Starobinsky Inflation and the Swampland

Joaquin Masias

Geometry, Strings and the Swampland Program Based on [2312.13210, D. Lüst, M. Scalisi, B. Muntz, **JM**]

MAX-PLANCK

Starobinsky Inflation and the Swampland

Starobinsky Inflation

• One of the most successful models of primordial inflation

Starobinsky Inflation and the Swampland

Starobinsky Inflation

• One of the most successful models of primordial inflation

$$S = \frac{M_P^2}{2} \int d^4x \sqrt{-g^{(J)}} \left(R^{(J)} + \frac{(R^{(J)})^2}{M^2} \right)$$

$$\begin{aligned} {}^{(J)}_{\mu\nu} &\to g^{(E)}_{\mu\nu} = \Omega^2 g^{(J)}_{\mu\nu} \\ \Omega^2 &= e^{\left(\sqrt{\frac{2}{3}}\frac{\phi}{M_P}\right)} \end{aligned}$$

g

Starobinsky Inflation and the Swampland

/ _____

Starobinsky Inflation

• One of the most successful models of primordial inflation

$$S = \frac{M_P^2}{2} \int d^4x \sqrt{-g^{(J)}} \left(R^{(J)} + \frac{(R^{(J)})^2}{M^2} \right) \qquad \qquad g^{(J)}_{\mu\nu} \to g^{(E)}_{\mu\nu} = \Omega^2 g^{(J)}_{\mu\nu} \\ \Omega^2 = e^{\left(\sqrt{\frac{2}{3}} \frac{\phi}{M_P}\right)}$$

$$S = \int d^4x \sqrt{-g^{(E)}} \left[\frac{M_P^2}{2} R^{(E)} + \frac{1}{2} g^{(E)}_{\mu\nu} \partial^\mu \phi \partial^\nu \phi - \frac{M^2 M_P^2}{8} \left(1 - e^{-\sqrt{\frac{2}{3}}\phi/M_P} \right)^2 \right]$$

Starobinsky Inflation and the Swampland

/ _ \

Starobinsky Inflation

• One of the most successful models of primordial inflation

$$S = \frac{M_P^2}{2} \int d^4x \sqrt{-g^{(J)}} \left(R^{(J)} + \frac{(R^{(J)})^2}{M^2} \right) \qquad \qquad g^{(J)}_{\mu\nu} \to g^{(E)}_{\mu\nu} = \Omega^2 g^{(J)}_{\mu\nu} \\ \Omega^2 = e^{\left(\sqrt{\frac{2}{3}} \frac{\phi}{M_P}\right)}$$

$$S = \int d^4x \sqrt{-g^{(E)}} \left[\frac{M_P^2}{2} R^{(E)} + \frac{1}{2} g^{(E)}_{\mu\nu} \partial^\mu \phi \partial^\nu \phi - \frac{M^2 M_P^2}{8} \left(1 - e^{-\sqrt{\frac{2}{3}}\phi/M_P} \right)^2 \right]$$

• If the correction to EH gravity is quantum in origin, we expect

Starobinsky Inflation and the Swampland

/ _ \

Starobinsky Inflation

• One of the most successful models of primordial inflation

$$S = \frac{M_P^2}{2} \int d^4x \sqrt{-g^{(J)}} \left(R^{(J)} + \frac{(R^{(J)})^2}{M^2} \right) \qquad \qquad g^{(J)}_{\mu\nu} \to g^{(E)}_{\mu\nu} = \Omega^2 g^{(J)}_{\mu\nu} \\ \Omega^2 = e^{\left(\sqrt{\frac{2}{3}} \frac{\phi}{M_P}\right)}$$

$$S = \int d^4x \sqrt{-g^{(E)}} \left[\frac{M_P^2}{2} R^{(E)} + \frac{1}{2} g^{(E)}_{\mu\nu} \partial^\mu \phi \partial^\nu \phi - \frac{M^2 M_P^2}{8} \left(1 - e^{-\sqrt{\frac{2}{3}}\phi/M_P} \right)^2 \right]$$

• If the correction to EH gravity is quantum in origin, we expect

$$M \simeq \Lambda_s$$

Starobinsky Inflation and the Swampland

Cosmological Argument

• The transformation between frames acts as

Starobinsky Inflation and the Swampland

Cosmological Argument

• The transformation between frames acts as

$$R^{(J)} \approx \Omega^2 R^{(E)} \qquad \Omega^2 \simeq \left(1 - 2\frac{R^{(E)}}{M^2}\right)^{-1} \qquad R^{(E)} \lesssim \Lambda_{\rm s}^2$$

