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As physics students we learn formalisms/algorithms to describe dynamical systems

As physicists we develop and teach formalisms/algorithms to describe dynamical systems

but why? What makes these formalisms/algorithms special?

They are efficient in describing these systems.

This makes such formalisms susceptible for optimisation.



Today: How can we leverage this efficiency to find mathematical structures
by formulating appropriate optimisation problems?




.. before delving into it, let’s talk a bit about why we should care in the long-term, e.q.:

e Are there new mathematical structures to be discovered in our favourite field
theories?
(cf. talks on generalised symmetries)

* How should we describe dynamics with little supersymmetry?
(cf. talks on understanding N=1 moduli spaces)

* How should we describe the scattering of particles?



What do we mean with an efficient description?
Simple dynamical system

Simulation Model

* We can try to predict the dynamics of
such a system.

* We can measure how well we
approximate such a system.

How?
Data: \We can simulate such Model to predict the next time Fit and evaluate by comparison with
systems. | step. deviation from simulated (p, §):
Eg solve your EOM with an (p, q) — M(p, q, 9) 1.oSS = 2 (p$red _p?im.)2 n (q?red _ q?im.)Z

appropriate numerical solver.

/

model parameters .
phase space points

Battaglia et al 2016 (1612.00222)



Why is this exciting?

Mathematical structures via automatic differentiation Cranmer ot al, 2020

Simulation Model

Isn’t this the bread and butter fitting and
desighing models which has been done for
centuries?

NO, using automatic differentiation we can
search for different mathematical
structures and demonstrate their
efficiency.

Auto-Differentiation
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Learning model for dynamics

Cranmer et al. 2020
Hamiltonian Neural Networks
Grav. 2-body system

Ground
truth

Physics Bias helps for predictions! Auto-Differentiation
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Grav. 2-body system

mg = Ground
Conserved quantities
| | | , |
Introducing further physicists’ bias
SCNNs: We cannot only learn the Hamiltonian but also the symmetries 7
by enforcing canonical coordinates JBaseline ™~
7 \
r 2 (w : “'
p Biased = \ :
- = H |=»| on L\, /
Model 4=— R 2
N y p NN /:/:i
» HNN =" e,
p’ q —> Tw(p’ (I): Ganonical +( Pother’ (20ther )+ %qb(Pcyclic’ Pother’ Qother) — p - _d)’ q - _¢ ’ZZI \\‘\:“
(Input) Transformation Network ~ Hamiltonian Network (gq tput) op :,':u' \‘r:‘l
\- / Qc clic - / - it J \;\“:\"\ r;’Z"
\§§i:§\1y/};l
Modified Losses: SCNN ““=
_ ° _ //' \

O — Fk(pa Q) — {H(pa Q)aFk(pa Q)} ,’/ ‘\

" . . . . | |
Additional constraint on motion (not just energy conservation), \ }

l.e. motion takes place on hyper-surface in phase space ‘\ Vi
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Grav. 2-body system

- - Ground
Learning Symmetries
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Benefits from Physicists’ Bias

& 0.8- — ENN_L
) : S SCNN (1)
* Conserved quantities interpretable: Gos| — 2N 3
'%0_4- . gg““_(czgnstraint (3)
5 —— SCNN_constraint (4)
p.=-42p —-42p —13p, —13p, , P, =-09, —09p, —32p, —3.2p, L“Z,J,o_z
L =-1.1¢, p, +0.9¢, p, +0.9q, p, —1.0g, p, +1.0g, p, —0.9¢q, p, —0.9¢, p, +1.0q, p, § (1)o
o> 107
)
* Using learned conserved quantities helps In o
0p
S

predicting trajectories.
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More sophisticated symbolic regression very active area of research
[e.g. PYSR, Transformer (Large Language Models)]
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Can we search for new mathematical/physical structures?

