

)] + α2 (𝒵̃i log 𝒱(0)
B3

+ κ7𝒵D) .

Diverges in the limit 

• Via duality can argue that (at least in simple cases) a strong coupling singularity is reached for gauge 
    theory on . D = B2

 vanishes along the singularity →

[MW ’22]

[Klaewer, Lee, Weigand, MW ’20]

[Morrison, Vafa ’97; Lee, Lerche, Weigand ’19]

𝒱corr.
B2

= 𝒱(0)
B2

(1 + α2(…)) + α2Z̃0 log 𝒱B3
+ α2const .

17
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Genuine N=1 effects — Case II
Consider now  and . K̄B3

⋅ C = 2 𝒩C|B3
= 𝒪(0) ⊕ 𝒪(0)

  is fiber of rationally-fibered   theory dual to heterotic string on CY3. → C B3 : C → B2 ↔

What happens in the limit of small  at constant volume ?C 𝒱B3

• All divisor volumes receive corrections as

𝒱corr.
D = 𝒱D [1 + α2 ((κ3 + κ5)

𝒵
𝒱B3

)] + α2 (𝒵̃i log 𝒱(0)
B3

+ κ7𝒵D) .

Diverges in the limit 

• Via duality can argue that (at least in simple cases) a strong coupling singularity is reached for gauge 
    theory on . D = B2

𝒱corr.
B2

= 𝒱(0)
B2

(1 + α2(…)) + α2Z̃0 log 𝒱B3
+ α2const .

 vanishes along the singularity →

• All other (vertical) divisors have minimal quantum volume: 

1
α2

Re Ta
sing.

= −
Re T (0)

a

𝒱(0)
B2

( b
8π

log ξ + const . ) + Re T*a
  Complex structure parameter 

of   
ζ :

X4

[MW ’22]

[Klaewer, Lee, Weigand, MW ’20]

[Morrison, Vafa ’97; Lee, Lerche, Weigand ’19]

17
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Genuine N=1 effects — Case II

18

[MW ’22]

Shrinking of curve with  is even worse than for . 𝒩 = 𝒪(0) ⊕ 𝒪(0) K̄ ⋅B3
C = 1

• Get a strong coupling singularity at finite distance. 

• Mixing between complex structure sector and Kähler sector → ℳ ≠ ℳc.s. × ℳKahler

•  theory behaves significantly different from  counterpart 𝒩 = 1 𝒩 = 2
 Cannot view it as “  + small corrections” → 𝒩 = 2

1
α2

Re Ta
sing.

= −
Re T (0)

a

𝒱(0)
B2

( b
8π

log ξ + const . ) + Re T*a
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Genuine N=1 effects — Case II
Shrinking of curve with  is even worse than for . 𝒩 = 𝒪(0) ⊕ 𝒪(0) K̄ ⋅B3

C = 1

• Get a strong coupling singularity at finite distance. 

• Mixing between complex structure sector and Kähler sector → ℳ ≠ ℳc.s. × ℳKahler

•  theory behaves significantly different from  counterpart 𝒩 = 1 𝒩 = 2
 Cannot view it as “  + small corrections” → 𝒩 = 2

In general: Field space geometry for small genuine  curves not describable by classical geometry 
                   corrections are big and field space does not necessarily factorize anymore. 

𝒩 = 1
→

Question: Away from small curve limits can I still trust the classical field space structure?  

 does  only break down for very small volumes?  → ℳ ≃ ℳc.s. × ℳKahler

 or corrections important for large complex structure?→

[MW ’22]
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Mixing in the Complex Structure Sector 

19

Might expect that the mixing between Kähler and complex structure sectors is sufficiently suppressed  
as long as divisor volumes :𝒱D ≫ 1

𝒱−1
D

1

zc.s.

corrections relevant 

For any finite value of  can treat this  

just as the c.s. field space with Kähler potential 

𝒱B3

K = − log∫X4

Ω ∧ Ω̄
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Mixing in the Complex Structure Sector 

1

zc.s.

corrections relevant 

For any finite value of  can treat this  

just as the c.s. field space with Kähler potential 

𝒱B3

K = − log∫X4

Ω ∧ Ω̄

Motivated by viewing F-theory via IIB orientifolds:  

      For Type IIB CY compactifications the complex structure is classically exact. →

      Can evaluate periods of  reliably to infer structure of .→ X4 ℳc.s.

      Period integrals simplify close to boundaries of   good setting for e.g. searches for flux vacua. → ℳc.s. ⇒

Is this picture correct? 

Might expect that the mixing between Kähler and complex structure sectors is sufficiently suppressed  
as long as divisor volumes :𝒱D ≫ 1

𝒱−1
D

19
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A simple Calabi—Yau fourfold

20

Consider a very simple elliptically-fibered Calabi-Yau fourfold  

X4 = (T2 → B2) × T2

Elliptically-fibered Calabi-Yau  
threefold 

F-theory on  leads to a four-dimensional theory with  supersymmetry.X4 𝒩 = 2

⟹ B3 = B2 × T2
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A simple Calabi—Yau fourfold

Consider a very simple elliptically-fibered Calabi-Yau fourfold  

X4 = (T2 → B2) × T2

Elliptically-fibered Calabi-Yau  
threefold 

F-theory on  leads to a four-dimensional theory with  supersymmetry.X4 𝒩 = 2

Question: Can we already see in this theory what to expect got the mixing between complex structure sector  
                 and ? 𝒱B3

⟹ B3 = B2 × T2

Therefore consider vector- and hypermultiplet sector of this F-theory comapctification:  

- (complexified) Kähler moduli of  + moduli of B2 T2 vector multiplets

hypermultiplets- complex structure moduli of ( ) and overall  
   volume of  + axionic partners 

T2 → B2

B2

20
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Hypermultiplet Corrections to CY3 x T2 

21

Focus on hypermultiplet sector of F-theory on   
    contains precisely the volume modulus and (part of) the complex structure sector of . 

