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As physics students we learn formalisms/algorithms to describe dynamical systems

As physicists we develop and teach formalisms/algorithms to describe dynamical systems

,   ·p = − ∂H
∂q

·q = ∂H
∂p

but why? What makes these formalisms/algorithms special?

They are efficient in describing these systems.

This makes such formalisms susceptible for optimisation.
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Today:  How can we leverage this efficiency to find mathematical structures 
by formulating appropriate optimisation problems?
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… before delving into it, let’s talk a bit about why we should care in the long-term, e.g.:

•Are there new mathematical structures to be discovered in our favourite field 
theories? 
(cf. talks on generalised symmetries)


•How should we describe dynamics with little supersymmetry?  
(cf. talks on understanding N=1 moduli spaces)  

•How should we describe the scattering of particles?

4



What do we mean with an efficient description?
Simple dynamical system

Battaglia et al 2016 (1612.00222) 
…

• We can try to predict the dynamics of 
such a system.


• We can measure how well we 
approximate such a system.

How?
Data: We can simulate such 
systems.

E.g. solve your EOM with an 
appropriate numerical solver. 

Model to predict the next time 
step.


( ·p, ·q) = M(p, q, θ)

model parameters

Fit and evaluate by comparison with 
deviation from simulated :
( ·p, ·q)
Loss = ∑

i
( ·ppred

i − ·psim.
i )2 + ( ·qpred

i − ·qsim.
i )2

phase space points

Simulation Model
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Why is this exciting?
Mathematical structures via automatic differentiation 

Isn’t this the bread and butter fitting and 
designing models which has been done for 
centuries? 

NO, using automatic differentiation we can 
search for different mathematical 
structures and demonstrate their 
efficiency. 

Simulation Model

 p
q

 ·p
·q

Input Target

Model
 p

q
 ·p = − ∂H

∂q
·q = ∂H

∂p

Biased 
Model H

Greydanus et al. 2019

Cranmer et al. 2020

…

Auto-Differentiation
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Learning model for dynamics
Hamiltonian Neural Networks

 p
q

 ·p
·q

Input Target

Model
 p

q
 ·p = − ∂H

∂q
·q = ∂H

∂p

Biased 
Model H

Krippendorf, Syvaeri (ICLR simDL workshop, 2104.14444)

Physics Bias helps for predictions! Auto-Differentiation

Physics Bias: enforce energy conservation
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Greydanus et al. 2019

Cranmer et al. 2020

…

HNNs are more efficient than baseline NNs.



Conserved quantities
Introducing further physicists’ bias 

 p
q

 ·p = − ∂H
∂q

·q = ∂H
∂p

Biased 
Model H

SCNNs: We cannot only learn the Hamiltonian but also the symmetries 
by enforcing canonical coordinates

Modified Losses: 
        
Additional constraint on motion (not just energy conservation), 
i.e. motion takes place on hyper-surface in phase space

0 = ·Fk(p, q) = {H(p, q), Fk(p, q)}

,  
(Input)
p q

• • Learning Symmetries

Training the neural network
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{Pi, Pj} = {Qi, Qj} = 0 {Qi, Pj} = δij

·Pi = − ∂ℋ
∂Qi

·Qi = ∂ℋ
∂Pi

·Pi = 0

                  

L = ∥ ∂ℋ
∂p

− ·qtarget∥2

+∥ ∂ℋ
∂q

+ ·ptarget∥2 + . . .

: Canonical 
Transformation Network

Tψ(p, q)

Pcyclic = const .

Qcyclic

, Pother Qother
 

Hamiltonian Network
ℋϕ(Pcyclic, Pother, Qother) ,  

(Output)

·p = −
∂ℋϕ

∂q
·q =

∂ℋϕ

∂p

Krippendorf, Syvaeri 2104.14444 8



Learning Symmetries
Introducing physicists’ bias 

SCNNs: We cannot only learn the Hamiltonian but also the symmetries 
by enforcing canonical coordinates

Modified Losses for canonical coordinates: 

• Hamilton equations:          and       


• Poisson algebra:                and        

·Pi(p, q) = − ∂H(p, q)
∂Qi(p, q) = 0 ·Qi(p, q) = ∂H(p, q)

∂Pi(p, q)
{Pi, Qj} = δij {Pi, Pj} = {Qi, Qj} = 0

,  
(Input)
p q

• • Learning Symmetries

Training the neural network
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{Pi, Pj} = {Qi, Qj} = 0 {Qi, Pj} = δij

·Pi = − ∂ℋ
∂Qi

·Qi = ∂ℋ
∂Pi

·Pi = 0

                  

L = ∥ ∂ℋ
∂p

− ·qtarget∥2

+∥ ∂ℋ
∂q

+ ·ptarget∥2 + . . .