Symmetries — Integrability

11 Krippendorf, Lust, Syvaeri 2021
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Integrability

A lightning overview

« Additional constraint F; on motion: Example: Harmonic Oscillator

e Hamiltonian and EOM:
How many F; can there be? 1 )

* System (2n dimensional) integrable iff: 2 2
n independent, everywhere differentiable

integrals of motion £, (in involution). + Lax parr i
p bwg 0 S W
» Alternatively search for Lax pair: L=a (ﬂ —p > “l_e
L =[L M) b 2
s.t. eom are satisfied. Conserved quantities * Conserved quantities:
via: Fi=2A4
F, = tr(L") F, =2A*+4H

(additional condition for {Fk, F}} — O) F3 — Zﬂﬁ -+ 12/1H A... spectral parameter

12



Krippendorf, Lust, Syvaeri 2021

Integrability

e

/

[ Having a Lax pair formulation of integrability is very convenient, but

\We need some deus ex machina moment...

inspiration is needed to find it,
its structure is hardly transparent, % , ‘\
it is not at all unique, oy
the size of the matrices is not immediately related to the dimensionality of the
system.

Therefore, the concept of Lax pairs does not provide a means to decide whether
any given system is integrable (unless one is lucky to find a sufficiently large Lax

air).
pair) Beisert: Lecture Notes on Integrability (p17)J

Applications:
- Classical mechanics (e.g. planetary motion)
- Classical field theories (1+1 dimensions)

- Spln Chain Models Nonlinear Sciences > Exactly Solvable and Integrable Systems
- D=4 N=4 SYM in the planar limit [submitted on 12 Mar 2021]
_ Integrability ex machina

K J Sven Krippendorf, Dieter Lust, Marc Syvaeri

13



Formulating the search as optimisation

Human interaction using domain knowledge

 Aim: Method to find new Lax pairs with unsupervised learning (i.e. not requiring prior knowledge of a Lax pair)

 Lax equation as loss: ,
L=[LM] > %= |L-ILM]
. Equivalence to EOM (e.g. X; = J; (xl-, ox,, . .. )): L has to include x; in some component (LHS of EOM), [L, M| has to
include RHS of EOM .
Zbatch Lij

. . . g . p) . - . 9
2= Y min (Heph =i P 1L P ) + X min (Hepdy =117, =St
L] k k Y zbaztchxk

L]
. - 9) 2 . ~ 2 - zba ch L, M]ij
Ly = 2 min (112 0L M1 =il P LM )+ 3 min (1 LMY =11 ). 2= =50
i I 3] \ / batch 7k
’ AVOIdmg mode Collapse: only fixed up to proportionality (loss function independent of refactor)
P\ = max (1 - |4y ,0)

* Jotal loss:
Zz Lax—pair — alg Lax T 0‘23 LT a3°<Z LM T a4°<Z MC
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Ansatz and Training

e Samples: points in phase space

 Network ansatz: simple functions in terms of the variables/fields (guided by
“complexity” of eom), e.g. for harmonic oscillator:

Lip,q) = a;+ b;q+c;p
Mlj(p ’ q) — dzj T equ +f;'jp

Clk — O (ak — Z]#k Cl]) SOftmaX(E];) . T/)

/ ‘
enabling the network adding more parameters

to single out individual components for better convergence

15



Applications

Harmonic Oscillator

e Harmonic Oscillator: ,
1

W

2 2
(97 003 py o (0001 0.329
—0.666 p —0.437 q )’ —3.043 —0.001

q- g=p, p=-w4q

e [ax Pair:

* Consistency check:

dL (0437¢ -0.073p\ (0441p 0.288¢
dt  \—0.666 p —0437¢g) \2.660¢g —0.441p

* Conserved quantities:
i (0.048618p2 +0.1909694> 0
L —_

) = [L,M]

— = trl?~ 02 H
0 0.048618p* + 0.190969¢°
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Applications

Further systems

. . _ W 17 17¢+10
« Korteweg-de Vries (waves in shallow water): T \11e+1.0  —179 )
: B 5.002 4+ 1.7¢" —5.00%2 — 1.7¢" — 0.5

¢(x’ t) T ¢/,,(x’ t) T 6§b(x’ t)¢’(x, t) =0 A = (—5.0<b2 —1.7¢" — 0.5 5.00% +1.7¢" )

* Heisenberg magnet:
1 Ax:—i5’§—|—0.3(; 2)

H=— dez(x) , S E Sz; constraint: _( 218 2iS8,+25,
9 A 218,25, —1i&,
154(%), Sp(N)} = €apeSc(X)0(x = ¥) L PP Sl It A S

. =~ . /
=2105 + 1¢€,;,0:5;5; ,

* O(N) non-linear sigma models (Sine-Gordon equation and
principal chiral model):

L =-Te(JJ", J,=00,8g ", u=0,1.

