Exploring the Interior of N=1 Field Spaces

Max Wiesner Harvard University

Work in progress + 2210.14238

Conference on Geometry, Strings and the Swampland — Ringberg Castle March 18, 2024

String Theory (and its compactifications) come with a number of **scalar fields** whose vacuum expectation values determine the **properties of the effective theory**

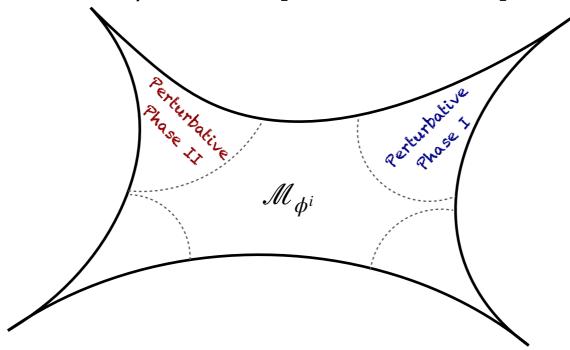
→ values of couplings, masses of states, value of the EFT cut-off ...

Families of EFTs from string theory parametrized by the values of the scalar fields

ightarrow scalar field space \mathcal{M}_{ϕ^i}

Structure of \mathcal{M}_{ϕ^i} gives information about general properties of the theory

 \rightarrow allowed values for ϕ^i , different perturbative descriptions, dualities



What do we know about the structure of \mathcal{M} ?

→ comes equipped with a metric which can be computed in a perturbative limit of the theory

(e.g. perturbative string theory regime)

perturbative Phase I

What do we know about the structure of \mathcal{M} ?

→ comes equipped with a metric which can be computed in a perturbative limit of the theory (e.g. perturbative string theory regime)

With enough supersymmetry, moduli space geometry exactly known!

→ metric can be evaluated at any point in moduli space.

With less supersymmetry can sometimes rely on non-renormalization theorems to describe moduli space away from perturbative limits:

What do we know about the structure of \mathcal{M} ?

→ comes equipped with a metric which can be computed in a perturbative limit of the theory (e.g. perturbative string theory regime)

With enough supersymmetry, moduli space geometry exactly known!

 \rightarrow metric can be evaluated at any point in moduli space.

With less supersymmetry can sometimes rely on non-renormalization theorems to describe moduli space away from perturbative limits:

Example 4d N=2: Moduli space factorizes into vector- and hypermultiplet sector and only one factor contains the string coupling \rightarrow tree-level exact.

Question: What about the more realistic cases in 4d with minimal (or no) supersymmetry?

Question: What about the more realistic cases in 4d with minimal (or no) supersymmetry?

Question: What about the more realistic cases in 4d with minimal (or no) supersymmetry?

Gather some intuition from 4d N=2 first — Specifically Type IIA Compactifications on CY 3-fold X_3

- Moduli space spanned by:
- Type II dilaton + axionic partner

- hypermultiplets
- Complex structure moduli of X_3 + axionic partners
- (complexified) Kähler moduli of X_3

Question: What about the more realistic cases in 4d with minimal (or no) supersymmetry?

Gather some intuition from 4d N=2 first — Specifically Type IIA Compactifications on CY 3-fold X_3

- Moduli space spanned by:
- Type II dilaton + axionic partner

hypermultiplets

- Complex structure moduli of X_3 + axionic partners
- (complexified) Kähler moduli of X_3

- N=2 supersymmetry ensures factorization $\mathcal{M} = \mathcal{M}_{HM} \times \mathcal{M}_{VM}$.
 - → vector multiplet moduli space is tree-level exact.
 - \rightarrow can trust the structure derived from string CFT
 - \leftrightarrow mirror symmetry to complex structure moduli of \tilde{X}_3

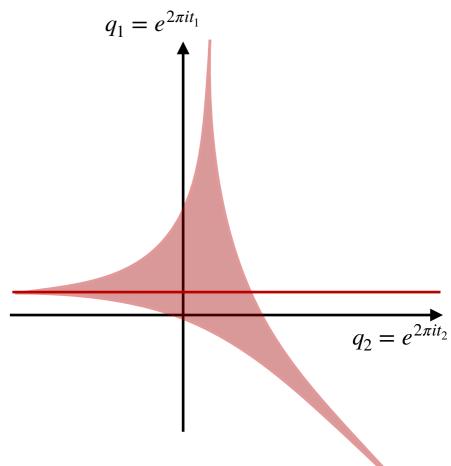
Question: What about the more realistic cases in 4d with minimal (or no) supersymmetry?

Gather some intuition from 4d N=2 first — Specifically Type IIA Compactifications on CY 3-fold X_3

- Moduli space spanned by:
- Type II dilaton + axionic partner

- hypermultiplets
- Complex structure moduli of X_3 + axionic partners
- (complexified) Kähler moduli of X_3

- N=2 supersymmetry ensures factorization $\mathcal{M} = \mathcal{M}_{\text{HM}} \times \mathcal{M}_{\text{VM}}$.
 - → vector multiplet moduli space is tree-level exact.
 - → can trust the structure derived from string CFT
 - \leftrightarrow mirror symmetry to complex structure moduli of \tilde{X}_3
- Thanks to factorization can describe small volume regime of $\mathcal{M}_{\mathrm{VM}}$
 - can infer singularity structure from mirror



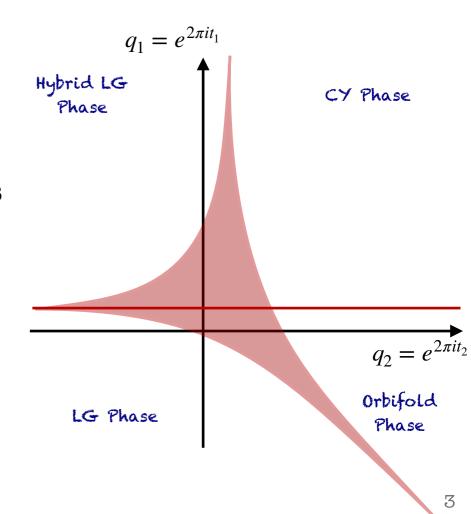
Question: What about the more realistic cases in 4d with minimal (or no) supersymmetry?

Gather some intuition from 4d N=2 first — Specifically Type IIA Compactifications on CY 3-fold X_3

- Moduli space spanned by:
- Type II dilaton + axionic partner

- hypermultiplets
- Complex structure moduli of X_3 + axionic partners
- (complexified) Kähler moduli of X_3

- N=2 supersymmetry ensures factorization $\mathcal{M} = \mathcal{M}_{\text{HM}} \times \mathcal{M}_{\text{VM}}$.
 - → vector multiplet moduli space is tree-level exact.
 - → can trust the structure derived from string CFT
 - \leftrightarrow mirror symmetry to complex structure moduli of \tilde{X}_3
- Thanks to factorization can describe small volume regime of $\mathcal{M}_{\mathrm{VM}}$
 - can infer singularity structure from mirror
 - at small volume get phases different from CY phase, e.g. orbifold phases, Landau-Ginzburg or hybrid phases.



Question: What remains of this in genuine N=1 theories?

Question: What remains of this in genuine N=1 theories?

- Take e.g. F-theory on elliptically fibered Calabi-Yau fourfold $X_4:T^2\to B_3$.
- Scalar field space spanned by [Grimm '10]
 - complex structure moduli of X_4
 - complexified volumes of divisors of B_3

$$T_i = \frac{1}{2} \int_{D_a} J \wedge J + i \int_{D_a} C_4$$

J: Kähler form on B_3

 D_a : Generators of $\mathrm{Eff}^{\vec{1}}(B_3)$

 C_4 : Type IIB RR four-form

Question: What remains of this in genuine N=1 theories?

- Take e.g. F-theory on elliptically fibered Calabi-Yau fourfold $X_4:T^2\to B_3$.
- Scalar field space spanned by [Grimm '10]
 - complex structure moduli of X_4
 - complexified volumes of divisors of B_3

$$T_i = \frac{1}{2} \int_{D_a} J \wedge J + i \int_{D_a} C_4$$

$$J: \text{ K\"{a}hler form on } B_3$$

$$D_a: \text{ Generators of Eff}^1(B_3)$$

$$C : \text{ True IIP PR four form}$$

 C_4 : Type IIB RR four-form

- In large volume regime ($\mathcal{V}_{B_3} \to \infty$): supersymmetry breaking effects are diluted $(... \mathcal{V}_{B_3}$ plays the role of 4d dilaton)
- $K = -\log \int_{Y_1} \Omega \wedge \bar{\Omega} \log \int_{R_2} J_{B_3}^3$ • In this limit the moduli space is described by

Question: What remains of this in genuine N=1 theories?

