Species Cosmology

based on 2401.09533 and on work in progress with D.Lüst, J.Masias, M.Pieroni

Marco Scalisi

March 19th, 2024 Ringberg Castle, Tegernsee

 $M_{\rm P}$

$H \lesssim 10^{-5} \; M_{\rm P}$

OUTLINE

The Species Scale

Species → Cosmology

Species ← Cosmology

The Species Scale

Dvali, 2007 Dvali, Redi 2007

Dvali, 2007 Dvali, Redi 2007

Perturbative argument

 $N \, {\rm light} \, {\rm species} \, {\rm weakly} \, {\rm coupled} \, {\rm to} \, {\rm gravity}$

 $\pi^{-1}(p^2) = p^2 \left[1 - \frac{N p^2}{120\pi M_{\rm P}^2} \log \left(-\frac{p^2}{\mu^2} \right) \right]$ tree level 1-loop

Dvali, 2007 Dvali, Redi 2007

Perturbative argument

N light species weakly coupled to gravity

contribution to graviton propogator

$$\pi^{-1}(p^2) = p^2 \left[1 - \frac{N p^2}{120\pi M_P^2} \log \left(-\frac{p^2}{\mu^2} \right) \right]$$

tree level 1-loop

perturbation theory breaks down when tree level = 1-loop

$$p \sim \frac{M_{\rm P}}{\sqrt{N}} \equiv \Lambda_{\rm s}$$

Dvali, 2007 Dvali, Redi 2007

Perturbative argument

N light species weakly coupled to gravity

contribution to graviton propogator

Non-perturbative argument

Black hole with N species

What is its **minimal radius**?

perturbation theory breaks down when tree level = 1-loop

$$p \sim \frac{M_{\rm P}}{\sqrt{N}} \equiv \Lambda_{\rm s}$$

Dvali, 2007 Dvali, Redi 2007

Perturbative argument

 $N\,{\rm light}$ species weakly coupled to gravity

contribution to graviton propogator

$$\pi^{-1}(p^2) = p^2 \left[1 - \frac{N p^2}{120\pi M_P^2} \log\left(-\frac{p^2}{\mu^2}\right) \right]$$

$$\uparrow \qquad \uparrow$$
tree level 1-loop

perturbation theory breaks down when tree level = 1-loop

$$p \sim \frac{M_{\rm P}}{\sqrt{N}} \equiv \Lambda_{\rm s}$$

Non-perturbative argument

Black hole with N species

What is its **minimal radius**?

Species Cosmology

Dvali, 2007 Dvali, Redi 2007

Perturbative argument

 $N\,{\rm light}$ species weakly coupled to gravity

contribution to graviton propogator

$$\pi^{-1}(p^2) = p^2 \left[1 - \frac{N p^2}{120\pi M_P^2} \log\left(-\frac{p^2}{\mu^2}\right) \right]$$

$$\uparrow \qquad \uparrow$$
tree level 1-loop

perturbation theory breaks down when tree level = 1-loop

$$p \sim \frac{M_{\rm P}}{\sqrt{N}} \equiv \Lambda_{\rm s}$$

Non-perturbative argument

Black hole with N species

What is its **minimal radius**?

$$R_{\min} \simeq N^{\frac{1}{d-2}} M_{\mathrm{P}}^{-1} = \Lambda_{\mathrm{s}}^{-1}$$

 $\Lambda_{\rm s}$

Dvali, 2007 Dvali, Redi 2007

= - scale at which gravity becomes strongly coupled

- scale of the **minimal size** of BH
- scale of higher curvature corrections

(renormalization of the Planck mass)

Dvali, 2007 Dvali, Redi 2007

= - scale at which gravity becomes strongly coupled

- scale of the **minimal size** of BH
- scale of higher curvature corrections

Species scale for ten-dimensional Type IIB

from van de Heisteeg, Vafa, Wiesner, Wu 2023

$$\frac{1}{\sqrt{(d-1)(d-2)}} \le \left| \frac{\Lambda'_{\rm QG}}{\Lambda_{\rm QG}} \right| \le \frac{1}{\sqrt{d-2}}$$

van de Heisteeg, Vafa, Wiesner, Wu 2023 Calderón-Infante, Castellano, Herráez, Ibánez 2023 van de Heisteeg, Vafa, Wiesner, 2023 van de Heisteeg, Vafa, Wiesner, Wu 2023 Lüst, Masias, Muntz, **MS** 2023

