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5d Supergravity and Calabi-
Yau Geometry



5d supergravity

 5d supergravity features two multiplets with
massless scalar fields

* Hypermultiplets

* Vector multiplets, which also feature a vector
boson

* In addition, every 5d supergravity theory features
a gravity multiplet, which also has a vector boson

* Thus, there are N = n, + 1 vector bosons, and n,
vector multiplet moduli



5d supergravity

* Many properties of a 5d supergravity theory are controlled
by a cubic prepotential:

1
F = EC”KYIYJYK I=1,..,N

« Two equivalent ways to construct the vector multiplet
moduli space:

» The # = 1 slice of the space parametrized by the Y’

» The projective space parametrized by homogeneous
coordinates Y ~ AY!



Gauge and Scalar Couplings

* Helpful to define
FI:a]F .F[J:f)]ajf
* Gauge kinetic matrix 1s then

ary = FrFj;—FrJ

* Metric on moduli space 1s pullback to & =1
slice:
1

gij; — iaU@iY"@jY‘]



BPS Particles

In theories with 8+ supercharges, charged particles must satisfy

BPS bound:
m 2> |Cq, (ai)]

Central charge C depends on moduli a;, charge g; of particle

4d:  complex. 5d: C real
Particles that saturate the BPS bound are called BPS particles



BPS Bound 1n 5d

* BPS particles saturate the bound:
m(qr) > (27°)"°|qry”|

* BPS strings saturate the bound:

N 1 N
T(g") > o (2n%) O\ Fy



5d Supergravity from M-theory

* One way to construct UV-complete 5d supergravity

theories in the Landscape 1s to compactify M-theory on a
Calabi-Yau threefold

 Physical properties of the theory are then identified with
geometric properties of the Calabi-Yau threefold



Prepotential from Intersection Numbers

* Prepotential:
1
F — ECIJKS/'IBZJ]IK

* Integers C,; are geometrically triple intersection numbers of
divisors:

CIJK:/ Dr-Djy-Dg
X



BPS Particles and Holomorphic Curves

e M2-brane wrapped on holomorphic curve of class
Z n;|C;], n; > 0 gives BPS particle of charge n;
= H5 (X, Z) identified with electric charge lattice

S
=
S

) = Mori cone

Hy(X,7Z)

e BPS
— 711 e not BPS




Gopakumar-Vata Invariants

« BPS states (i.e., holomorphic curves) of each charge
are counted by “Gopakumar-Vafa invariants”:

A Calabi-Yau threefold, X, with A1l =2

[ 0| | 3420 | | 75321270 | hassesresasaqol Mori cone of X

[ 0 | [-140e0 | |soses7ezso] hi1sooerazison

[ 2| | eree0 | |sa2sc08842| |2a5525c05a116)

{40 | |24s4600| |e6442242¢0| | Pomonogsneao

L0 | [18] |2078650 |277421605 | | 563262580 |

[0 | |suao!  sate:n| | esseen | [ -1z770880 |
{28as| [oreo| | 45440 | | 1001340
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Gopakumar, Vafa, 98



Mor1 Cones and Flops

The Mori cone of X is dual to the Kahler cone, which changes upon a “flop”
transition to a birationally equivalent CY3 X’

Physically, the full moduli space of the 5d supergravity contains the union of
all the Kéahler cones, also known as the extended Kahler cone:

Meaorl cons A Kiher cone
Mori cone of Kahler cone
X of X
Mori cone of Kahler cone
of X'

\

Y

» Thisis the extended Kahler cone A



Eftective Curves and Divisors

» Effective curves generate the Mori cone, which is dual
to the Kahler cone:

M(X) = K(X)V

» Similarly, effective divisors generate the effective
cone, which 1s dual to the movable cone

Mov(X) = &Y



Modul1 Space Reconstruction

 In general, 1t’s difficult to compute the extended Kahler
cone of a CY3, and even harder to compute the
movable cone

* But, we have constructed an algorithm to do this, with
help from GV invariants and supergravity

Alim, Heidenreich, TR ‘21
Gendler, Heidenreich, McAllister, Moritz, TR ‘22



Modul1 Space Reconstruction



Nops and Flops

A few definition

o l—

o] | 3420 | | 78341270 | |r28826768838420]
Nilpotent curve: a ray with finitely | cl: | | 0| |[-14980 | |308as77280| [1111902747:400)
many non-zero GV invariants. ::tl:: [ 3| [erss0 | |se2oessedz| |2858250958118]
0 |ao| [2es4600] 2644224240 | 208000880200 |
Potent curve: a ray with infinitely | i :
. . | o [12]| |20738e0| |277sz180s | | 563282580 |
many non-zero GV invariants. |
[0 [s020] [541230] | g33760 | -18770880 |
Nop curve: nilpotent curve outside 2 o] o] [ea]_tamao |
the closure of the cone generated 56 {27z {520 | sessz >

by potent curves.