Starobinsky Inflation and the Swampland

Cosmological Argument

• The transformation between frames acts as

$$R^{(J)} \approx \Omega^2 R^{(E)} \qquad \Omega^2 \simeq \left(1 - 2\frac{R^{(E)}}{M^2}\right)^{-1} \qquad R^{(E)} \lesssim \Lambda_{\rm s}^2$$

• A positive conformal factor demands

Starobinsky Inflation and the Swampland

Cosmological Argument

• The transformation between frames acts as

$$R^{(J)} \approx \Omega^2 R^{(E)} \qquad \Omega^2 \simeq \left(1 - 2\frac{R^{(E)}}{M^2}\right)^{-1} \qquad R^{(E)} \lesssim \Lambda_{\rm s}^2$$

• A positive conformal factor demands

$$1 - 2\frac{\Lambda_{\rm s}^2}{M^2} > 0 \qquad \qquad M^2 \gtrsim 2\Lambda_{\rm s}^2$$

Starobinsky Inflation and the Swampland

Cosmological Argument

• The transformation between frames acts as

$$R^{(J)} \approx \Omega^2 R^{(E)} \qquad \Omega^2 \simeq \left(1 - 2\frac{R^{(E)}}{M^2}\right)^{-1} \qquad R^{(E)} \lesssim \Lambda_{\rm s}^2$$

• A positive conformal factor demands

$$1 - 2\frac{\Lambda_{\rm s}^2}{M^2} > 0 \qquad \qquad M^2 \gtrsim 2\Lambda_{\rm s}^2$$

• UV bounds during inflation require

Starobinsky Inflation and the Swampland

Cosmological Argument

• The transformation between frames acts as

$$R^{(J)} \approx \Omega^2 R^{(E)} \qquad \Omega^2 \simeq \left(1 - 2\frac{R^{(E)}}{M^2}\right)^{-1} \quad R^{(E)} \lesssim \Lambda_{\rm s}^2$$

• A positive conformal factor demands

$$1 - 2\frac{\Lambda_{\rm s}^2}{M^2} > 0 \qquad \qquad M^2 \gtrsim 2\Lambda_{\rm s}^2$$

• UV bounds during inflation require

$$R^{(E)} \simeq \frac{4\Lambda}{M_P^2} = \frac{M^2}{2} \qquad \qquad M^2 \lesssim 2\Lambda_{\rm s}^2$$

Starobinsky Inflation and the Swampland

Cosmological Argument

• The transformation between frames acts as

$$R^{(J)} \approx \Omega^2 R^{(E)}$$
 $\Omega^2 \simeq \left(1 - 2\frac{R^{(E)}}{M^2}\right)^{-1}$ $R^{(E)} \lesssim \Lambda_{\rm s}^2$

• A positive conformal factor demands

$$1 - 2\frac{\Lambda_{\rm s}^2}{M^2} > 0 \qquad \qquad M^2 \gtrsim 2\Lambda_{\rm s}^2$$

• UV bounds during inflation require

$$R^{(E)} \simeq \frac{4\Lambda}{M_P^2} = \frac{M^2}{2} \qquad \qquad M^2 \lesssim 2\Lambda_{\rm s}^2$$

Starobinsky Inflation and the Swampland

Perturbative Argument

• The graviton propagator is corrected by a tower of species as

Starobinsky Inflation and the Swampland

Perturbative Argument

• The graviton propagator is corrected by a tower of species as

$$\pi^{-1}(p^2) \simeq p^2 \left(1 - N_{sp} p^2\right) = p^2 \left(1 - \frac{p^2}{\Lambda_s^2}\right) \qquad \Lambda_s = \frac{M_P}{N^{\frac{1}{d-2}}}$$

Starobinsky Inflation and the Swampland

Perturbative Argument

• The graviton propagator is corrected by a tower of species as

$$\pi^{-1}(p^2) \simeq p^2 \left(1 - N_{sp} p^2\right) = p^2 \left(1 - \frac{p^2}{\Lambda_s^2}\right) \qquad \Lambda_s = \frac{M_P}{N^{\frac{1}{d-2}}}$$