- Take e.g. F-theory on elliptically fibered Calabi-Yau fourfold $X_4:T^2\to B_3$.
- Scalar field space spanned by [Grimm '10]
 - complex structure moduli of X_4
 - complexified volumes of divisors of B_3

$$T_i = \frac{1}{2} \int_{D_a} J \wedge J + i \int_{D_a} C_4$$

$$J: \text{ K\"{a}hler form on } B_3$$

$$D_a: \text{ Generators of Eff}^1(B_3)$$

$$C : \text{ True IIP PR four form}$$

 C_4 : Type IIB RR four-form

- In large volume regime ($\mathcal{V}_{B_3} \to \infty$): supersymmetry breaking effects are diluted $(... \mathcal{V}_{B_3}$ plays the role of 4d dilaton)
- $K = -\log \int_{Y_{-}} \Omega \wedge \bar{\Omega} \log \int_{R_{2}} J_{B_{3}}^{3}$ • In this limit the moduli space is described by
- What happens away from the overall large volume limit? 1. small curve limit for <u>some</u> curves in B_3
 - 2. Mixing between c.s. and Kähler sector

Structure of Kähler field space

- Consider first small curve limits in B_3 .
- Naively might expect a similar pattern as in Type IIA → shrinking genus-0 curves also fall in three classes?

$$-\mathcal{N}_{C|B_3} = \mathcal{O}(-1) \oplus \mathcal{O}(-1)$$
 IIA on
$$\mathbf{CY3:}$$

$$-\mathcal{N}_{C|B_3} = \mathcal{O}(-2) \oplus \mathcal{O}(0)$$
 [Witten '96]
$$-\mathcal{N}_{C|B_3} = \mathcal{O}(-3) \oplus \mathcal{O}(1)$$

Structure of Kähler field space

- Consider first small curve limits in B_3 .
- Naively might expect a similar pattern as in Type IIA → shrinking genus-0 curves also fall in three classes?

$$-\mathcal{N}_{C|B_3} = \mathcal{O}(-1) \oplus \mathcal{O}(-1)$$
IIA on
$$\mathbf{CY3:}$$

$$-\mathcal{N}_{C|B_3} = \mathcal{O}(-2) \oplus \mathcal{O}(0)$$

$$-\mathcal{N}_{C|B_3} = \mathcal{O}(-3) \oplus \mathcal{O}(1)$$

only curve shrinks \rightarrow can trust classical geometry in Type IIA (flop transition)

Structure of Kähler field space

- Consider first small curve limits in B_3 .
- Naively might expect a similar pattern as in Type IIA → shrinking genus-0 curves also fall in three classes?

$$\begin{array}{c} - \mathcal{N}_{C|B_3} = \mathcal{O}(-1) \oplus \mathcal{O}(-1) \\ \hline \text{IIA on} \\ \text{CY3:} \\ \hline \text{[Witten '96]} \\ - \mathcal{N}_{C|B_3} = \mathcal{O}(-2) \oplus \mathcal{O}(0) \\ \hline \\ - \mathcal{N}_{C|B_3} = \mathcal{O}(-3) \oplus \mathcal{O}(1) \\ \hline \end{array}$$

only curve shrinks \rightarrow can trust classical geometry in Type IIA (flop transition)

- What happens in the small volume limit for such curves inside the base B_3 of F-theory?
- From Type IIA perspective: expect a conifold singularity $\Delta_C=0$ at $\operatorname{vol}(C)=0$.
- Curve has $\bar{K} \cdot C = 0$ such that locally (for small C) see enhanced supersymmetry.
 - \rightarrow can we use this to our benefit?

- ullet Consider F-theory on elliptically fibered Calabi-Yau threefold $\pi: X_3 o B_2$.
- Analogue of flop curve in 4d is (-2)-curve satisfying $\bar{K}_{B_2} \cdot C = 0$.

- ullet Consider F-theory on elliptically fibered Calabi-Yau threefold $\pi: X_3 o B_2$.
- Analogue of flop curve in 4d is (-2)-curve satisfying $\bar{K}_{B_2} \cdot C = 0$.
- Example: base \mathbb{P}^1_b of $\mathbb{F}_2 \to \mathrm{D3}$ -brane on \mathbb{P}^1_b gives M-string see [Morrison, Vafa '96]
- M-string sees locally enhanced N=(2,0) supersymmetry \rightarrow small C limit can be identified with geometry of A_1 singularity in K3.

To gain intuition consider analogue situation in 6d N=(1,0) compactifications of F-theory

- ullet Consider F-theory on elliptically fibered Calabi-Yau threefold $\pi: X_3 o B_2$.
- Analogue of flop curve in 4d is (-2)-curve satisfying $\bar{K}_{B_2} \cdot C = 0$.
- Example: base \mathbb{P}^1_b of $\mathbb{F}_2 \to \mathrm{D3}$ -brane on \mathbb{P}^1_b gives M-string see [Morrison, Vafa '96]
- M-string sees locally enhanced N=(2,0) supersymmetry \rightarrow small C limit can be identified with geometry of A_1 singularity in K3.
- Enhanced SUSY manifests itself in $X_3^{(2)}=T^2\to \mathbb{F}_2$ having additional (non-polynomial) deformations

$$F_2 \subset \mathbb{P}^3$$
: $\zeta \eta + \xi^2 = 0 \rightarrow \zeta \eta + \xi^2 = \epsilon \tau^2$

• For $\epsilon \neq 0$ obtain $X_3^{(0)}: T^2 \to \mathbb{F}_0$ and additional complex structure deformations associated to ϵ give four scalar fields that pair up with Kähler modulus to give 5 scalar fields in N=(2,0) matter multiplet.

- ullet Consider F-theory on elliptically fibered Calabi-Yau threefold $\pi: X_3 o B_2$.
- Analogue of flop curve in 4d is (-2)-curve satisfying $\bar{K}_{B_2} \cdot C = 0$.
- Example: base \mathbb{P}^1_b of $\mathbb{F}_2 \to \mathrm{D3}$ -brane on \mathbb{P}^1_b gives M-string see [Morrison, Vafa '96]
- M-string sees locally enhanced N=(2,0) supersymmetry \rightarrow small C limit can be identified with geometry of A_1 singularity in K3.
- Enhanced SUSY manifests itself in $X_3^{(2)}=T^2\to \mathbb{F}_2$ having additional (non-polynomial) deformations

$$F_2 \subset \mathbb{P}^3$$
: $\zeta \eta + \xi^2 = 0 \rightarrow \zeta \eta + \xi^2 = \epsilon \tau^2$

- For $\epsilon \neq 0$ obtain $X_3^{(0)}: T^2 \to \mathbb{F}_0$ and additional complex structure deformations associated to ϵ give four scalar fields that pair up with Kähler modulus to give 5 scalar fields in N=(2,0) matter multiplet.
- Use deformations to 'move around' singularity, upon turning $\epsilon=0 \to \epsilon \neq 0$

$$D3 \mid_{\mathbb{P}_b^1 \subset \mathbb{F}_2} \longrightarrow D3 \mid_{\mathbb{P}_A^1 \subset \mathbb{F}_0} - D3 \mid_{\mathbb{P}_B^1 \subset \mathbb{F}_0}$$

- ullet Consider F-theory on elliptically fibered Calabi-Yau threefold $\pi: X_3 o B_2$.
- Analogue of flop curve in 4d is (-2)-curve satisfying $\bar{K}_{B_2} \cdot C = 0$.
- Example: base \mathbb{P}^1_b of $\mathbb{F}_2 \to \mathrm{D3}$ -brane on \mathbb{P}^1_b gives M-string see [Morrison, Vafa '96]
- M-string sees locally enhanced N=(2,0) supersymmetry \rightarrow small C limit can be identified with geometry of A_1 singularity in K3.
- Enhanced SUSY manifests itself in $X_3^{(2)}=T^2 \to \mathbb{F}_2$ having additional (non-polynomial) deformations

$$F_2 \subset \mathbb{P}^3$$
: $\zeta \eta + \xi^2 = 0 \rightarrow \zeta \eta + \xi^2 = \epsilon \tau^2$

- For $\epsilon \neq 0$ obtain $X_3^{(0)}: T^2 \to \mathbb{F}_0$ and additional complex structure deformations associated to ϵ give four scalar fields that pair up with Kähler modulus to give 5 scalar fields in N=(2,0) matter multiplet.
- Use deformations to 'move around' singularity, upon turning $\epsilon=0 \to \epsilon \neq 0$

$$D3 \mid_{\mathbb{P}^1_b \subset \mathbb{F}_2} \longrightarrow D3 \mid_{\mathbb{P}^1_A \subset \mathbb{F}_0} - D3 \mid_{\mathbb{P}^1_B \subset \mathbb{F}_0}$$

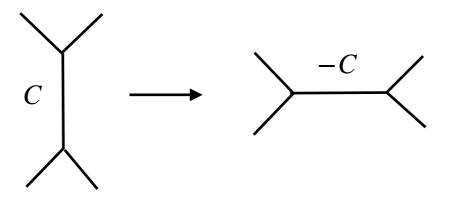
'N=2 string'
$$\rightarrow$$
 'N=1 string' 'N=1 string'

What happens now in 4d N=1?

• Since $\bar{K}_{B_3} \cdot C = 0$ for flop curve, this curve can be viewed as analogue of 6d case just reviewed.

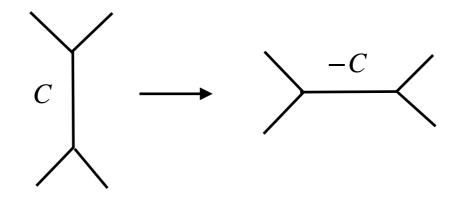
What happens now in 4d N=1?

- Since $\bar{K}_{B_3} \cdot C = 0$ for flop curve, this curve can be viewed as analogue of 6d case just reviewed.
- Consider local geometry:



What happens now in 4d N=1?

