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Swampland Distance Conjecture |
Ooganc & Yafa 06

Along infinite distance geodesics there is an infinite tower of
states which become exponentially light asymptotically

Mp 4
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Curvature Conjecture |
Ooganc & Yafa 06

The scalar curvature near the points at infinity is non-positive
( negative if dim . > 1)

Imz ,

Examples: Greene, Shapere, Vaja, Yau'§9

i) type IIB axio-dilaton
T =C,y+ig !

A 4
N

K = —log(—i(tr — 7))

ii) single K&hler modulus
T=b+it
K = —3log(—i(T —T))




Curvature Conjecture |
Ocgurni & Vafa 06

The scalar curvature near the points at infinity is non-positive
( negative if dim . > 1)

- Further support based on type Il string
theory compactified on CY manifolds
—> 4d /' = 2 supergravity theories

- In this context counterexamples were
found in CY Vector Multiplet moduli
spaces with three moduli

l Trenner & Weilson' 09

Asymptotic curvature not only @
positive but also divergent! )




Curvature Conjecture |
Ooganc & Yafa 06

The scalar curvature near the points at infinity is non-positive
( negative if dim . > 1)

- Further support based on type Il string
theory compactified on CY manifolds

uestions:
—> 4d /' = 2 supergravity theories Q

- In this context counterexamples were When is the asymptotic

found in CY Vector Multiplet moduli curvature positive?
spaces with three moduli

l Treuner & Welson' 0F When is it divergent?

What is the physical

Asymptotic curvature not only @ source of the divergence?
positive but also divergent! L




The Laboratory: type llA on a CY, VM

We focus on: CType IAonaCYs | —m» Muy=2 = Mnpwm x@

Large volume regime: K = -log (JJ/\ JAJT+ > J=1tw, = eK=r 14

Infinite distance LV limits: physical realisation as backreaction of 4d strings

made up from NS5-branes wrapping Nef divisors of Xs (EFT strings) Lawsa et al. 2l

1“ =15+ ep, with ¢ — o

Voly ~ ¢" g, ~ " w=1223

. 1| x
SDC tower: DO-branes mp, = m: 7
w .
m% N d)_w N E strings
M3 M3 Limits classified in terms of w = 1,2,3

Corvilain, Grimm, Valenzuela 18 Lee, Lencte, Weigand 19



Type llA large volume limits

|dea: compute the scalar curvature along EFT string trajectories

Type lIA CY3 VM sector: EFT strings are type IIA NS5-branes wrapping Nef divisors

Classification of limits:

4 )
t“=e% with ¢ - oo

g;(¢) ~ Voly ~ ¢" — oo
N J

Large volume and
strong 10d coupling

Cornvdlaie, Grimm, Valenguela 18— Lee, Lenche, Weigand 19

bec

— a
k =x,.e%

— b c
k,=x,.e’e

c

W Definition Dual description
3 k20 M-theory on X
2 k=0, kaz0 F-theory on X
1 Ka=0, Kap#0 Heterotic dual

kab = Kabc€




Type lIA vs. M-theory description

4 I ; 2

¢ = ea¢ with ¢ — 00 M—theory on Sl X X M¢ = ta/VOI)I(/3

>
2 w 27zR- = Voli/3
g;(¢) ~ Voly ~ ¢" — o0 ks X
» Y d 4
I, =4Volyg . Gauge kinetic matrix J
> X

¢, = const. Volu = const.
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4 I ; 2

¢ = ea¢ with ¢ — 00 M—theory on Sl X X M¢ = ta/VOI)I(/3

>
2 W 27R- = Voll/?
g; (@) ~ Voly ~ ¢p" — o0 TRs X
% \ %
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> X

Volyv = const.



Type lIA vs. M-theory description

4 N

¢ = eaqﬁ with ¢ — 00 M—theory on Sl X X M¢ = ta/Vol)l(B
>
g3(@) ~ Voly ~ " = o 27Rs = Vol
/ \
I, =4Vol,g ., Gauge kinetic matrix J
k=x,k e‘e’e
6 1/3 k Zb abc
Me — | — a -1 a__ ,a_ b0
w=3 limits ) <k> [e e <t0 "k ) T ] Ky = Kypeeet

finite distance trajectory for M-theory on X

w=2,1 limits infinite distance boundary of M-theory on X



The (type IlA) scalar curvature

In special geometry there are simple formulas for the Riemann curvature

Stwominger 90
Implementing the large-volume axionic shift symmetries one finds:
R = 8 efKaceKbdf
abed = 8ab8cd T 8ad8bc ~ 64Vol2

ef
g g g KaceKbdf
Rir/2 = —nu(ny, + 1 +Y2> Y? = = Vol 1?14k x

/ W

~ ga const.

bounded from below



The (type IlA) scalar curvature

In special geometry there are simple formulas for the Riemann curvature

Stwominger 90
Implementing the large-volume axionic shift symmetries one finds:
R = 8 efKaceKbdf
f abed = 8ab8cd T 8ad8bc ~ 64Vol2
) g g g efKaceKbdf
CRH A2=—nyn,+1)+Y > Y? = = Voly IPIIV K, Ky
64 Vol
) / VAN
bounded from below

~ ga const.