• We can consider a gravitational action

Starobinsky Inflation and the Swampland

Perturbative Argument

• The graviton propagator is corrected by a tower of species as

$$\pi^{-1}(p^2) \simeq p^2 \left(1 - N_{sp} p^2\right) = p^2 \left(1 - \frac{p^2}{\Lambda_s^2}\right) \qquad \Lambda_s = \frac{M_P}{N^{\frac{1}{d-2}}}$$

• We can consider a gravitational action

$$S = \frac{M_P^2}{2} \int d^4 x \, \sqrt{-g} \left[R + \frac{1}{M^2} \left(R^2 - 2R_{\mu\nu} R^{\mu\nu} \right) \right]$$

Starobinsky Inflation and the Swampland

Perturbative Argument

• The graviton propagator is corrected by a tower of species as

$$\pi^{-1}(p^2) \simeq p^2 \left(1 - N_{sp} p^2\right) = p^2 \left(1 - \frac{p^2}{\Lambda_s^2}\right) \qquad \Lambda_s = \frac{M_P}{N^{\frac{1}{d-2}}}$$

• We can consider a gravitational action

$$S = \frac{M_P^2}{2} \int d^4x \ \sqrt{-g} \left[R + \frac{1}{M^2} \left(R^2 - 2R_{\mu\nu} R^{\mu\nu} \right) \right]$$

• Which modifies the propagator as

Starobinsky Inflation and the Swampland

Perturbative Argument

• The graviton propagator is corrected by a tower of species as

$$\pi^{-1}(p^2) \simeq p^2 \left(1 - N_{sp} p^2\right) = p^2 \left(1 - \frac{p^2}{\Lambda_s^2}\right) \qquad \Lambda_s = \frac{M_P}{N^{\frac{1}{d-2}}}$$

• We can consider a gravitational action

$$S = \frac{M_P^2}{2} \int d^4x \, \sqrt{-g} \left[R + \frac{1}{M^2} \left(R^2 - 2R_{\mu\nu} R^{\mu\nu} \right) \right]$$

• Which modifies the propagator as

$$\pi^{-1}(p^2) \simeq p^2 \left(1 - \frac{2}{M^2}p^2\right)$$

Starobinsky Inflation and the Swampland

Perturbative Argument

• The graviton propagator is corrected by a tower of species as

$$\pi^{-1}(p^2) \simeq p^2 \left(1 - N_{sp} p^2\right) = p^2 \left(1 - \frac{p^2}{\Lambda_s^2}\right) \qquad \Lambda_s = \frac{M_P}{N^{\frac{1}{d-2}}}$$

• We can consider a gravitational action

$$S = \frac{M_P^2}{2} \int d^4x \ \sqrt{-g} \left[R + \frac{1}{M^2} \left(R^2 - 2R_{\mu\nu} R^{\mu\nu} \right) \right]$$

• Which modifies the propagator as

$$\pi^{-1}(p^2) \simeq p^2 \left(1 - \frac{2}{M^2}p^2\right)$$

$$M \simeq \Lambda_{\rm s}$$

Starobinsky Inflation and the Swampland

Inflationary Bounds

• During Inflation we require $H \simeq M \simeq \Lambda_s \simeq 10^{14} \text{GeV}$

Starobinsky Inflation and the Swampland

- During Inflation we require $H \simeq M \simeq \Lambda_s \simeq 10^{14} {\rm GeV}$
- This implies $m_{KK} \simeq 10^5 {
 m GeV}$, $N_{sp} \simeq 10^{10}$

Starobinsky Inflation and the Swampland

- During Inflation we require $H \simeq M \simeq \Lambda_s \simeq 10^{14} {\rm GeV}$
- This implies $m_{KK} \simeq 10^5 {
 m GeV}$, $N_{sp} \simeq 10^{10}$
- An exponential scaling $M=M_{*}e^{\gamma\phi/M_{P}}$ modifies the inflationary potential as

Starobinsky Inflation and the Swampland

- During Inflation we require $H \simeq M \simeq \Lambda_s \simeq 10^{14} {\rm GeV}$
- This implies $m_{KK} \simeq 10^5 {
 m GeV}$, $N_{sp} \simeq 10^{10}$
- An exponential scaling $M=M_{*}e^{\gamma\phi/M_{P}}$ modifies the inflationary potential as

$$V(\phi) = \frac{M_P^2 M_*^2}{8} e^{2\gamma\phi/M_P} \left(1 - e^{-\sqrt{\frac{2}{3}}\phi/M_P}\right)^2$$