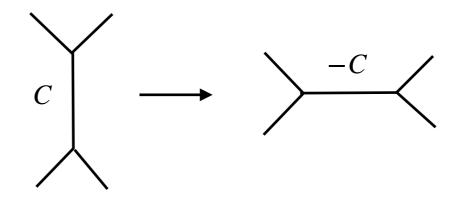
- Since $\bar{K}_{B_3} \cdot C = 0$ for flop curve, this curve can be viewed as analogue of 6d case just reviewed.
- Consider local geometry:



- In small volume limit for C should encounter locally enhanced supersymmetry; string obtained as $D3_C$ has enhanced supersymmetry.
- Locally looks like Type IIB on Calabi-Yau threefold → small volume limit should be locally describable as Type IIB hypermultiplet moduli space.

What happens now in 4d N=1?

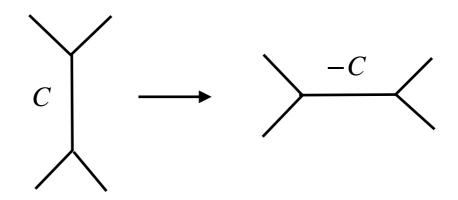
- Since $\bar{K}_{B_3} \cdot C = 0$ for flop curve, this curve can be viewed as analogue of 6d case just reviewed.
- Consider local geometry:



- In small volume limit for C should encounter locally enhanced supersymmetry; string obtained as $D3_C$ has enhanced supersymmetry.
- Locally looks like Type IIB on Calabi-Yau threefold → small volume limit should be locally describable as Type IIB hypermultiplet moduli space.
- Classically: locus vol(C) = 0 is a singular (conifold singularity) **BUT:** hypermultiplet moduli space cannot have conifold singularities!

What happens now in 4d N=1?

- Since $\bar{K}_{B_3} \cdot C = 0$ for flop curve, this curve can be viewed as analogue of 6d case just reviewed.
- Consider local geometry:



- In small volume limit for C should encounter locally enhanced supersymmetry; string obtained as $D3_C$ has enhanced supersymmetry.
- Locally looks like Type IIB on Calabi-Yau threefold → small volume limit should be locally describable as Type IIB hypermultiplet moduli space.
- Classically: locus vol(C) = 0 is a singular (conifold singularity) **BUT:** hypermultiplet moduli space cannot have conifold singularities!
 - → hypermultiplet moduli space has constant curvature.
 - \rightarrow conifold singularity resolved at quantum level.

[Ooguri, Vafa '96]

- What are the scalar fields making up the N=2 hypermultiplet associated to C?
 - \rightarrow N=1 effective theory only gives two scalar fields

$$t_C = \int_C J$$
 $\xi^C = \left(\int_C C_4\right)^{\vee}$ (Periods of C_2 and B_2 over C are fixed to 0)

- What are the scalar fields making up the N=2 hypermultiplet associated to C?
 - \rightarrow N=1 effective theory only gives two scalar fields

$$t_C = \int_C J$$
 $\xi^C = \left(\int_C C_4\right)^{\vee}$ (Periods of C_2 and B_2 over C are fixed to 0)

• Need two additional scalar fields to complete the N=2 hypermultiplet

(Analogue of non-polynomial deformations in 6d case giving $X_3^{(2)} o X_3^{(0)}$)

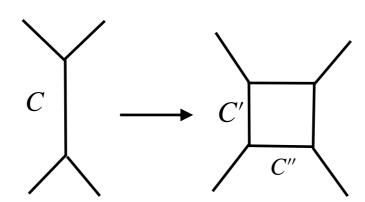
- What are the scalar fields making up the N=2 hypermultiplet associated to C?
 - \rightarrow N=1 effective theory only gives two scalar fields

$$t_C = \int_C J$$
 $\xi^C = \left(\int_C C_4\right)^{\vee}$ (Periods of C_2 and B_2 over C are fixed to 0)

• Need two additional scalar fields to complete the N=2 hypermultiplet

(Analogue of non-polynomial deformations in 6d case giving $X_3^{(2)} o X_3^{(0)}$)

• Consider factorization of flop:



• Get a new fourfold \hat{X}_4 such that $\delta h^{1,1}=h^{1,1}(\hat{X}_4)-h^{1,1}(X_4)=1$ and volumes of curves are identified as $t_C=t_{C'}-t_{C''}$

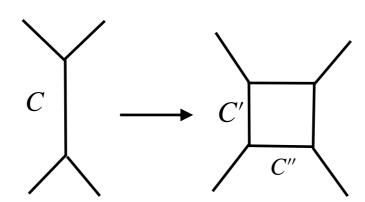
- What are the scalar fields making up the N=2 hypermultiplet associated to C?
 - \rightarrow N=1 effective theory only gives two scalar fields

$$t_C = \int_C J$$
 $\xi^C = \left(\int_C C_4\right)^{\vee}$ (Periods of C_2 and B_2 over C are fixed to 0)

• Need two additional scalar fields to complete the N=2 hypermultiplet

(Analogue of non-polynomial deformations in 6d case giving $X_3^{(2)} o X_3^{(0)}$)

• Consider factorization of flop:



• Get a new fourfold \hat{X}_4 such that $\delta h^{1,1}=h^{1,1}(\hat{X}_4)-h^{1,1}(X_4)=1$ and volumes of curves are identified as $t_C=t_{C'}-t_{C''}$

$$D3|_{C} \longrightarrow D3|_{C'} - D3|_{C''}$$

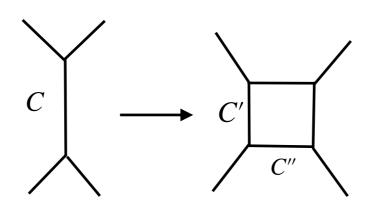
- What are the scalar fields making up the N=2 hypermultiplet associated to C?
 - \rightarrow N=1 effective theory only gives two scalar fields

$$t_C = \int_C J$$
 $\xi^C = \left(\int_C C_4\right)^{\vee}$ (Periods of C_2 and B_2 over C are fixed to 0)

• Need two additional scalar fields to complete the N=2 hypermultiplet

(Analogue of non-polynomial deformations in 6d case giving $X_3^{(2)} o X_3^{(0)}$)

• Consider factorization of flop:



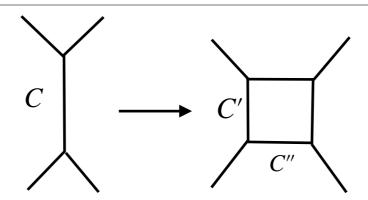
• Get a new fourfold \hat{X}_4 such that $\delta h^{1,1}=h^{1,1}(\hat{X}_4)-h^{1,1}(X_4)=1$ and volumes of curves are identified as $t_C=t_{C'}-t_{C''}$

$$D3|_{C} \longrightarrow D3|_{C'} - D3|_{C''}$$
 (analogue of splitting in 6d)

'N=2 string' \rightarrow 'N=1 string' 'N=1 string'

03/18/2024

• Consider factorization of flop:

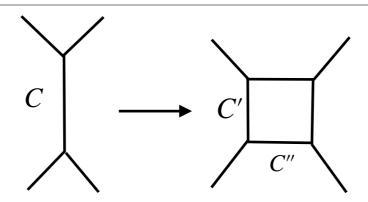


• Get a new fourfold \hat{X}_4 such that $\delta h^{1,1}=h^{1,1}(\hat{X}_4)-h^{1,1}(X_4)=1$ and volumes of curves are identified as $t_C=t_{C'}-t_{C''}$

$$D3 \mid_C \longrightarrow D3 \mid_{C'} - D3 \mid_{C''}$$

'N=2 string'
$$\rightarrow$$
 'N=1 string' 'N=1 string'

• Consider factorization of flop:



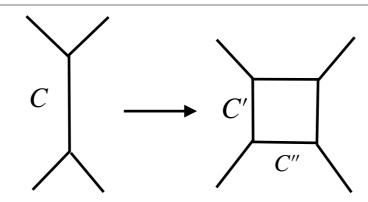
• Get a new fourfold \hat{X}_4 such that $\delta h^{1,1}=h^{1,1}(\hat{X}_4)-h^{1,1}(X_4)=1$ and volumes of curves are identified as $t_C=t_{C'}-t_{C''}$

$$D3 \mid_{C} \longrightarrow D3 \mid_{C'} - D3 \mid_{C''}$$
'N=2 string' \longrightarrow 'N=1 string' 'N=1 string'

• Theory on X_4 should be realized on sublocus in deformation space of \hat{X}_4

$$\implies \delta \chi = \chi(\hat{X}_4) - \chi(X_4) = 6(\delta h^{1,1} + \delta h^{3,1} - \delta h^{2,1}) = 0$$

• Consider factorization of flop:



• Get a new fourfold \hat{X}_4 such that $\delta h^{1,1}=h^{1,1}(\hat{X}_4)-h^{1,1}(X_4)=1$ and volumes of curves are identified as $t_C=t_{C'}-t_{C''}$

$$D3 \mid_{C} \longrightarrow D3 \mid_{C'} - D3 \mid_{C''}$$
'N=2 string' \longrightarrow 'N=1 string' 'N=1 string'

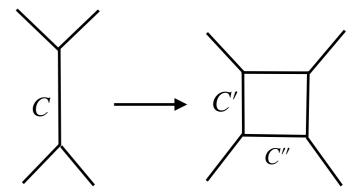
• Theory on X_4 should be realized on sublocus in deformation space of \hat{X}_4

$$\implies \delta \chi = \chi(\hat{X}_4) - \chi(X_4) = 6(\delta h^{1,1} + \delta h^{3,1} - \delta h^{2,1}) = 0$$

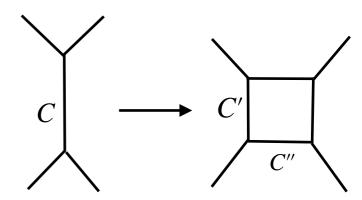
- This suggests $\delta h^{2,1} = \delta h^{1,1} = 1 \to \text{from Type IIB perspective } h^{2,1}(\hat{X}_4)$ associated to periods of C_2 and B_2 . [(Greiner), Grimm '14-'17]
 - \rightarrow these are the deformations that complete the would-be N=2 hypermultiplet.