Marco Scalisi | MPP

Species Cosmology

 $m \rightarrow 0$

mass of infinite tower of **species**

 $\Lambda_{QG} \to 0$ QG cut-off = **species scale** Dvali 2007

Swampland Distance Conjecture

"Infinite scalar field variations Δ are always associated to (at least) an infinite tower of states becoming exponentially light" $m = m_0 \ e^{-\gamma \Delta} \qquad \Delta \to \infty$

Swampland Distance Conjecture

Ooguri, Vafa 2007

universal bound on scalar field variation

$$\Delta \leq \frac{1}{\lambda} \log \frac{M_{\rm P}}{\Lambda_{\rm QG}}$$

Ooguri, Vafa 2007

> Towers of states lead to a renormalization of the quantum gravity cut-off

$$\Lambda_{\rm QG} = \frac{M_{\rm P}}{N^{\frac{1}{d-2}}} < M_{\rm P}$$

 \blacktriangleright Distance conjecture implies exponential drop-off in field space of $\Lambda_{\rm QG}$

$$\Lambda_{\rm QG} \sim e^{-\lambda \Delta}$$

Species → Cosmology

Focus on **cosmic acceleration**

Species Cosmology

Focus on **cosmic acceleration**

time-dependent cosmic acceleration

 $H < \Lambda_{QG} \le M_{\rm P} \ e^{-\lambda \Delta \varphi}$

consistency of EFT implication of the SDC

MS, Valenzuela 2018

see also

van de Heisteeg, Vafa, Wiesner, Wu 2023

upper bound on field displacement

MS, Valenzuela 2018

see also

van de Heisteeg, Vafa, Wiesner, Wu 2023

MS, Valenzuela 2018

Marco Scalisi | MPP

see also van de Heisteeg, Vafa, Wiesner, Wu 2023

Species Cosmology

Inflationary particle production and the Swampland

Lüst, Masias, Pieroni, MS - work in progress

Lüst, Masias, Pieroni, MS - work in progress

▶ Inflaton-gauge fields coupling Anber, Sorbo 2010

$$\mathcal{L} = -\frac{1}{2}(\partial \varphi)^2 - V(\varphi) - \varphi \ F\tilde{F}$$

Inflaton-scalar fields coupling Green, Horn, Senatore, Silverstein 2009

"Trapped inflation"

$$\mathscr{L} = -\frac{1}{2}(\partial\varphi)^2 - V(\varphi) - \frac{1}{2}\sum_n \left[(\partial\chi_n)^2 - g^2(\varphi - \varphi_{0n})^2\chi_n^2\right]$$

$$\mathscr{L} = -\frac{1}{2}(\partial\varphi)^2 - V(\varphi) - \frac{1}{2}\sum_i \left[(\partial\chi_i)^2 - m_n^2 e^{-2\gamma\varphi}\chi_n^2\right] \qquad \text{mass}$$

mass of the SDC tower

 $m \sim e^{-\gamma \varphi}$

$$\begin{aligned} \mathscr{L} &= -\frac{1}{2}(\partial\varphi)^2 - V(\varphi) - \frac{1}{2}\sum_{i}\left[(\partial\chi_i)^2 - m_n^2 e^{-2\gamma\varphi}\chi_n^2\right] & \text{mass of the SDC tower} \\ & m \sim e^{-\gamma\varphi} \\ \xi_n''(\tau, \vec{k}) + \left[k^2 - \frac{2 - \delta_n}{\tau^2}\right]\xi_n(\tau, \vec{k}) = 0 & \text{with} \\ & \delta_n = \frac{m_n^2}{H^2}e^{-2\gamma\varphi} \\ & \xi_n \equiv a(\tau)\chi_n \end{aligned}$$

$$\begin{aligned} \xi_n(\tau, \vec{k}) &= \frac{\sqrt{-\pi}}{2}\exp\left[\frac{i\pi}{4}\sqrt{9 - 4\delta_n} + \frac{i\pi}{4}\right]\sqrt{-\tau}H_{\frac{1}{2}\sqrt{9 - 4\delta_n}}^{(1)}(-k\tau) \\ & H^{(1)} = \text{Bessel function of the 3rd kind (or Hankel function of the 1st kind)} \end{aligned}$$

Scalar power spectrum

$$P_{\zeta}(k) = P_{\zeta}^{h} + P_{\zeta}^{s} = \frac{H^{4}}{(2\pi)^{2} \dot{\varphi}_{0}^{2}} \left(1 + 0.0025 \frac{H^{3}}{\Lambda_{QG}^{3}} \gamma^{2}\right)$$