17 see also recent work Lal, Majumder, Sobko 2304.07247



Perturbations on integrable systems

e Harmonic Oscillator:

p; +D;
Hy=—2

— 1.0

+ o’ (%? + g, ) o

2m 7 R — 001
10_2é ;;'""""'"""""'"""""‘."':'«3-".;:-,w,u i — 0.001
* Are the following perturbations % 103 ] — 00
integrable: R | ———————— values for e
— 2,2 _ 5
Hl — ¢4x qY’ H2 _ quQy 107 5 H,: integrable
1071 M o s AL M‘ A
iy . . 1 VK o ‘»( % ‘ HTEANE
* Initialise network at known solution for o AL R
unperturbed SyStem and SEC hOW It (I) 1O(I)OO 20(|)OO 30(I)OO 40600 SO(I)OO 60(|)OO 7O(I)OO 80(I)OO
reacts to samples from perturbed steps
system
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Summary: Learning integrability

Having a Lax pair formulation of integrability is very convenient, but \

inspiration is needed to find it, We can do this with ML!
its structure is hardly transparent,

it is not at all unique,
the size of the matrices is not immediately related to the dimensionality of the

system. We get analytic and verifiable results.

Therefore, the concept of Lax pairs does not provide a means to decide whether (see also review Gukov, Halverson, Ruehle)
any given system is integrable (unless one is lucky to find a sufficiently large Lax

air).
pair) Beisert: Lecture Notes on Integrability (p‘I7)J

Key insight: formulate this search as an optimisation problem. Generate data and solve it.
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Human vs. LLM (2021 — 2024)

Scalability of scientific analysis from toy examples

 What is known about relevant mathematical structures for problem X?
LLMs, graduate student, postdoc, professor

o Setting up the optimisation problem?
LLMs, graduate student, postdoc, professor

* Implementing the code?
LLMs, unexperienced coder, experienced coder

20



R

@ : v < ) chat.openai.com © ©
ChatGPT 4 -
You
| am interested in integrable systems. Which mathematical structures are useful to describe such
systems?
ChatGPT

Integrable systems are fascinating objects in mathematical physics and dynamical systems
theory, showcasing a blend of algebraic, geometric, and analytical techniques. They are
distinguished by their ability to be solved exactly in terms of integrals and often exhibit rich,
complex behaviors that are, nonetheless, highly predictable. Several mathematical structures are

particularly useful for describing and analyzing integrable systems:

1. Lie Groups and Lie Algebras: These provide a framework for understanding the symmetries and
conservation laws of integrable systems. | '\L ‘roups describe continuous symmetries, and their

associated Lie algebras help in the study of infinitesimal transformations, which play a crucial

Message ChatGPT...

ChatGPT can make mistakes. Consider checking important information.

21




LLMs can do some simple calculations, simple coding, and give some overview.
NNs are extremely good function approximators.

What can we get out of Al
numerical tools?

22



Which target for scaling up?

Cosmological constant

How can we get hierarchies?

Which mathematical structures to address hierarchies?
Which conjectures can we proof for classes of models?



Roadmap: theoretical ways to address the CC

* Pick an interesting benchmark to develop customised ML methods, demonstrate
capabilities and compare with human explorations:

 Benchmark 1: 1IB flux vacua. Different types of construction for | W, | < 1?

P(phenomenology|UV-data)
[talk about our work by Andreas Schachner, interface with BSM experimental
searches]

* Benchmark 2: mathematically proven statements about IIB flux vacua
[exciting interface with LLMs in automated theorem proving]

 Many compactifications and combinatorial choices, reasonable level of sophistication,
but we can be very explicit about the EFT.