- Theory on X_4 should be realized on sublocus in deformation space of \hat{X}_4 .
 - \rightarrow at large $t=\int_C J$ turning on deformations associated to $\delta h^{2,1}$ brings us from X_4 to \hat{X}_4
 - $\to \mathcal{M}_{X_4} \subset \mathcal{M}_{\hat{X}_4}$ should generically not be a singular locus.

- Theory on X_4 should be realized on sublocus in deformation space of \hat{X}_4 .
 - \rightarrow at large $t = \int_C J$ turning on deformations associated to $\delta h^{2,1}$ brings us from X_4 to \hat{X}_4
 - $\to \mathcal{M}_{X_4} \subset \mathcal{M}_{\hat{X}_4}$ should generically not be a singular locus.
 - \rightarrow both strings $D3\mid_{C'}$ and $D3\mid_{C''}$ should have finite tension.



- Theory on X_4 should be realized on sublocus in deformation space of \hat{X}_4 .
 - \rightarrow at large $t = \int_C J$ turning on deformations associated to $\delta h^{2,1}$ brings us from X_4 to \hat{X}_4
 - $\to \mathcal{M}_{X_4} \subset \mathcal{M}_{\hat{X}_4}$ should generically not be a singular locus.
 - \rightarrow both strings $D3\mid_{C'}$ and $D3\mid_{C''}$ should have finite tension.

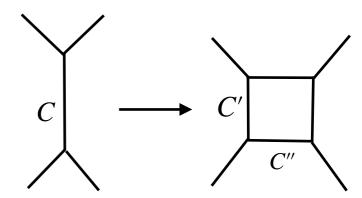


• Expectation: $\mathcal{M}_{X_4} \subset \mathcal{M}_{\hat{X}_4}$ embedded for $T(D3|_{C''}) = t' = \frac{1}{2}$

(Minimal classical tension for D3-brane on C')

• Classical flop boundary at $T_{D3|C} = T_{D3|C'} - T_{D3|C''} = 0$.

- Theory on X_4 should be realized on sublocus in deformation space of \hat{X}_4 .
 - \rightarrow at large $t = \int_C J$ turning on deformations associated to $\delta h^{2,1}$ brings us from X_4 to \hat{X}_4
 - $\to \mathcal{M}_{X_4} \subset \mathcal{M}_{\hat{X}_4}$ should generically not be a singular locus.
 - \rightarrow both strings $D3\mid_{C'}$ and $D3\mid_{C''}$ should have finite tension.

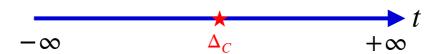


• Expectation: $\mathcal{M}_{X_4} \subset \mathcal{M}_{\hat{X}_4}$ embedded for $T(D3|_{C''}) = t' = \frac{1}{2}$

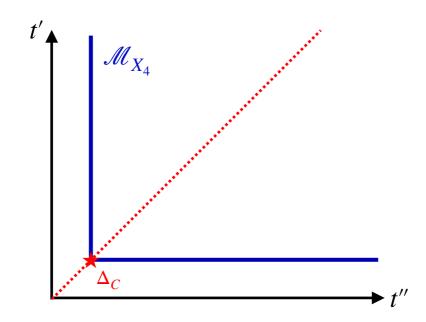
(Minimal classical tension for D3-brane on C')

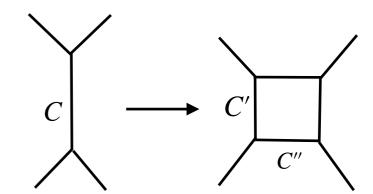
- Classical flop boundary at $T_{D3|C} = T_{D3|C'} T_{D3|C''} = 0$.
- $\mathcal{M}_{\hat{X}_4}$ locally described by N=2 hypermultiplet moduli space o no singularity
 - \rightarrow tension $T_{D3|C}$ finite at the quantum level.

• Classical field space \mathcal{M}_{X_4} :

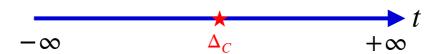


• Translates to field space $\mathcal{M}_{\hat{X}_4}$:

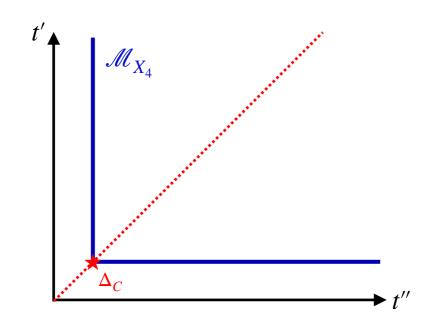


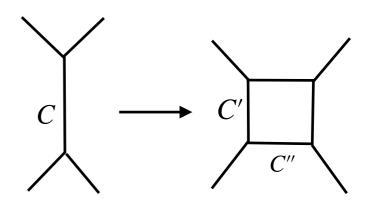


• Classical field space \mathcal{M}_{X_4} :



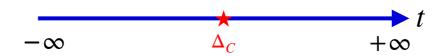
ullet Translates to field space $\mathcal{M}_{\hat{X}_4}$:



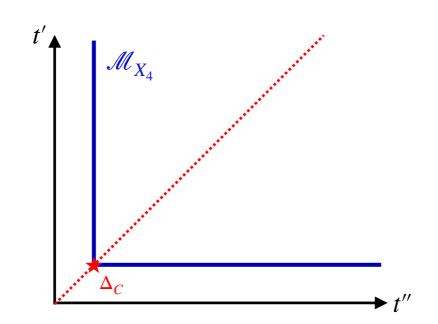


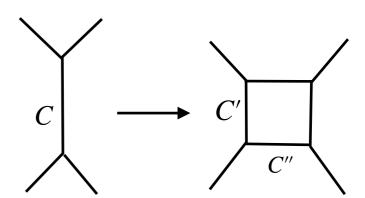
- Local hypermultiplet moduli space geometry tells us that Δ_C does not exist beyond classical level.
- Still, even though supersymmetry is enhanced *locally* it is still broken to N=1 *globally*.

• Classical field space \mathcal{M}_{X_4} :



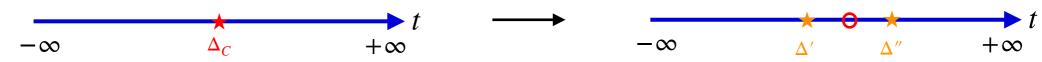
ullet Translates to field space $\mathcal{M}_{\hat{X}_4}$:



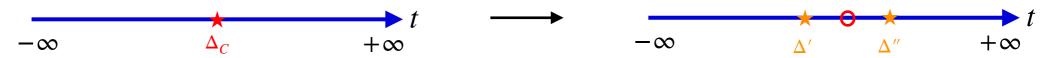


- Local hypermultiplet moduli space geometry tells us that Δ_C does not exist beyond classical level.
- Still, even though supersymmetry is enhanced *locally* it is still broken to N=1 *globally*.
 - \rightarrow complex moduli space (instead of quaternionic) and still expect $dim_{\mathbb{C}}=1$ singularities

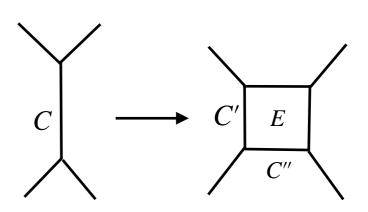
• From perspective of \hat{X}_4 singularities Δ' and Δ'' associated to shrinking exceptional divisor E



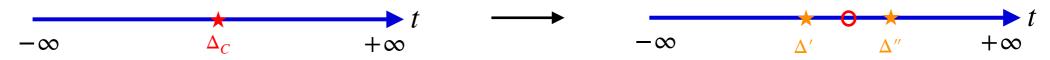
• From perspective of \hat{X}_4 singularities Δ' and Δ'' associated to shrinking exceptional divisor E



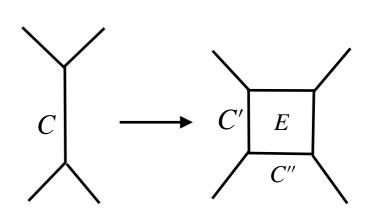
• Inside $\mathcal{M}_{\hat{X}_4}$: t' \mathcal{M}_{X_4}



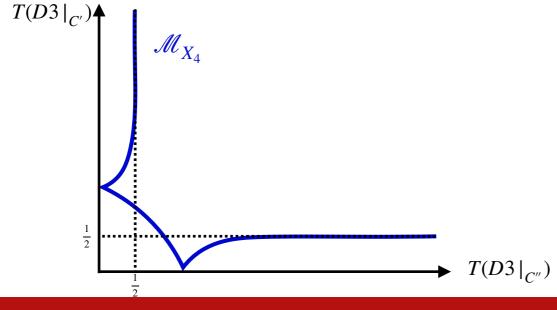
• From perspective of \hat{X}_4 singularities Δ' and Δ'' associated to shrinking exceptional divisor E