In M-theory variables: Y? = jabjcd jef KaceKpar = [gggggde

—> Smooth function in M-theory moduli space



The (type IIA) scalar curvature (2 =-nom,+1+ 1)

y? J“bJCdJefKaceKbdf
Can only diverge at a boundary of M-theory moduli space (strong gauge coupling)
Types of CY3 (M-th) Kahler boundaries:  %itten 95

- Curve collapses to a point — flop transition [no divergence]

- Divisor collapses to a curve — su(2) enhancement [no divergence]
- Divisor collapses to a point = non-Lagrangian SCFT [divergence] é%

- Infinite distance boundary — weak coupling regime [uncertain] Q@\



The (type IIA) scalar curvature (2 =-nom,+1+ 1)

Y2 — JabJCdJefKaceKbdf

Can only diverge at a boundary of M-theory moduli space (strong gauge coupling)
Types of CY3 (M-th) Kahler boundaries:  %itten 95

- Curve collapses to a point — flop transition [no divergence]
- Divisor collapses to a curve — su(2) enhancement [no divergence]
- Divisor collapses to a point = non-Lagrangian SCFT [divergence]

- Infinite distance boundary — weak coupling regime [uncertain]

Fully collapsing divisors D are non-Nef and generalised del Pezzo

In type IIA variables D does not collapse, but stays of constant volume while
Vol ~ ¢" diverges = a gauge coupling remains constant along the limit



The 4d EFT viewpoint

A constant gauge coupling alongthe N 4
limit suggests that there is always some
interacting gauge theory below the SDC
scale, despite the exponential fall-off

et us reconsider the kinetic terms in
units of the 4d cut-off mg = M3/4Vol,:

SPpC
tower

5d theory

Mlg[gab dT* A *dT? = mf[lab dT® A *dT?

m



The 4d EFT viewpoint

A constant gauge coupling alongthe N 4
limit suggests that there is always some
interacting gauge theory below the SDC

SpC
scale, despite the exponential fall-off

tower

5d theory

Let us reconsider the kinetic terms in
units of the 4d cut-off mg = M3/4Vol,:

M; [gab dT* A *dTP = mf[lab dT A *dT?

— In 4d EFT units, most kinetic terms diverge along the infinite distance limit, but
some remain constant when some gauge couplings do as well

Directions that belong to ker k,, with k, = k,,.e°

C

kerk,#0 < D C X;
contractible divisor



The 4d EFT viewpoint

Below the SDC scale we recover a 4d N=2 rigid field theory

1
S}Q’\figid = m? JlapdT" A *dTP + ) JIUPFO' AN¥4F? + R, F° AN F?

The dynamical fields are 7° € kerk,, g.__ QD direction ¢ excluded!

Rigid prepotential: Fligia = — éKGMT”TPTT + ...



The 4d EFT viewpoint

Below the SDC scale we recover a 4d N=2 rigid field theory

1
VM — 2
S g = M3 JlapdT” A*dT? + — JIUPF“ A*FP + R, F°AFP

The dynamical fields are T° € ker kab S QDO direction ¢ excluded!

Rigid prepotential: Fligia = — éKGMT"TPTT + ...

In terms of the Kahler potential:

/

My?K = —log (Fo+ F'+...) = —log%O—z+
/! .

2
-2 — T g
T° € kerk,, = My "Kiigig = 3 K



The 4d EFT viewpoint

Below the SDC scale we recover a 4d N=2 rigid field theory

1
VM —
S g = M3 Jl dT° A*dTP +— JIUPF“ A*FP + R, F°AFP

The dynamical fields are T° € ker kab S QDO direction ¢ excluded!