: Canonical 
Transformation Network

Tψ(p, q)

Pcyclic = const .

Qcyclic

, Pother Qother
 

Hamiltonian Network
ℋϕ(Pcyclic, Pother, Qother) ,  

(Output)

·p = −
∂ℋϕ

∂q
·q =

∂ℋϕ

∂p

Krippendorf, Syvaeri 2104.14444
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Additional Loss terms



Benefits from Physicists’ Bias

• Conserved quantities interpretable:  
 

 

  


• Using learned conserved quantities helps in 
predicting trajectories.

Pc1
= − 4.2px1

− 4.2px2
− 1.3py1

− 1.3py2
, Pc2

= − 0.9px1
− 0.9px2

− 3.2py1
− 3.2py2

L = − 1.1qx1
py1

+0.9qx1
py2

+0.9qx2
py1

−1.0qx2
py2

+1.0qy1
px1

−0.9qy1
px2

−0.9qy2
px1

+1.0qy2
px2
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More sophisticated symbolic regression very active area of research

[e.g. PYSR, Transformer (Large Language Models)]



Symmetries  Integrability→

Krippendorf, Lüst, Syvaeri 202111

Can we search for new mathematical/physical structures?



Integrability
A lightning overview

Krippendorf, Lüst, Syvaeri 2021

• Additional constraint  on motion: 
         
How many  can there be?


• System (2n dimensional) integrable iff:  
n independent, everywhere differentiable  
integrals of motion  (in involution).


• Alternatively search for Lax pair: 
             
s.t. eom are satisfied. Conserved quantities 
via: 
                 
(additional condition for )

Fk
0 = ·Fk = {H, Fk}

Fk

Fk

·L = [L, M]

Fk = tr(Lk)
{Fk, Fj} = 0

Example: Harmonic Oscillator 

• Hamiltonian and EOM: 

 ;     ,  

• Lax pair:  

   ,   


• Conserved quantities: 
     
     
     
         …


 

H = 1
2 p2 + ω2

2 q2 ·q = p ·p = − ω2q

L = a (
p bωq

ω
b q −p ) M =

0 b
2 ω

− ω
2b 0

F1 = 2 λ
F2 = 2λ2 + 4H
F3 = 2λ3 + 12λH   spectral parameterλ…
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Integrability
Krippendorf, Lüst, Syvaeri 2021

Beisert: Lecture Notes on Integrability (p17)

Applications: 
- Classical mechanics (e.g. planetary motion) 
- Classical field theories (1+1 dimensions) 
- Spin Chain Models 
- D=4 N=4 SYM in the planar limit 
- …
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We need some deus ex machina moment…



Formulating the search as optimisation
Human interaction using domain knowledge

• Aim: Method to find new Lax pairs with unsupervised learning (i.e. not requiring prior knowledge of a Lax pair) 
• Lax equation as loss: 

      


• Equivalence to EOM (e.g. ):  has to include  in some component (LHS of EOM),  has to 
include RHS of EOM 
          ,      

        ,  


• Avoiding mode collapse:  
         


• Total loss:  
                             

·L = [L, M] → ℒLax = ·L − [L, M]
2

·xi = fi (xi, ∂xi, . . . ) L xi [L, M]

ℒL = ∑
i,j

min
k ( | |cijk

·L − ·xk | |2 , | | ·Lij | |2 ) + ∑
k

min
ij ( | |cijk

·Lij − ·xk | |2 ) cijk =
∑batch

·Lij

∑batch
·xk

ℒLM = ∑
i,j

min
k ( | | c̃ijk [L, M]ij − fk | |2 , | | [L, M]ij | |2 ) + ∑

k
min

ij ( | | c̃ijk [L, M]ij − fk | |2 ) c̃ijk =
∑batch [L, M]ij

∑batch fk

ℒMC = max (1 − ∑ Aij ,0)
ℒLax−pair = α1ℒLax + α2ℒL + α3ℒLM + α4ℒMC

only fixed up to proportionality (loss function independent of refactor)
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Ansatz and Training

• Samples: points in phase space


• Network ansatz: simple functions in terms of the variables/fields (guided by 
“complexity” of eom), e.g. for harmonic oscillator: 
 

                 
                 
 

                

Lij(p, q) = aij + bijq + cijp
Mij(p, q) = dij + eijq + fijp

ak = σ (ak − ∑ j≠k aj) Softmax( ⃗ak) ⋅ ⃗v

adding more parameters 
for better convergence

enabling the network 
to single out individual components

15



Applications
Harmonic Oscillator

• Harmonic Oscillator: 