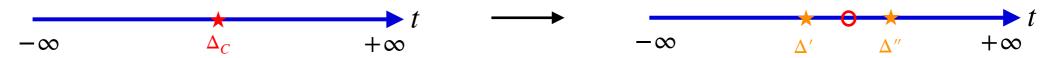
• Inside $\mathcal{M}_{\hat{X}_4}$: t' \mathcal{M}_{X_4}



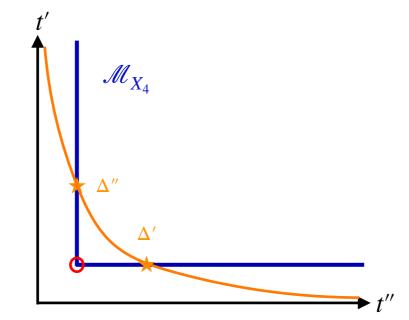
• Possible reason for singularity Δ'' (Δ'): N=1 strings $D3\mid_{C''}$ ($D3\mid_{C'}$) becomes tensionless

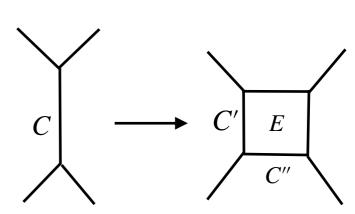


• From perspective of \hat{X}_4 singularities Δ' and Δ'' associated to shrinking exceptional divisor E

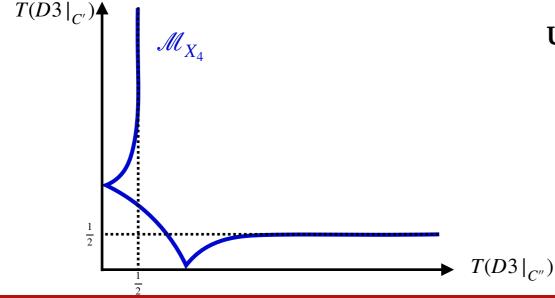


• Inside $\mathcal{M}_{\hat{X}_4}$:





• Possible reason for singularity Δ'' (Δ'): N=1 strings $D3\mid_{C''}$ ($D3\mid_{C'}$) becomes tensionless



Upshot:

- 1. Small volume limit already for N=2 curves quite interesting.
- 2. Singularity structure different from naive Type IIA vector multiplet moduli space

- So far: only considered very simple case of curves of "Type F"
- Should also consider small volume limit for other type of curves and can differentiate

$$\bar{K}(B_3) \cdot C < 0$$

$$\bar{K}(B_3) \cdot C = 0$$

$$\bar{K}(B_3) \cdot C > 0$$

Type F (flop curves)

- or -

Type M with normal

bundle $\mathcal{O}(-2) \oplus \mathcal{O}$

- So far: only considered very simple case of curves of "Type F"
- Should also consider small volume limit for other type of curves and can differentiate

$$\bar{K}(B_3) \cdot C < 0$$

$$\bar{K}(B_3) \cdot C = 0$$

$$\bar{K}(B_3) \cdot C > 0$$

Type F (flop curves)

- or -

Type M with normal

bundle $\mathcal{O}(-2) \oplus \mathcal{O}$

- Shrinking Type M curve → divisor shrinks to curve
- Supersymmetry even further enhanced compared to Type F string (analogue of curve on (-2)-curve in 6d)
- Can shrink the curve without encountering any quantum correction.

- So far: only considered very simple case of curves of "Type F"
- Should also consider small volume limit for other type of curves and can differentiate

$$\bar{K}(B_3) \cdot C < 0$$

$$\bar{K}(B_3) \cdot C = 0$$

$$\bar{K}(B_3) \cdot C > 0$$

Main example: flip

curves in the base B_3

[Denef, Douglas, Florea, Grassi, Kachru '05]

- So far: only considered very simple case of curves of "Type F"
- Should also consider small volume limit for other type of curves and can differentiate

$$\bar{K}(B_3) \cdot C < 0 \qquad \qquad \bar{K}(B_3) \cdot C = 0 \qquad \qquad \bar{K}(B_3) \cdot C > 0$$

Main example: flip curves in the base B_3

[Denef, Douglas, Florea, Grassi, Kachru '05]

- Similar in spirit to Type F curves but involves going through an orbifold singularity.
- No additional supersymmetry preserving deformations.
- **But:** Splitting of string $D3_C$ can be described in the same spirit as splitting of N=2 string though qualitatively different.

- So far: only considered very simple case of curves of "Type F"
- Should also consider small volume limit for other type of curves and can differentiate

 $\bar{K}(B_3) \cdot C = 0$

$$C \longrightarrow C' E$$

 $\bar{K}(B_3) \cdot C < 0$

$$\bar{K}(B_3) \cdot C > 0$$

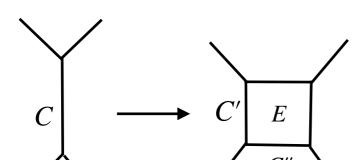
Example: curves C' and C'' encountered previously.

- So far: only considered very simple case of curves of "Type F"
- Should also consider small volume limit for other type of curves and can differentiate

$$\bar{K}(B_3) \cdot C < 0$$

$$\bar{K}(B_3) \cdot C = 0$$

$$\bar{K}(B_3) \cdot C > 0$$



Example: curves C' and C'' encountered previously.

• Possibilities genus 0 curve with $\bar{K} \cdot C = 1$

$$\mathcal{N}_{C|B_3} = \mathcal{O}(-1) \oplus \mathcal{O}(0)$$

divisor shrinks to curve

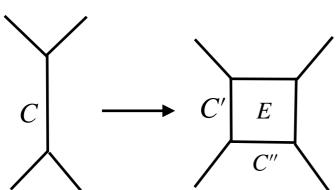
$$\mathcal{N}_{C|B_3} = \mathcal{O}(-2) \oplus \mathcal{O}(1)$$

- So far: only considered very simple case of curves of "Type F"
- Should also consider small volume limit for other type of curves and can differentiate

$$\bar{K}(B_3) \cdot C < 0$$

$$\bar{K}(B_3) \cdot C = 0$$

$$\bar{K}(B_3) \cdot C > 0$$



Example: curves C' and C'' encountered previously.

• Possibilities genus 0 curve with $\bar{K} \cdot C = 1$

$$\mathcal{N}_{C|B_3} = \mathcal{O}(-1) \oplus \mathcal{O}(0)$$

divisor shrinks to curve

$$\mathcal{N}_{C|B_3} = \mathcal{O}(-2) \oplus \mathcal{O}(1)$$

- Take first case: Can the geometric description still be trusted?
 - \rightarrow look at corrections to effective action

Focus on curves with \bar{K} . C > 0:

• Possibilities genus 0 curve with \bar{K} . C = 1

$$\mathcal{N}_{C|B_3} = \mathcal{O}(-1) \oplus \mathcal{O}(0)$$

divisor shrinks to curve

$$\mathcal{N}_{C|B_3} = \mathcal{O}(-2) \oplus \mathcal{O}(1)$$

- Take first case: Can the geometric description still be trusted?
 - → look at corrections to effective action

Focus on curves with \bar{K} . C > 0:

• Possibilities genus 0 curve with $\bar{K} \cdot C = 1$

$$\mathcal{N}_{C|B_3} = \mathcal{O}(-1) \oplus \mathcal{O}(0)$$

divisor shrinks to curve

$$\mathcal{N}_{C|B_3} = \mathcal{O}(-2) \oplus \mathcal{O}(1)$$

- Take first case: Can the geometric description still be trusted?
 - → look at corrections to effective action
- For a curve with normal bundle $\mathcal{N}_{C|B_3} = \mathcal{O}(-1) \oplus \mathcal{O}(0)$ there needs to exist a divisor $D \subset B_3$ such that

$$\mathscr{V}_D = t_C \left(t_{\tilde{C}} + \dots \right) \qquad t_C := \mathscr{V}_C$$

$$t_C := \mathcal{V}_C$$

Focus on curves with \bar{K} . C > 0:

• Possibilities genus 0 curve with $\bar{K} \cdot C = 1$

$$\mathcal{N}_{C|B_3} = \mathcal{O}(-1) \oplus \mathcal{O}(0)$$

divisor shrinks to curve

$$\mathcal{N}_{C|B_3} = \mathcal{O}(-2) \oplus \mathcal{O}(1)$$

divisor shrinks to point

- Take first case: Can the geometric description still be trusted?
 - → look at corrections to effective action
- For a curve with normal bundle $\mathcal{N}_{C|B_3}=\mathcal{O}(-1)\oplus\mathcal{O}(0)$ there needs to exist a divisor $D\subset B_3$ such that

$$\mathscr{V}_D = t_C \left(t_{\tilde{C}} + \dots \right) \qquad t_C := \mathscr{V}_C$$

• \mathcal{V}_D receives corrections at $\mathcal{O}(\alpha^2)$: [Grimm, Keitel, Mayer, Pugh, Savelli, Weissenbacher '13-'19]

$$\mathcal{V}_D^{\text{corr.}} = \mathcal{V}_D \left[1 + \alpha^2 \left((\kappa_3 + \kappa_5) \frac{\mathcal{Z}}{\mathcal{V}_{B_3}} \right) \right] + \alpha^2 \left(\tilde{\mathcal{Z}}_i \log \mathcal{V}_{B_3}^{(0)} + \kappa_7 \mathcal{Z}_D \right) . \qquad \qquad \mathcal{Z}_D = \int_{X_4} c_3(X_4) \wedge \pi^*(D) dx$$