Starobinsky Inflation and the Swampland

- During Inflation we require $H \simeq M \simeq \Lambda_s \simeq 10^{14} \text{GeV}_s$
- This implies $m_{KK}\simeq 10^5 {
 m GeV}, \ N_{sp}\simeq 10^{10}$
- An exponential scaling $M=M_{*}e^{\gamma\phi/M_{P}}$ modifies the inflationary potential as

$$V(\phi) = \frac{M_P^2 M_*^2}{8} e^{2\gamma\phi/M_P} \left(1 - e^{-\sqrt{\frac{2}{3}}\phi/M_P}\right)^2$$

Starobinsky Inflation and the Swampland

 $V(\phi)$

 $\overline{M^2_*M^2_P}$

r

- During Inflation we require $H \simeq M \simeq \Lambda_s \simeq 10^{14} \text{GeV}$
- This implies $m_{KK} \simeq 10^5 {
 m GeV}$, $N_{sp} \simeq 10^{10}$
- An exponential scaling $M=M_{*}e^{\gamma\phi/M_{P}}$ modifies the inflationary potential as

$$V(\phi) = \frac{M_P^2 M_*^2}{8} e^{2\gamma\phi/M_P} \left(1 - e^{-\sqrt{\frac{2}{3}}\phi/M_P}\right)^2$$

$$\gamma = \frac{\Lambda'_{\rm s}}{\Lambda_{\rm s}} \quad -0.004 \le \gamma \le 0.001 \quad \frac{1}{\sqrt{6}} \le \left|\frac{\Lambda'_{\rm s}}{\Lambda_{\rm s}}\right| \le \frac{1}{\sqrt{2}}$$

Starobinsky Inflation and the Swampland

String Theory Embedding

• Compactifying the 10d SUGRA action to 4d we obtain

Starobinsky Inflation and the Swampland

String Theory Embedding

• Compactifying the 10d SUGRA action to 4d we obtain

Heterotic: $M \simeq M_s$ String tower:

$$\Lambda_{\rm s} \simeq M_s \simeq g_s M_P$$
$$N \simeq g_s^{-2}$$

Starobinsky Inflation and the Swampland

String Theory Embedding

• Compactifying the 10d SUGRA action to 4d we obtain

String tower: $\begin{cases} \Lambda_{\rm s} \simeq M_s \simeq g_s M_P \\ N \simeq g_s^{-2} \end{cases}$ $M \simeq M_s$ Heterotic: $\begin{cases} \Lambda_{\rm s} \simeq M_{P,10} \simeq \frac{M_P}{\sqrt{\tau_2}} \\ N \simeq \tau_2 \simeq \mathcal{V}^{\frac{1}{3}} \end{cases}$ Type IIB: $M \simeq g_s \frac{M_P}{\mathcal{V}_s^{1/6}}$ KK tower:

Starobinsky Inflation and the Swampland

String Theory Embedding

• Compactifying the 10d SUGRA action to 4d we obtain

 $\begin{cases} \Lambda_{\rm s} \simeq M_s \simeq g_s M_P \\ N \simeq g_s^{-2} \end{cases}$ String tower: $M \simeq M_s$ Heterotic: $\begin{cases} \Lambda_{\rm s} \simeq M_{P,10} \simeq \frac{M_P}{\sqrt{\tau_2}} \\ \\ N \simeq \tau_2 \simeq \mathcal{V}^{\frac{1}{3}} \end{cases}$ Type IIB: $M \simeq g_s \frac{M_P}{\mathcal{V}_s^{1/6}}$ KK tower:

• Not protected from higher curvature corrections

Starobinsky Inflation and the Swampland

Conclusions

- The Starobinsky model of inflation can be interpreted as a QG correction to EH gravity.
- In particular, it can be generated by the renormalization effects of a tower of light species.
- Identifying $M \simeq \Lambda_s$, leads to $\Lambda_s \simeq 10^{14} \, {\rm GeV}, \ N_{sp} \simeq 10^{10}$.
- Starobinsky Inflation is spoiled by an exponential scaling $|\gamma| \gtrsim O(10^{-3})$.
- Top-down arguments can be used to identify $M\simeq \Lambda_s$.