(T2 → B2) × T2

→ X4

F-theory on  dual to Type IIA on  . 
    hypermultiplet moduli spaces can be identified via  

(T2 → B2) × T2 T2 → B2

→

F-theory IIA

complex structure moduli of ( ) 
overall volume modulus of  

T2 → B2

B2

complex structure moduli of ( ) 
4d dilaton 

T2 → B2↔
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Focus on hypermultiplet sector of F-theory on   
    contains precisely the volume modulus and (part of) the complex structure sector of . 

(T2 → B2) × T2

→ X4

F-theory on  dual to Type IIA on  . 
    hypermultiplet moduli spaces can be identified via  

(T2 → B2) × T2 T2 → B2

→

F-theory IIA

complex structure moduli of ( ) 
overall volume modulus of  

T2 → B2

B2

complex structure moduli of ( ) 
4d dilaton 

T2 → B2↔

• Type IIA hypermultiplet sector receives corrections due to D2-brane instantons 

• D2-brane instanton contributions to moduli space metric have been computed in  

• effect on (mirror dual of) large complex structure limit moduli space has been investigated in 

 effectively obstruct large complex structure limits! →

[Alexandrov, Banerjee ’14]; see [Robes-Llana, M. Rocek, F. Saueressig, 
 U. Theis, S. Vandoren, ’06] for mirror dual Type IIB. 

[(Baume), Marchesano, MW ’19]; see also [Alvarez-Garcia, Klaewer, Weigand ’21]

Scorr.
4d = S(0)

4d + ∑ D2-instantons

21
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Consequence for N=1 Theories

22

• Can break supersymmetry to N=1 e.g. through non-trivial fibration X4 : X3 → ℙ1

 classically  → ℳc.s.(X3) ⊂ ℳc.s.(X4)

• Expectation: corrections present in N=2 also correct N=1 theory 

Scorr.
4d = S(0)

4d + ∑ D2-instantons

B3 = B2 → ℙ1

𝒮D3|D=B2
= 𝒱D=B2

− f(zc.s.)∫D=B2

c1(B3)2

 asymptotic regimes in  also receive corrections at finite  due to corrections  

     to action of D3-brane instantons on   

→ ℳc.s.(X4) 𝒱B2

D = B2 ⊂ B3
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• Expectation: corrections present in N=2 also correct N=1 theory 

• Consequence: can never treat  as decoupled from Kähler sector  apart from at .  ℳc.s.(X4) → 𝒱B2
= ∞

 asymptotic regimes in  also receive corrections at finite  due to corrections  

     to action of D3-brane instantons on   

→ ℳc.s.(X4) 𝒱B2

D = B2 ⊂ B3

Scorr.
4d = S(0)

4d + ∑ D2-instantons

B3 = B2 → ℙ1

•  close to borders of . f(zc.s) → ∞ ℳc.s.(X4)
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= 𝒱D=B2

− f(zc.s.)∫D=B2

c1(B3)2
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Consequence for N=1 Theories
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Consequence for N=1 Theories

𝒱−1
B2

1

zc.s.

correctio
ns re

levant 

= ℳc.s.(X4)

 !!≠ ℳc.s.(X4)
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• Consequence: can never treat  as decoupled from Kähler sector  apart from at .  ℳc.s.(X4) → 𝒱B2
= ∞

Scorr.
4d = S(0)

4d + ∑ D2-instantons 𝒮D3|D=B2
= 𝒱D=B2

− f(zc.s.)∫D=B2

c1(B3)2

B3 = B2 → ℙ1

•  close to borders of . f(zc.s) → ∞ ℳc.s.(X4)

 asymptotic regimes in  also receive corrections at finite  due to corrections  

     to action of D3-brane instantons on   

→ ℳc.s.(X4) 𝒱B2

D = B2 ⊂ B3

22



 Max Wiesner                      Exploring the Interior of N=1 Field Spaces                        Ringberg Workshop                      03/18/2024

Conclusions

23

• Goal: Explore the interior of the N=1 field space  focus on genuine N=1 effects. →
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• N=2 intuition useful to explore regimes in the field space with local supersymmetry enhancement 
 even here global N=1 breaking effect are important!→
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Conclusions

• Goal: Explore the interior of the N=1 field space  focus on genuine N=1 effects. →

• Explicitly considered F-theory compactifications on four-folds 

- Hypermultiplet useful to describe local moduli space in small volume limit for  curves. 
    not the full story!! 

- genuine N=1 effects become large if curves intersected by anti-canonical divisor become small 
 N=2 breaking not diluted.  

- Mixing between complex structure and Kähler sector becomes important away from .   

- asymptotic regions in c.s. sector only describable through classical geometry in double-scaling limit 
    (where N=2 supersymmetry is restored…) 
     similar effects to N=2 hypermultiplet sector at finite string coupling … 

K̄ . C = 0
→

→

𝒱D = ∞

→

• N=2 intuition useful to explore regimes in the field space with local supersymmetry enhancement 
 even here global N=1 breaking effect are important!→
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Thank you!!