Focus on curves with \bar{K} . C > 0:

• Possibilities genus 0 curve with \bar{K} . C = 1

$$\mathcal{N}_{C|B_3} = \mathcal{O}(-1) \oplus \mathcal{O}(0)$$

divisor shrinks to curve

$$\mathcal{N}_{C|B_3} = \mathcal{O}(-2) \oplus \mathcal{O}(1)$$

divisor shrinks to point

- Take first case: Can the geometric description still be trusted?
 → look at corrections to effective action
- For a curve with normal bundle $\mathcal{N}_{C|B_3}=\mathcal{O}(-1)\oplus\mathcal{O}(0)$ there needs to exist a divisor $D\subset B_3$ such that

$$\mathscr{V}_D = t_C \left(t_{\tilde{C}} + \dots \right) \qquad t_C := \mathscr{V}_C$$

• \mathcal{V}_D receives corrections at $\mathcal{O}(\alpha^2)$: [Grimm, Keitel, Mayer, Pugh, Savelli, Weissenbacher '13-'19]

$$\mathcal{V}_D^{\text{corr.}} = \mathcal{V}_D \left[1 + \alpha^2 \left((\kappa_3 + \kappa_5) \frac{\mathcal{Z}}{\mathcal{V}_{B_3}} \right) \right] + \alpha^2 \left(\tilde{\mathcal{Z}}_i \log \mathcal{V}_{B_3}^{(0)} + \kappa_7 \mathcal{Z}_D \right). \qquad \mathcal{Z}_D = \int_{X_4} c_3(X_4) \wedge \pi^*(D)$$

$$\text{Suppressed at sufficiently large } \mathcal{V}_{B_3}$$
 Relevant correction

• \mathcal{V}_D receives corrections at $\mathcal{O}(\alpha'^2)$: [Grimm, Keitel, Mayer, Pugh, Savelli, Weissenbacher '13-'19]

$$\mathcal{V}_D^{\text{corr.}} = \mathcal{V}_D \left[1 + \alpha^2 \left((\kappa_3 + \kappa_5) \frac{\mathcal{Z}}{\mathcal{V}_{B_3}} \right) \right] + \alpha^2 \left(\tilde{\mathcal{Z}}_i \log \mathcal{V}_{B_3}^{(0)} + \kappa_7 \mathcal{Z}_D \right). \qquad \mathcal{Z}_D = \int_{X_4} c_3(X_4) \wedge \pi^*(D) dt$$

$$\text{for } t_C \to 0 \qquad \text{Suppressed at sufficiently large } \mathcal{V}_{B_3}$$
Relevant correction

• Does \mathcal{Z}_D vanish for curve with $\bar{K} \cdot C = 1$?

• \mathcal{V}_D receives corrections at $\mathcal{O}(\alpha^2)$: [Grimm, Keitel, Mayer, Pugh, Savelli, Weissenbacher '13-'19]

$$\mathcal{V}_D^{\text{corr.}} = \mathcal{V}_D \left[1 + \alpha^2 \left((\kappa_3 + \kappa_5) \frac{\mathcal{Z}}{\mathcal{V}_{B_3}} \right) \right] + \alpha^2 \left(\tilde{\mathcal{Z}}_i \log \mathcal{V}_{B_3}^{(0)} + \kappa_7 \mathcal{Z}_D \right). \qquad \mathcal{Z}_D = \int_{X_4} c_3(X_4) \wedge \pi^*(D) \int_{\mathbb{Z}_2} \mathcal{V}_D ds ds = 0 \quad \text{Suppressed at sufficiently large } \mathcal{V}_{B_3}$$

- Does \mathcal{Z}_D vanish for curve with $\bar{K} \cdot C = 1$?
- Consider smooth Weierstrass model over $B_3: \mathbb{P}^1 \to B_2$ and curve $C \subset B_2$, then

$$\mathcal{Z}_D = c_3(X_4) \cdot_{X_4} \pi^*(D) = c_1(B_3)^2 \cdot_{B_3} D = \dots = 4 c_1(B_3) \cdot_{B_3} C$$

• \mathcal{V}_D receives corrections at $\mathcal{O}(\alpha'^2)$: [Grimm, Keitel, Mayer, Pugh, Savelli, Weissenbacher '13-'19]

$$\mathcal{V}_D^{\text{corr.}} = \mathcal{V}_D \left[1 + \alpha^2 \left((\kappa_3 + \kappa_5) \frac{\mathcal{Z}}{\mathcal{V}_{B_3}} \right) \right] + \alpha^2 \left(\tilde{\mathcal{Z}}_i \log \mathcal{V}_{B_3}^{(0)} + \kappa_7 \mathcal{Z}_D \right). \qquad \mathcal{Z}_D = \int_{X_4} c_3(X_4) \wedge \pi^*(D)$$

$$\text{for } t_C \to 0 \qquad \text{Suppressed at sufficiently large } \mathcal{V}_{B_3}$$
Relevant correction

- Does \mathcal{Z}_D vanish for curve with $\bar{K} \cdot C = 1$?
- Consider smooth Weierstrass model over $B_3: \mathbb{P}^1 \to B_2$ and curve $C \subset B_2$, then

$$\mathcal{Z}_D = c_3(X_4) \cdot_{X_4} \pi^*(D) = c_1(B_3)^2 \cdot_{B_3} D = \dots = 4 c_1(B_3) \cdot_{B_3} C$$

• For curve with $\bar{K} \cdot_{B_3} C \neq 0$ dominates \to cannot trust the classical field space geometry for $\mathcal{V}_C \to 0$!

• \mathcal{V}_D receives corrections at $\mathcal{O}(\alpha'^2)$: [Grimm, Keitel, Mayer, Pugh, Savelli, Weissenbacher '13-'19]

$$\mathcal{V}_D^{\text{corr.}} = \mathcal{V}_D \left[1 + \alpha^2 \left((\kappa_3 + \kappa_5) \frac{\mathcal{Z}}{\mathcal{V}_{B_3}} \right) \right] + \alpha^2 \left(\tilde{\mathcal{Z}}_i \log \mathcal{V}_{B_3}^{(0)} + \kappa_7 \mathcal{Z}_D \right). \qquad \mathcal{Z}_D = \int_{X_4} c_3(X_4) \wedge \pi^*(D)$$

$$\text{for } t_C \to 0 \qquad \text{Suppressed at sufficiently large } \mathcal{V}_{B_3}$$
Relevant correction

- Does \mathcal{Z}_D vanish for curve with $\bar{K} \cdot C = 1$?
- Consider smooth Weierstrass model over $B_3: \mathbb{P}^1 \to B_2$ and curve $C \subset B_2$, then

$$\mathcal{Z}_D = c_3(X_4) \cdot_{X_4} \pi^*(D) = c_1(B_3)^2 \cdot_{B_3} D = \dots = 4 c_1(B_3) \cdot_{B_3} C$$

- For curve with $\bar{K} \cdot_{B_3} C \neq 0$ dominates \to cannot trust the classical field space geometry for $\mathcal{V}_C \to 0$!
- Consistency check: for curve with $\mathcal{N} = \mathcal{O}(-2) \oplus \mathcal{O}(0)$ correction vanish and we can still trust the geometric picture. "Type M string"

Consider now $\bar{K}_{B_3} \cdot C = 2$ and $\mathcal{N}_{C|B_3} = \mathcal{O}(0) \oplus \mathcal{O}(0)$.

 \rightarrow *C* is fiber of rationally-fibered $B_3:C\rightarrow B_2\leftrightarrow$ theory dual to heterotic string on CY3.

[Morrison, Vafa '97; Lee, Lerche, Weigand '19]

Consider now $\bar{K}_{B_3} \cdot C = 2$ and $\mathcal{N}_{C|B_3} = \mathcal{O}(0) \oplus \mathcal{O}(0)$.

 \rightarrow C is fiber of rationally-fibered $B_3: C \rightarrow B_2 \leftrightarrow$ theory dual to heterotic string on CY3.

[Morrison, Vafa '97; Lee, Lerche, Weigand '19]

What happens in the limit of small C at constant volume \mathcal{V}_{B_3} ?

All divisor volumes receive corrections as

$$\mathcal{V}_{D}^{\text{corr.}} = \mathcal{V}_{D} \left[1 + \alpha^{2} \left((\kappa_{3} + \kappa_{5}) \frac{\mathcal{Z}}{\mathcal{V}_{B_{3}}} \right) \right] + \alpha^{2} \left(\tilde{\mathcal{Z}}_{i} \log \mathcal{V}_{B_{3}}^{(0)} + \kappa_{7} \mathcal{Z}_{D} \right).$$

Diverges in the limit [Klaewer, Lee, Weigand, MW '20]

• Via duality can argue that (at least in simple cases) a strong coupling singularity is reached for gauge theory on $D = B_2$.

$$\mathcal{V}_{B_2}^{\text{corr.}} = \mathcal{V}_{B_2}^{(0)} (1 + \alpha^2(\dots)) + \alpha^2 \tilde{Z}_0 \log \mathcal{V}_{B_3} + \alpha^2 \text{const.}$$

→ vanishes along the singularity

Consider now $\bar{K}_{B_3} \cdot C = 2$ and $\mathcal{N}_{C|B_3} = \mathcal{O}(0) \oplus \mathcal{O}(0)$.

 \rightarrow *C* is fiber of rationally-fibered $B_3: C \rightarrow B_2 \leftrightarrow$ theory dual to heterotic string on CY3.