24



Systematically exploring model space

Few - Many — oo-parameters: enhancing our analysis of EFTs

Example Method 8,8 Few parameter models
%< Many parameter models
Few parameter .
b V(a,b) Analytic 88« NN models
models
f all |
. our target: Space of all models
Analytic (often lorati
Models with scalable V(ai) statistical physics) Sxproranion
b £ fiald » Na'N 1 P y , with numerical
numper O e =1,...,N, N>> [BOUSSO/PO|Ch|nSk|, mOdel bUlIdlng
Douglas/Denef et al.,...]
We are limited by theorists’ intuition.
Models ML (NNs are T
approximating any VNN(X) universal
possible model approximations)

Analytic & exploit mathematical structure (e.g. symmetries)
25




Which BSM physics does string theory predict?

Problem: Analyse physics for many string compactifications

String Theory Model Space
Example: Which model has a particular scale of supersymmetry breaking | Wgargetl ?

How to solve this problemf) Number of models found on the conifold

« Randomly picking one (limited to very small model spaces) 104 T 2R Duel DN

* Human designed strategy (expensive and usually not exhaustive) T eopols Reinfor
— ei

ment Learning

-
o
w

Design optimisation problem and find solution, e.q.:

E(N®"S q) = — exp <—( | Wy(NEUess) | — | Wi )Z/a) Monte Carlo

et
o
N

Use a fixed strategy (Monte Carlo) [high dimensions — low-acceptance rate]
Evolutionary algorithms (genetic algorithms)

Learn a strategy (e.g. Reinforcement Learning) how to update N

-
o
=

Many physics models:

As many as 10?79 vacua T
[Taylor et al.: 1511.03209] Pun (AN gux | Ngyy) 10°

# Models found

guess

4 5 6 7

# Steps

0 1 2
leb

Result on “toy” model: Learning a strategy can be more efficient in finding solutions than “standard” Monte Carlo.

Krippendorf, Kroepsch, Syvaeri: 2107.04039
Cole, Krippendorf, Schachner, Shiu: 2111.11466 (Neurips Physics Workshop)

Krippendorf, Vall Camell: 2209.15433
26



Which BSM physics does string theory predict?

Is there structure in the solutions? Yes

—

How are our solutions arranged in N -space?

Flux Correlation Heatmap A3C

Occupation number A3C
Flux h 1

f3 f2
I [=]
N &
- =
- (=]
N (=]
-
o
(=]

f4
=3
o
w
=)
o
=

h1

-0.030

h?2
=}
o
N

h3
=}
-
v

-0.025

h 4
=3

- o
=}

=]

w

-

0.020

0.015

Occupation Number

Our solutions seem to Performed Principal Component

flow from a random
starting point to
particular regions in

flux space! /
Random starting point
(N € 7%

200 300
Krippendorf, Kroepsch (Master student), Syvaeri (PhD student): 2107.04039
Cole, Krippendorf, Schachner, Shiu: 2111.11466 (Neurips Physics Workshop)
Krippendorf, Vall Camell: 2209.15433

0.010

in Zg.

Robustness: same structure with
genetic algorithm (GA).

0.005

Hints that solution space is
effectively lower-dimensional.

Dlstrlbutlon of samples generated by RL
(N € 78

200 300
Timestep

Timestep

Time evolution from RL 07

- 100 0.05 0.24 0.03 0.02 0.02 0.15 0.00
. ! 012 U. ! [ .

-06

10

08

-04

-0.2

Analysis on the output of flux vectors

—_—
Components of N show correlations.

Can we characterise structures analytically via dimensional

reduction?

_20 -

_40 -

—60




What do we need for many-moduli examples?

Easily obtain flux vacua relevant for our physics
questions:
 Many geometries, different regions of moduli space
* Different questions (e.g. SUSY, non SUSY vacua)
 Many samples (statistics, dedicated search

algorithms)

— JAXvacua

See Andreas Schachner’s talk

2306.06160
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What can we say about W, using
JAXvacua?



What can we say about W,?