Rigid prepotential: Fiigia = — éKGMT"T/’TT +

The curvature of an N=2 rigid theory is always positive:
2 2

R /2 =—=IP["["x x =~ =
rigid 4 oTU pnv 4V01X MI%

M%




—F 1T viewpoint
Ms
R ~ m2 Riigig

rigid EFT

R

I

rigid SpC
tower tower

(2

igid ~ 18




An example

Swige-cheege CY

Calabi-Yau X, = PU-1109[18] with two Kahler moduli, smooth fibration with base P2

Kip =9 Kip =3 Kiap =3 Ky =0
R A
200
150 F
100 |
50 |
e=(0,1) e=(1,0)
0 ] L >
1
w=2 limit w=3 limits w=3 limit 9 3 2
50 Rya = + O
t2—>00 at1+bt2—>oo tlzqs_)oo ITA 3¢ (¢)

(15)



An example

Swige-cheege CY

Calabi-Yau X, = PU-1109[18] with two Kahler moduli, smooth fibration with base P2

9 3
K =9 Kijp = 3 Kipp =3 Ky =0 ki = <3 1)
!
R " Dy=D,-3D, € kerk,,
200 F l
Kppg = — 9
150 | l3
F. . . =2(T53
100 - rigid 2( )

!

50 i YM‘ .« . p— 3

e = (0,1) e = (1,0) rigid l2(t2)3

V2

'w=2 limit w=3 limits w=3 limit 9
2 1 Ryjp =

[~ — oo at' + bt* - oo 1 =¢ > o0

-50

- + O(¢%)

(15)



The Curvature Criterion

4 D
Along a geodesic trajectory of infinite distance, a moduli space

scalar curvature that diverges asymptotically implies the

presence of a field theory sector that is decoupled from gravity.
- J

Interpretation: curvature divergence sourced by a gauge theory that dominates over gravity

In our case, the decoupling happens A _ ﬂ%
due to a hierarchy of kinetic terms

rigid sSpC
tower tower

For the divergence we need R;; g # 0

New tower of charged particles

H . 13 ” H » . m
Limits “near” the divergent one have rigid EFT *

o - Riigia > 0
a positive and large asymptotic i
curvature. Otherwise it is negative.




The Curvature along different limits

r < ny, smooth

Case H AP — 00)
r=ny —2n%,+nv—|—€
w=3
r<ny R1?11g1d3k¢3
r=ny —272,%/ + ny
w=2

—2(n?, — 2ny + 3)

r < ny, non-smooth

[—2n%, + 4ny — 37'] *

w=1

r=ny —1

—2(n?, — 2ny + 3)

r<ny-—1

Rcl

S4A
I’lgldzsztO tO ¢

k
¢ = 6 kabdekefKaceKbdf

b c

r=rank(k,;,)  k,=«k,.e"e

— c _ a b _c
k,, = K€ k =k,.e’e
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The Curvature along different limits

r < ny, smooth

Case H AP — o0)
r=ny —2n%,+nv+€
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r<ny Rlcfllgld3k¢3
r=ny —272,%/ + ny
w=2

—2(n?, — 2ny + 3)

r < ny, non-smooth

[—2'n,%, + 4ny — 37‘] *

w=1

r=ny —1
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Rcl
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The Curvature along different limits

Case IIA (¢ — o0)
r=ny —2n} +ny +¢€
w=3
r<ny r1g1d3k¢3
w=2 r< ny, smooth —2(n%, — 2ny + 3m
r < ny, non-smooth |\[—2n? + 4dny — 37'd
r=ny—1 —2(n?, — 2ny + 3)
w=1
r<ny—1 ergldzsztgt(I)\(b

k
(S 6 kabdekefKaceKbdf

RCI

Sisia = 0, but there can

be divergence due to we
ingtanton correctiong

b c

r=rank(k,;,)  k,=«k,.e"e

— c
k b = Kabc€

— a,b,c
a k =x,.e‘e’e



Aftermath

We have computed the asymptotic behaviour of the scalar curvature for a
huge set of cases, using the recent classification of infinite distance limits

the asymptotic curvature seems to be

Emerging picture: _
T the result of two competing effects

- Gravitational contribution, that is negative and asymptotically constant
along infinite distance limits, as 4d gravity decouples due to the SDC

- Rigid field theory contribution, that is non-negative and diverges if the
theory remains dynamical below the SDC scale along the limit

Positive finite curvature is recovered when some gauge interactions are
much stronger than that of the graviphoton, but not parametrically

If this is a general feature, it could be used to detect corners of the string
theory landscape with non-trivial EFTs



Conclusions

* Swampland criteria have proven to be particularly powerful in asymptotic regions of
field space. In this work we have focused on the behaviour of the scalar curvature,
for which there is a proposal and counterexamples that challenges it.

* We have analysed the asymptotic behaviour of the scalar curvature in 4d N=2
moduli spaces, which have been recently considered in light of the SDC.

e We have focused on type IIA CY VM sector at large volume, which provide a huge
set of limits, recently classified in light of the SDC. In the case the SDC tower always
involved DO-branes, so there is an M-theory description.

* The take-home message is that curvature divergences appear when there is a
non-trivial EFT below the SDC scale, that decouples from gravity.

e The next step is to test this picture in more general setups, and see if similar lessons
can be drawn for other metric invariants or components of the Riemann curvature.