[Morrison, Vafa '97; Lee, Lerche, Weigand '19]

What happens in the limit of small C at constant volume \mathcal{V}_{B_3} ?

All divisor volumes receive corrections as

$$\mathcal{V}_{D}^{\text{corr.}} = \mathcal{V}_{D} \left[1 + \alpha^{2} \left((\kappa_{3} + \kappa_{5}) \frac{\mathcal{Z}}{\mathcal{V}_{B_{3}}} \right) \right] + \alpha^{2} \left(\tilde{\mathcal{Z}}_{i} \log \mathcal{V}_{B_{3}}^{(0)} + \kappa_{7} \mathcal{Z}_{D} \right).$$

Diverges in the limit [Klaewer, Lee, Weigand, MW '20]

• Via duality can argue that (at least in simple cases) a strong coupling singularity is reached for gauge theory on $D = B_2$.

$$\mathcal{V}_{B_2}^{\text{corr.}} = \mathcal{V}_{B_2}^{(0)} (1 + \alpha^2(\dots)) + \alpha^2 \tilde{Z}_0 \log \mathcal{V}_{B_3} + \alpha^2 \text{const.}$$

- → vanishes along the singularity
- All other (vertical) divisors have minimal quantum volume:

$$\frac{1}{\alpha^2} \operatorname{Re} T_a \bigg|_{\text{sing.}} = -\frac{\operatorname{Re} T_a^{(0)}}{\mathscr{V}_{B_2}^{(0)}} \left(\frac{b}{8\pi} \log \xi + \operatorname{const.} \right) + \operatorname{Re} T_a^*$$

 ζ : Complex structure parameter of X_4

Shrinking of curve with $\mathcal{N} = \mathcal{O}(0) \oplus \mathcal{O}(0)$ is even worse than for $\bar{K} \cdot_{B_3} C = 1$.

- Get a strong coupling singularity at finite distance.
- Mixing between complex structure sector and Kähler sector $\to \mathcal{M} \neq \mathcal{M}_{\text{c.s.}} \times \mathcal{M}_{\text{Kahler}}$

$$\left. \frac{1}{\alpha^2} \operatorname{Re} T_a \right|_{\text{sing.}} = -\frac{\operatorname{Re} T_a^{(0)}}{\mathscr{V}_{B_2}^{(0)}} \left(\frac{b}{8\pi} \log \xi + \text{const.} \right) + \operatorname{Re} T_a^*$$

- $\mathcal{N}=1$ theory behaves significantly different from $\mathcal{N}=2$ counterpart
 - \rightarrow Cannot view it as " $\mathcal{N} = 2 + \text{small corrections}$ "

Shrinking of curve with $\mathcal{N} = \mathcal{O}(0) \oplus \mathcal{O}(0)$ is even worse than for $\bar{K} \cdot_{B_3} C = 1$.

- Get a strong coupling singularity at finite distance.
- Mixing between complex structure sector and Kähler sector $\to \mathcal{M} \neq \mathcal{M}_{\text{c.s.}} \times \mathcal{M}_{\text{Kahler}}$

$$\left. \frac{1}{\alpha^2} \operatorname{Re} T_a \right|_{\text{sing.}} = -\frac{\operatorname{Re} T_a^{(0)}}{\mathscr{V}_{B_2}^{(0)}} \left(\frac{b}{8\pi} \log \xi + \text{const.} \right) + \operatorname{Re} T_a^*$$

• $\mathcal{N}=1$ theory behaves significantly different from $\mathcal{N}=2$ counterpart \to Cannot view it as " $\mathcal{N}=2+$ small corrections"

In general: Field space geometry for small genuine $\mathcal{N}=1$ curves not describable by classical geometry \rightarrow corrections are big and field space does not necessarily factorize anymore.

Shrinking of curve with $\mathcal{N} = \mathcal{O}(0) \oplus \mathcal{O}(0)$ is even worse than for $\bar{K} \cdot_{B_3} C = 1$.

- Get a strong coupling singularity at finite distance.
- Mixing between complex structure sector and Kähler sector $\to \mathcal{M} \neq \mathcal{M}_{\text{c.s.}} \times \mathcal{M}_{\text{Kahler}}$

$$\left. \frac{1}{\alpha^2} \operatorname{Re} T_a \right|_{\text{sing.}} = -\frac{\operatorname{Re} T_a^{(0)}}{\mathscr{V}_{B_2}^{(0)}} \left(\frac{b}{8\pi} \log \xi + \text{const.} \right) + \operatorname{Re} T_a^*$$

• $\mathcal{N}=1$ theory behaves significantly different from $\mathcal{N}=2$ counterpart \to Cannot view it as " $\mathcal{N}=2+$ small corrections"

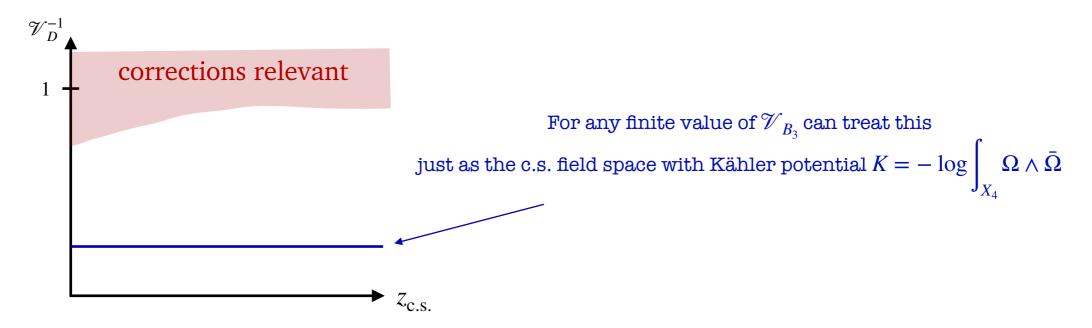
In general: Field space geometry for small genuine $\mathcal{N}=1$ curves not describable by classical geometry \rightarrow corrections are big and field space does not necessarily factorize anymore.

Question: Away from small curve limits can I still trust the classical field space structure?

- \to does $\mathcal{M} \simeq \mathcal{M}_{\text{c.s.}} \times \mathcal{M}_{\text{Kahler}}$ only break down for very small volumes?
- → or corrections important for large complex structure?

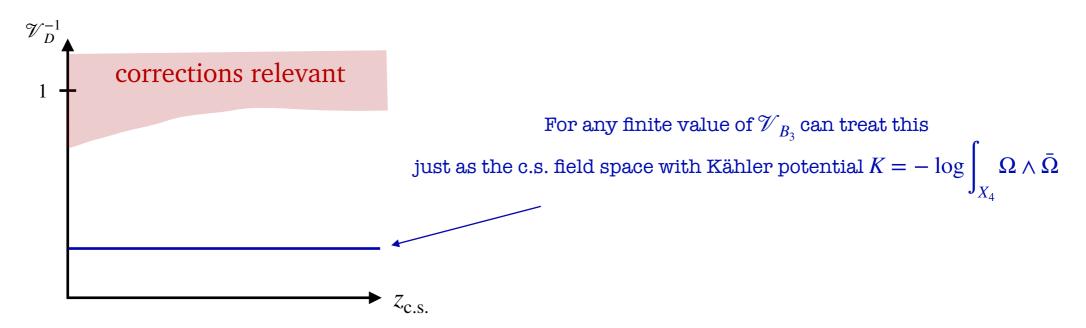
Mixing in the Complex Structure Sector

Might expect that the mixing between Kähler and complex structure sectors is sufficiently suppressed as long as divisor volumes $\mathcal{V}_D \gg 1$:



Mixing in the Complex Structure Sector

Might expect that the mixing between Kähler and complex structure sectors is sufficiently suppressed as long as divisor volumes $\mathcal{V}_D \gg 1$:



Motivated by viewing F-theory via IIB orientifolds:

- \rightarrow For Type IIB CY compactifications the complex structure is classically exact.
- \rightarrow Can evaluate periods of X_4 reliably to infer structure of $\mathcal{M}_{c.s.}$.
- \rightarrow Period integrals simplify close to boundaries of $\mathcal{M}_{c.s.} \Rightarrow$ good setting for e.g. searches for flux vacua.

Is this picture correct?

A simple Calabi — Yau fourfold

Consider a **very simple** elliptically-fibered Calabi-Yau fourfold

$$X_4 = (T^2 \to B_2) \times T^2 \qquad \Longrightarrow \qquad B_3 = B_2 \times T^2$$
 Elliptically-fibered Calabi-Yau threefold

F-theory on X_4 leads to a four-dimensional theory with $\mathcal{N}=2$ supersymmetry.

A simple Calabi — Yau fourfold

Consider a very simple elliptically-fibered Calabi-Yau fourfold

$$X_4 = (T^2 \to B_2) \times T^2 \implies B_3 = B_2 \times T^2$$
 Elliptically-fibered Calabi-Yau threefold

F-theory on X_4 leads to a four-dimensional theory with $\mathcal{N}=2$ supersymmetry.

Question: Can we already see in this theory what to expect got the mixing between complex structure sector and \mathcal{V}_{B_3} ?