                                                ;           


• Lax Pair: 
                                         ,   


• Consistency check:  
                                     


• Conserved quantities: 

                               

H = 1
2 p2 + ω2

2 q2 ·q = p , ·p = − ω2q

L = ( 0.437 q −0.073 p
−0.666 p −0.437 q) M = ( 0.001 0.329

−3.043 −0.001)
dL
dt

= ( 0.437 ·q −0.073 ·p
−0.666 ·p −0.437 ·q) = (0.441 p 0.288 q

2.660 q −0.441 p) = [L, M]

L2 = (0.048618p2 + 0.190969q2 0
0 0.048618p2 + 0.190969q2) ⇒ trL2 ≈ 0.2 H
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Applications
Further systems

• Korteweg-de Vries (waves in shallow water): 
 
                


• Heisenberg magnet: 
 
       ,  ; constraint: 




• O(N) non-linear sigma models (Sine-Gordon equation and 
principal chiral model): 
 
                       ,     ,   . 

·ϕ(x, t) + ϕ′ ′ ′ (x, t) + 6ϕ(x, t)ϕ′ (x, t) = 0

H = 1
2 ∫ dx ⃗S2(x) ⃗S ∈ S2

{Sa(x), Sb(y)} = ϵabcSc(x)δ(x − y)

ℒ = − Tr(JμJμ) Jμ = (∂μg)g−1 μ = 0,1

17 see also recent work Lal, Majumder, Sobko 2304.07247



Perturbations on integrable systems

• Harmonic Oscillator: 

        


• Are the following perturbations 
integrable: 
       ,    


• Initialise network at known solution for 
unperturbed system and see how it 
reacts to samples from perturbed 
system

H0 =
p2

x + p2
y

2m
+ ω2 (q2

x + q2
y )

H1 = ϵq2
x q2

y H2 = ϵqxqy

: non-integrableH1

: integrableH2

values for ϵ
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Summary: Learning integrability
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Beisert: Lecture Notes on Integrability (p17)

We can do this with ML!

Key insight: formulate this search as an optimisation problem. Generate data and solve it.

We get analytic and verifiable results.

(see also review Gukov, Halverson, Ruehle)



Human vs. LLM (2021  2024)→
Scalability of scientific analysis from toy examples

• What is known about relevant mathematical structures for problem X?  
       LLMs, graduate student, postdoc, professor


• Setting up the optimisation problem?  
       LLMs, graduate student, postdoc, professor


• Implementing the code? 
       LLMs, unexperienced coder, experienced coder
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What can we get out of AI 
numerical tools?
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LLMs can do some simple calculations, simple coding, and give some overview.

NNs are extremely good function approximators.



Which target for scaling up? 

23

Cosmological constant 
How can we get hierarchies? 
Which mathematical structures to address hierarchies?

Which conjectures can we proof for classes of models?



Roadmap: theoretical ways to address the CC

• Pick an interesting benchmark to develop customised ML methods, demonstrate 
capabilities and compare with human explorations:


• Benchmark 1: IIB flux vacua. Different types of construction for ? 
P(phenomenology|UV-data) 
[talk about our work by Andreas Schachner, interface with BSM experimental 
searches]


• Benchmark 2: mathematically proven statements about IIB flux vacua  
[exciting interface with LLMs in automated theorem proving]


• Many compactifications and combinatorial choices, reasonable level of sophistication, 
but we can be very explicit about the EFT. 
 

|W0 | ≪ 1
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Systematically exploring model space
Few  Many -parameters: enhancing our analysis of EFTs→ → ∞

Example Method

Few parameter 
models V(a,b) Analytic

Models with scalable 
number of field

V(ai) 
I=1,…,N, N>>1

Analytic (often 
statistical physics) 
[Bousso/Polchinski, 

Douglas/Denef et al.,…]

Models 
approximating any 

possible model
VNN(x)

ML (NNs are 
universal 

approximations)

Analytic  exploit mathematical structure (e.g. symmetries)≈
25

Space of all models

Few parameter models

Many parameter models

NN models

cf. D. Whiteson’s talk string_data

We are limited by theorists’ intuition.

Our target: 
exploration 

with numerical 
model building



Which BSM physics does string theory predict?
Problem: Analyse physics for many string compactifications

String Theory Model Space

Many physics models: 
As many as  vacua 
[Taylor et al.: 1511.03209]

10272,000

 = M4+D

XD

 = M4+D

X̃D

Example: Which model has a particular scale of supersymmetry breaking ?|Wtarget
0 |

How to solve this problem?