Nop curve <= Floppable Curve



Flops and Intersection Numbers

o At such a flop, N hypers of charge QJ; become
massless, triple intersection numbers C;; shift

C;LJK =Cix+ NQIQJQK

/

QY >0 %QQ
, /
AY\B“/// ‘
\) /// /' {V
//'/ C,\
S/
N7/ .
A\ ,/ QrY' <0
%

* Repeating this process for all nop curves, find
extended Kahler cone, prepotential in each phase



Modul1 Space Reconstruction

» Given point in extended Kihler cone Y/, find point in
movable cone via “I map”:

1
T = Fr = 5OUKYJYK




Testing the Sublattice WGC

* The Sublattice WGC requires an infinite tower of BPS
particles everywhere inside the movable cone

* By constructing the movable cone and computing GV
invariants, can put this to the test: verified in all 2062
examples studied

Alim, Heidenreich, TR ‘21
Gendler, Heidenreich, McAllister, Moritz, TR ‘22



Infinite-Distance Limits



Compactitying 6d String Theory

 Consider a 6d string theory, with 2-form gauge coupling

g5 ~ exp(—0)

* Compactifying to 5d, this picks up dependence on the
radion:

g2 ~ exp(—¢ ;gm

* Also have KK gauge field, with coupling

2
EKK "~ eXP(—%P)



Decompactifying 5d String Theory

 Consider the decompactification limit p, ¢ — oo, with

fixed slope N
dp p
— = tan ¢
do
o v,
e In this limit, have \
"
g2 ~ exp(—=Allp —pol])  exx ~ exp(—al|p — pol)
1 . 2 .
A =cost+ —sin?d o = —— sin v

V3 V3



Infinite-Distance Limits in 5d SUGRA

» (G1ven prepotential:
1
F = EC’I”_,yIYJYK

« Let’s now adopt the perspective that the Y’ are homogenous
coordinates, identified under simultaneous rescaling Y’ ~ 1Y’

» Consider “‘straight-line” path in the space of these homogenous
coordinates:

Y' =Y +sY!,s€]0,1]

e Assume s = 0 is at infinite distance = F ~ sor & ~ s°



Decompactification Limits

Case 1: F ~ 5

« Using formulae for gauge kinetic matrix, metric on moduli
space in terms of the prepotential, find

——lp-pll) = a=—
6KKN minNeX E— — o = ——
L copc—llp—poll) = A=-
~ ~ exp(——=||p — _
72 9max b \/§ p—Po \/§
A
e Matches scaling for 9 = z/2 -
decompactification limit! \19 =5
"¢

Etheredge, Heidenreich, Kaya, Qiu, TR 22



Emergent String Limits

Case 2: F ~ s2

« Using formulae for gauge kinetic matrix, metric on moduli
space 1n terms of the prepotential, find

1 1
eKKNgminNeXp(_%Hp_pOH) — &:ﬁ
: —Zip—pol) = A=
gz ~ ~ expl———=||P — Po _ =
Jmax V3 ) V3
0

« Matches scaling for 9 = 7/6

emergent string limit!
S s /<1; =7/6
>

Etheredge, Heidenreich, Kaya, Qiu, TR 22




Curved Paths

T T
. What about decompactifcation limits with ° <9< 5? Need to
drop assumption of straight line paths

 Setting
Yi=1, Y?=s, Y3=4 Y!=0,1>3

» Then for appropriate choices of the prepotential, find expected
scaling of a, A, with
p4
. 2—p
sin vt =
2/ 2 — B +1 /(:r/6<19<7r/2

"¢

TR 23



GV Invariants

» Match of scaling behavior for gauge couplings
relies only on supergravity, no input from string/
M-theory!