Therefore consider vector- and hypermultiplet sector of this F-theory comapctification:

- complex structure moduli of $(T^2 \to B_2)$ and overall volume of B_2 + axionic partners hypermultiplets
- (complexified) Kähler moduli of B_2 + moduli of T^2 vector multiplets

Hypermultiplet Corrections to CY3 x T2

Focus on hypermultiplet sector of F-theory on $(T^2 \rightarrow B_2) \times T^2$

 \rightarrow contains precisely the **volume modulus** and (part of) **the complex structure sector of** X_4 .

F-theory on $(T^2 \to B_2) \times T^2$ dual to Type IIA on $T^2 \to B_2$.

→ hypermultiplet moduli spaces can be identified via

F-theory IIA

complex structure moduli of $(T^2 \rightarrow B_2)$ overall volume modulus of B_2

complex structure moduli of $(T^2 \rightarrow B_2)$ 4d dilaton

Hypermultiplet Corrections to CY3 x T2

Focus on hypermultiplet sector of F-theory on $(T^2 \rightarrow B_2) \times T^2$

 \rightarrow contains precisely the **volume modulus** and (part of) **the complex structure sector of** X_4 .

F-theory on $(T^2 \to B_2) \times T^2$ dual to Type IIA on $T^2 \to B_2$.

→ hypermultiplet moduli spaces can be identified via

complex structure moduli of
$$(T^2 \to B_2)$$
 overall volume modulus of B_2 \longleftrightarrow complex structure moduli of $(T^2 \to B_2)$ 4d dilaton

- Type IIA hypermultiplet sector receives corrections due to D2-brane instantons
- D2-brane instanton contributions to moduli space metric have been computed in

$$S_{4d}^{\text{corr.}} = S_{4d}^{(0)} + \sum$$
 D2-instantons

[Alexandrov, Banerjee '14]; see [Robes-Llana, M. Rocek, F. Saueressig, U. Theis, S. Vandoren, '06] for mirror dual Type IIB.

- effect on (mirror dual of) large complex structure limit moduli space has been investigated in [(Baume), Marchesano, MW '19]; see also [Alvarez-Garcia, Klaewer, Weigand '21]
 - → effectively obstruct large complex structure limits!

- Can break supersymmetry to N=1 e.g. through non-trivial fibration $X_4: X_3 \to \mathbb{P}^1$ $B_3 = B_2 \to \mathbb{P}^1$ \to classically $\mathcal{M}_{c,s}(X_3) \subset \mathcal{M}_{c,s}(X_4)$
- Expectation: corrections present in N=2 also correct N=1 theory
 - o asymptotic regimes in $\mathcal{M}_{c.s.}(X_4)$ also receive corrections at finite \mathcal{V}_{B_2} due to corrections to action of D3-brane instantons on $D=B_2\subset B_3$

$$S_{4d}^{\text{corr.}} = S_{4d}^{(0)} + \sum_{c} \text{D2-instantons}$$
 $S_{D3|_{D=B_2}} = \mathcal{V}_{D=B_2} - f(z_{c.s.}) \Big|_{D=B_2} c_1(B_3)^2$

- Can break supersymmetry to N=1 e.g. through non-trivial fibration $X_4: X_3 \to \mathbb{P}^1$ $B_3 = B_2 \to \mathbb{P}^1$ \to classically $\mathcal{M}_{c.s.}(X_3) \subset \mathcal{M}_{c.s.}(X_4)$
- Expectation: corrections present in N=2 also correct N=1 theory
 - o asymptotic regimes in $\mathcal{M}_{c.s.}(X_4)$ also receive corrections at finite \mathcal{V}_{B_2} due to corrections to action of D3-brane instantons on $D=B_2\subset B_3$

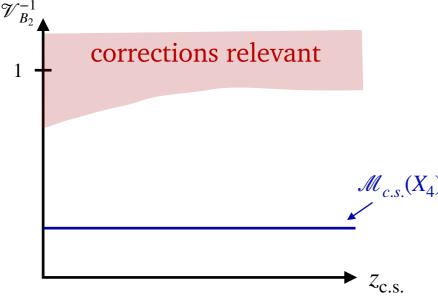
$$S_{4d}^{\text{corr.}} = S_{4d}^{(0)} + \sum \text{D2-instantons} \qquad \qquad S_{D3|_{D=B_2}} = \mathcal{V}_{D=B_2} - f(z_{c.s.}) \bigg|_{D=B_2} c_1(B_3)^2$$

- $f(z_{c.s.}) \to \infty$ close to borders of $\mathcal{M}_{c.s.}(X_4)$.
- Consequence: can never treat $\mathcal{M}_{c.s.}(X_4)$ as decoupled from Kähler sector \to apart from at $\mathcal{V}_{B_2} = \infty$.

- Can break supersymmetry to N=1 e.g. through non-trivial fibration $X_4: X_3 \to \mathbb{P}^1$ $B_3 = B_2 \to \mathbb{P}^1$ \to classically $\mathcal{M}_{c.s.}(X_3) \subset \mathcal{M}_{c.s.}(X_4)$
- Expectation: corrections present in N=2 also correct N=1 theory
 - o asymptotic regimes in $\mathcal{M}_{c.s.}(X_4)$ also receive corrections at finite \mathcal{V}_{B_2} due to corrections to action of D3-brane instantons on $D=B_2\subset B_3$

$$S_{4d}^{\text{corr.}} = S_{4d}^{(0)} + \sum \text{D2-instantons} \qquad \qquad S_{D3|_{D=B_2}} = \mathcal{V}_{D=B_2} - f(z_{c.s.}) \int_{D=B_2} c_1(B_3)^2$$

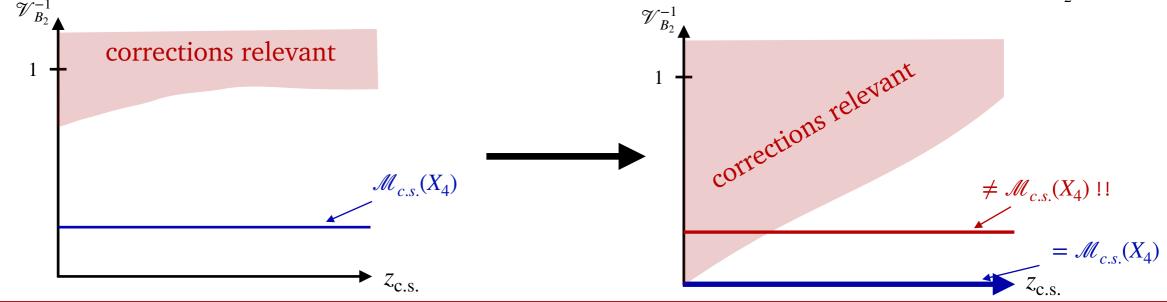
- $f(z_{c.s}) \to \infty$ close to borders of $\mathcal{M}_{c.s.}(X_4)$.
- Consequence: can never treat $\mathcal{M}_{c.s.}(X_4)$ as decoupled from Kähler sector \to apart from at $\mathcal{V}_{B_2} = \infty$.



- Can break supersymmetry to N=1 e.g. through non-trivial fibration $X_4: X_3 \to \mathbb{P}^1$ $B_3 = B_2 \to \mathbb{P}^1$ \to classically $\mathcal{M}_{c.s.}(X_3) \subset \mathcal{M}_{c.s.}(X_4)$
- Expectation: corrections present in N=2 also correct N=1 theory
 - o asymptotic regimes in $\mathcal{M}_{c.s.}(X_4)$ also receive corrections at finite \mathcal{V}_{B_2} due to corrections to action of D3-brane instantons on $D=B_2\subset B_3$

$$S_{4d}^{\text{corr.}} = S_{4d}^{(0)} + \sum \text{D2-instantons} \qquad \qquad S_{D3|_{D=B_2}} = \mathcal{V}_{D=B_2} - f(z_{c.s.}) \int_{D=B_2} c_1(B_3)^2$$

- $f(z_{c.s}) \to \infty$ close to borders of $\mathcal{M}_{c.s.}(X_4)$.
- Consequence: can never treat $\mathcal{M}_{c.s.}(X_4)$ as decoupled from Kähler sector \to apart from at $\mathcal{V}_{B_2} = \infty$.



• Goal: Explore the interior of the N=1 field space \rightarrow focus on genuine N=1 effects.

- Goal: Explore the interior of the N=1 field space \rightarrow focus on genuine N=1 effects.
- N=2 intuition useful to explore regimes in the field space with *local* supersymmetry enhancement
 - → even here global N=1 breaking effect are important!

- Goal: Explore the interior of the N=1 field space \rightarrow focus on genuine N=1 effects.
- N=2 intuition useful to explore regimes in the field space with *local* supersymmetry enhancement → even here global N=1 breaking effect are important!
- Explicitly considered F-theory compactifications on four-folds

- Goal: Explore the interior of the N=1 field space \rightarrow focus on genuine N=1 effects.
- N=2 intuition useful to explore regimes in the field space with *local* supersymmetry enhancement → even here global N=1 breaking effect are important!
- Explicitly considered F-theory compactifications on four-folds
 - Hypermultiplet useful to describe local moduli space in small volume limit for \bar{K} . C=0 curves. \to not the full story!!
 - genuine N=1 effects become large if curves intersected by anti-canonical divisor become small \rightarrow N=2 breaking not diluted.
 - Mixing between complex structure and Kähler sector becomes important away from $\mathcal{V}_D = \infty$.
 - asymptotic regions in c.s. sector only describable through classical geometry in double-scaling limit (where N=2 supersymmetry is restored...)
 - \rightarrow similar effects to N=2 hypermultiplet sector at finite string coupling ...

Thank you!!