• Randomly picking one (limited to very small model spaces)

• Human designed strategy (expensive and usually not exhaustive)


Design optimisation problem and find solution, e.g.:

     


• Use a fixed strategy (Monte Carlo) [high dimensions  low-acceptance rate]

• Evolutionary algorithms (genetic algorithms)

• Learn a strategy (e.g. Reinforcement Learning) how to update  

            

• …

E( ⃗N guess, a) = − exp (−( |W0( ⃗N guess) | − |W target
0 | )2/a)

→

⃗N guess
PNN,θ(Δ ⃗N flux | ⃗N flux)

Result on “toy” model: Learning a strategy can be more efficient in finding solutions than “standard” Monte Carlo. 

Reinforcement Learning

Monte Carlo

# 
M

od
el

s 
fo

un
d

# Steps
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Krippendorf, Kroepsch, Syvaeri: 2107.04039

Cole, Krippendorf, Schachner, Shiu: 2111.11466 (Neurips Physics Workshop)  
Krippendorf, Vall Camell: 2209.15433



Which BSM physics does string theory predict?
Is there structure in the solutions? Yes

How are our solutions arranged in -space?⃗N

Our solutions seem to 
flow from a random 
starting point to 
particular regions in 
flux space!

Random starting point

( )⃗N ∈ ℤ8

Time evolution from RL

Components of  show correlations.⃗N

Can we characterise structures analytically via dimensional reduction?

Distribution of samples generated by RL

( )⃗N ∈ ℤ8

Performed Principal Component 
Analysis on the output of flux vectors 
in .

Robustness: same structure with 
genetic algorithm (GA).

Hints that solution space is 
effectively lower-dimensional.

ℤ8
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Krippendorf, Kroepsch (Master student), Syvaeri (PhD student): 2107.04039

Cole, Krippendorf, Schachner, Shiu: 2111.11466 (Neurips Physics Workshop)  
Krippendorf, Vall Camell: 2209.15433



What do we need for many-moduli examples?

Easily obtain flux vacua relevant for our physics 
questions:


•Many geometries, different regions of moduli space

•Different questions (e.g. SUSY, non SUSY vacua)

•Many samples (statistics, dedicated search 

algorithms) 

  JAXvacua→

2306.06160
28

See Andreas Schachner’s talk



What can we say about  using 
JAXvacua?

W0

2307.15747: work with J. Ebelt (Master student), A. Schachner
29



What can we say about ?W0




Universal behaviour


Looks Gaussian?

(Near origin: Gaussian [Denef, Douglas, …])

W0 = 2/π eK/2 W

30

cf. Erik Plauschinn’s talk



What can we say about ?W0

Gaussian distribution is a reasonable fit. 

We observe deviations which now can  
be characterised.


Gaussian approximation  Expectation for 
smallest value for  for a given sample 
(interesting for dS in KKLT).


Standard deviation +  + sample size 
relevant! 

Benchmark for dedicated search algorithms.

→
|W0 |

Nflux
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Better, ML needed 
(wip with Ebelt, Schachner)

Gaussian prediction

cf. Erik Plauschinn’s talk



Conclusions
How can we learn mathematical structures?

• Formulate appropriate optimisation problem and solve it. This does not 
require knowing the mathematical structure apriori.


• Today examples where this allows to find symmetries and integrable 
structures (Lax pair/connection, symmetries)


• Why is it working? Using physics bias and appropriate mathematical 
structures is more efficient, i.e. mathematics is unreasonably effective and 
this can be used to find it [Wigner]


• Automatic differentiation and probabilistic programming are key. 
Numerically harder problems can be addressed as well using dedicated 
efforts with reasonable scaling of computational cost. 


• Flux vacua benchmark: what can we obtain for models with many moduli?


• Which role will LLMs play? How quickly can we scale from toy tasks 
to larger tasks? What are foundation models for mathematical physics?
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Thank you!
Future of Physics?

Join a Two Year Master‘s 
of Physics Program!

Apply AI methods to state-of-the-art physics 
questions in a one year research project.

www.physik.lmu.de/AI-in-Physics

Want to Shape the 

(e.g. in astrophysics, biophysics, didactics of 
physics, fundamental theory, laser physics,  
medical physics or solid state physics)

with a Certificate in  
Artificial Intelligence

https://www.physik.lmu.de/AI-in-Physics

New Master of Physics 
degrees at LMU Munich 

and Cambridge

https://mphildis.bigdata.cam.ac.uk/

https://www.physik.lmu.de/AI-in-Physics