Non Gaussianities

$$f_{NL,equil} \simeq 0.0007 \frac{\gamma \dot{\varphi}}{H} (\gamma M_{\rm P})^2 \left[1 + 0.0025 (\gamma M_{\rm P})^2 \left(\frac{H}{\Lambda_{\rm QG}} \right)^3 \right]^{-2} \left(\frac{H}{\Lambda_{\rm QG}} \right)^3$$

Tensor-to-scalar ratio

$$r = 9.2 \cdot 10^7 \frac{H^2}{M_{\rm P}^2} \left[1 + 0.17 \left(\frac{H}{\Lambda_{\rm QG}} \right)^3 \right]$$

Scalar spectral tilt

$$n_{s} - 1 = (-2\epsilon - \eta) \left[1 - \left(\frac{\gamma M_{\rm P}}{20}\right)^{2} \left(\frac{H}{\Lambda_{QG}}\right)^{3} \right] - \left(5\epsilon + \sqrt{2\epsilon}\gamma M_{\rm P}\right) \left(\frac{\gamma M_{\rm P}}{20}\right)^{2} \left(\frac{H}{\Lambda_{QG}}\right)^{3}$$

Lüst, Masias, Pieroni, MS - work in progress

$$V \sim \varphi^2$$

$$n_{s}$$

 $V \sim \left(1 - e^{\sqrt{2/3} \varphi}\right)^2$

Lyth bound
$$\Delta \phi \gtrsim \sqrt{\frac{r}{0.002}}$$
 $\longrightarrow \Delta \phi \gtrsim M_{\rm P}$ Super-Planckian field range

$$\Delta \varphi = \int \sqrt{2\epsilon} \, \mathrm{d}N$$

$$\Delta \varphi = \int \sqrt{2\epsilon} \, \mathrm{d}N$$

MS - 2401.09533

Kachru, Kallosh, Linde, Maldacena, McAllister, Trivedi 2003 Burgess, Quevedo 2022

plot taken from Burgess, Quevedo 2022

MS - 2401.09533

Lüst, Masias, Muntz, **MS** - 2312.13210

$$S = \int d^4x \ \sqrt{-g} \left[\frac{M_P^2}{2} \left(R + \frac{R^2}{M^2} \right) \right]$$

Starobisky 1980 Starobisky 1984

Extra-slides

$$S = \int d^4x \ \sqrt{-g} \left[\frac{M_P^2}{2} \left(R + \frac{R^2}{M^2} \right) \right]$$

we argue

originated by **quantum effects** of **towers** of light **species**

Calculation of the graviton propagator contribution

$$R + \mathcal{O}\left(R^2\right)$$

R + tower of species

Consequences on inflationary EFT

Energy scale

$$M \simeq \Lambda_{s}$$
 but also $M \simeq H$ \longrightarrow $\Lambda_{s} \simeq H$
(in the Starobinsky model) boundary of the EFT validity

Species Cosmology
Consequences on inflationary EFT

Energy scale

$$M \simeq \Lambda_{s}$$
 but also $M \simeq H$ \longrightarrow $\Lambda_{s} \simeq H$
boundary of the EFT validity

KK modes

$$M \simeq \Lambda_{\rm s} \simeq 10^{14} \,\,{\rm GeV} \longrightarrow N_{\rm s} \simeq 10^{10} \longrightarrow m_{\rm kk} \simeq 10^4 \,\,{\rm GeV}$$

10 orders below H

Consequences on inflationary EFT

Cosmology constrains Species Scale decay rate

$$\Lambda_{\rm s} = M_* \ e^{-\gamma\phi} \qquad \longrightarrow \qquad V(\phi) = \frac{M_*^2 \ M_P^2}{8} e^{-2\gamma\phi} \left(1 - e^{-\sqrt{\frac{2}{3}}\phi/M_P}\right)^2$$

Consequences on inflationary EFT

Cosmology constrains Species Scale decay rate

$$\Lambda_{\rm s} = M_* \ e^{-\gamma\phi} \qquad \longrightarrow \qquad V(\phi) = \frac{M_*^2 \ M_P^2}{8} e^{-2\gamma\phi} \left(1 - e^{-\sqrt{\frac{2}{3}}\phi/M_P}\right)^2$$

Consequences on inflationary EFT

Cosmology constrains Species Scale decay rate

$$\Lambda_{\rm s} = M_* \ e^{-\gamma\phi} \qquad \longrightarrow \qquad V(\phi) = \frac{M_*^2 \ M_P^2}{8} e^{-2\gamma\phi} \left(1 - e^{-\sqrt{\frac{2}{3}}\phi/M_P}\right)^2$$