* Upon including M-theory, we find further

evidence for the Emergent String Conjecture using
the spectrum of BPS particles...



Decompactification limit
= KK tower, tower
degeneracies order-one
and periodic:

Mass

Tower Density of States

ES Iimit = KK tower,
exponential (Hagedorn)
density of states

Mass

A 000000000O06O0COFOC
00000000




Examples

Decompactification limit
as Y2 - 0, (F ~ Y?):

-l D 1 2 3 L
0| - 40 4 0 0
11 4% 496 2395312 23884347
2 |14 5616 23100 34528 23100
3 | 124 14384 602016 24715824 4709216 .
4 | 88 279975 10439512 9722024 JUBE5Y81 Emergent Strlng
5| 144 1482384 136431424 2616030416 20133562480 . . 2
6 | 164 6751472 1430003864 52447406096 70769773208 limit as Y* — O,
71144 27208608 12770008368 841622542048 18809195173440
& | 8% 00560836 DE3TOTI4043 112774503704 403560003481838 ( 97 ~ (Y2)2)
a0 ! 2 3 1
0 | = 2 0 q 0
1 306 1152 306 0 0
2 2610 53136 112068 53136 2610
o 3 35640 2377728 15951564 28024704 15051564
Similar pattern > 4 | 605844 103323672 1602730872 6746351496 10576809936
for all 7000+ CICYs! 51 12212172 A4ADN303618 1321921653792 1084701369500 3472053072948
& | 273644244 134590071136 9583083752300  153592015658408 7624944705793 14

TR °23, see also Lee, Lerche, Weigand ’19, Fierro Cota, Mininno, Weigand, Wiesner *22



Persistence of the Pattern



The Species Scale “Pattern™

» A remarkable pattern observed by Castellano, Ruiz, and
Valenzuela 1n infinite-distance limits

Vm VAQG B 1
(L’ AQG d— 2
* This relation can be proven in asymptotic limits under

the ESC and further genericness assumptions (Etheredge,

Heidenreich, TR, Ruiz, Valenzuela, to appear)

* However, in the context of 5d supergravity, a version of
it can be proven in full generality



5d supergravity

» Recall that 5d supergravity 1s controlled by a cubic
prepotential:

1
Jr — EC]JKYIYJYK

* The vector multiplet moduli space 1s the # = 1
slice

» Key 1dentity:

1 .. 1
ol = §g%JainanJ + §YIYJ



BPS Bound 1n 5d

» Recall: BPS particles saturate the bound
m(ar) > (2r%)"°|qr Y|

* BPS strings saturate the bound

N 1 N
T(g") > o (2n%) O\ Fy



The Pattern

. Setting M, = \/ 27T(g"), using identity, can prove that
for any BPS particle and BPS string,

ij (‘Lm (9st B 1 ngI

T M, T3 (kY E)(GEFL)

e If string and particle become light in asymptotic limit,
their Dirac pairing vanishes, ¢,§' = 0

» Setting Agg = M, we find the pattern:
6772 . ﬁAQG _ 1

™m AQG 3




Persistence of the Pattern

e This result holds not only in the asymptotic limits of
moduli space, but also 1n the interior

* It even carries over into distinct phases, related by
flop transitions, where the prepotential and string
central charges are modified ¢, -c;, + va0.a

01! >0 x\@Q

/
/

« It holds even though | |Vlog(m) || and
|| VIog(Aqgg) || vary in the interior of moduli space



Summary



Summary

And now, with that, my talk is done,
[ hope that, like me, you too have had fun.
Just one more thing before we’re through,
Let us conclude with a brief review.

We saw that 5d supergravity has a moduli space,
Which can be reconstructed using BPS states.
We figured out the locations of the flops,
Using GV invariants to identify the nops.

This let us determine the extended Kahler cone,
And, using the T-map, the effective cone.
Next, we studied gauge couplings of 5d supergravity,
In the limit where a scalar field goes to infinity.
With decompactification limits, we had a perfect match,

Without any top-down input, how neat was that?
Finally, in the end, we saw a pattern that remained,
In the interior of moduli space, not just the asymptotic plane.
The full implications of this, I do not yet understand,

But I know I’ve had fun hiking with you all through the swampland!



Thank You



