

Topology change and non-geometry at infinite distance [Saskia Demulder, Dieter Lüst, TR; 2312.07674]

Geometry, Strings and the Swampland Program Ringberg, 19.03.2024

Thomas Raml

*generalized

Topology change and non-geometry at infinite distance

1) T-duality* on internal space beyond circle example

2) Implications for **Distance Conjecture**

ZIP

*generalized

1) T-duality* on internal space beyond circle example

2) Implications for **Distance Conjecture**

*generalized

2222222222222

- Non-trivial momentum-winding exchange
- Moduli spaces with (NSNS) flux contributions
- Scalar potential on moduli space
- Non-geometric backgrounds

Recap: Reduction on trivially fibred S^1

$$S_{\rm EH} \sim \int d^{D-1}x \sqrt{-g} \left(M_w^2 \sim R^2 \right)$$
$$R = 0$$

Topology change and non-geometry at infinite distance

Thomas Raml

Recap: Reduction on trivially fibred S^1

$$S_{\rm EH} \sim \int d^{D-1}x \sqrt{-g} \left(M_w^2 \sim R^2 \right)$$
$$R = 0$$

Topology change and non-geometry at infinite distance

Thomas Raml

Reduction on trivially fibred internal space $S^1 \hookrightarrow M_n$:

NON-

 $S_R^3, H = 0$

and/or in presence of fluxes

 $S_{\rm EH} \sim \int d^{D-n}x \sqrt{-g} \left(\mathcal{R}(g) - \gamma_{ij}\partial_{\mu}\phi^{i}\partial^{\mu}\phi^{j} - V(\phi^{i}) \right)$ metric on moduli space

Topology change and non-geometry at infinite distance

Reduction on trivially fired internal space $S^1 \hookrightarrow M_n$:

NON

$$R = 0$$

 $R = \infty$

and/or in presence of fluxes

 $S_{\rm EH} \sim \left[\mathrm{d}^D x \sqrt{-g} \left(\mathcal{R}(g) - \gamma_{ij} \partial_\mu \phi^i \partial^\mu \phi^j - V(\phi^i) \right) \right]$

"... a divergence in the scalar potential emerges when approaching an infinite locus point for which the target space geometry cannot give rise to a light tower of states..."

Summary

- Trivialization of cycles, torsionfull cycles
- **Potential** signals absence of states •
- Invariance of metric $\gamma_{ij} = \tilde{\gamma}_{ij}$ need to consider fluxes
- Generalized T-duality & non-geometric spaces • - Consistency requires to move to β -gravity

Thomas Raml

Topology change and non-geometry at infinite distance