Wy =+2/n e W

Universal behaviour

Looks Gaussian?
(Near origin: Gaussian [Denef, Douglas, ...])

cf. Erik Plauschinn’s talk

2 Moduli
104 Qp3: 148 51, 11 sol.) 101 Qps: 124 (1.33e+06 sol.)
5 5 -
>
S o N
£
_5 . _5 4
-10 - -10 -
-10 5 0 5 10 _10 5 0 5 10
3 Moduli
104 Qp3: 104 (1.27e+06 sol.) 104 Ops:
5 5
>
= o N
£
_5 . _5 4
~10 A —10 A
~10 5 0 5 10 ~10 5 0 5 10
4 Moduli
101 Qps3: 128 (2.15e+06 sol.) 101 Qps3: 136 (5.04e+05 sol.)
5 5
>
% 01 0
£
_5 . _5 4
-10 - -10 -
10 =5 0 5 10 -10 =5 0 5 10
5 Moduli
10{ Qp3: 156 (2.82e+05 sol.) 101 Qps3: 160 (3.36e+05 sol.)
5 5 -
>
s o N
£
_5 . _5 4
-10 - -10 -
-10 5 0 5 10 -10 -5 0 5 10
RE(Wo) 30 Re(Wo)

10 A

—-10

Qp3: 136 (1.37e+06 sol.)

s

-10 -5 0 5

10 A

Op3: 112 (1.54e+06 sol.)

-10 -5 0 5

10

10 A

—10

QOp3: 132 (1.45e+06 sol.)

10
10 _10 5 0 5 10
104 QOps3: 104 (1.84e+06 sol.)

5
0
_5 -
~101

10 -5 0 5 10 10 -5 0 5 10
101 Qps: 10 -
5 - 5 -
0- 04
—5 - -5 -
~10 1 ~10 -

-10 -5 0 5 10
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What can we say about W?

2 moduli 3 moduli 4 moduli 5 moduli
0.16 - 0204 Ops = 128 /_ 0.25
0.18 1 ~ [ A\
0.14 - 018 4~ @3=136 0.20 -
0.12 - 0-157 0.15 -
> 0.10 0.12 7 0.12 - 0.15 -
Gaussian distribution is a reasonable fit. § 0.08 - 0.10 - 0.10 -
0.06 - 0.08 - 0.08 - 0.107
We observe deviations which now can 0.04 - 0.05 A 0.05 -

0.05 A

0.03 - 0.03 -

be characterised. 0.02 -

0.00 0.00 - 0.00 - 0.00
g 1.00 {=p======pee—————————————— 1.00 - 1.00 1.00 =]
8 0.00 +r—/mmmr——r——m 0.00 - 0.00 0.00 +nm—mmr———rrr—
1073 102 1071 1073 102 1071
|Wol |Wol
5 : .. =1 0.6 -
| —_Gaussian prediction o
Gaussian approximation — Expectation for 10-1- \ —— =10 05
smallest value for | W,,| for agiven sample £ % \ -
(interesting for dS in KKLT). T " = |
c :
Standard deviation + N, . + sample size =~ = | .\ N
relevant! " 107 Better, ML neede C
| (wip with Ebelt, Schachner) 0.0-
Benchmark for dedicated search algorithms. 100 10 108 T1ee o7 R R S T

Sample size r= */x% + X2

cf. Erik Plauschinn’s talk



Conclusions

How can we learn mathematical structures?

* Formulate appropriate optimisation problem and solve it. This does not 10
require knowing the mathematical structure apriori. 102

train loss

* Today examples where this allows to find symmetries and integrable

structures (Lax pair/connection, symmetries) 10

* Why is it working? Using physics bias and appropriate mathematical
structures is more efficient, i.e. mathematics is unreasonably effective and
this can be used to find it [Wigner]

* Automatic differentiation and probabillistic programming are key.
Numerically harder problems can be addressed as well using dedicated
efforts with reasonable scaling of computational cost.

* Flux vacua benchmark: what can we obtain for models with many moduli?

* Which role will LLMs play? How quickly can we scale from toy tasks
to larger tasks? What are foundation models for mathematical physics?
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Join a Two Year Master’s
of Physics Program!

with a Certificate in
Artificial Intelligence

Apply Al methods to state-of-the-art physics
questions in a one year research project.

(e.g. in astrophysics, biophysics, didactics of
physics, fundamental theory, laser physics,
medical physics or solid state physics)

% Bundesministerium
fiir Bildung

und Forschung

https://www.physik.Imu.de/Al-in-Physics

Thank you!

New Master of Physics
degrees at LMU Munich
and Cambridge
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