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Quantum Gravity
Question: What is this scale? effects become relevant

Naively, the Planck scale: Ay ~ Mp,

However, under some circumstances one can have AQG <Y MPl !

l

For instance, when gravity is coupled to large number of light species!
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=P Speciesscale: A\ ~ [Dvali, (Redi) "07]
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<::Y—2
# of light species (below the species scale)
— Implicit equation!
Notice: N, > | - A, < My, !

k>This talk: Leading order in this limit
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[Dvali, (Redi) ‘07]
(see also [Castellano, Herraez, Ibanez '22],

[Cribiori, Lust, Montella ‘23]
and [Blumenhagen, Gligovic, Paraskevopoulou ‘23])
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Alert: Heuristic argument!

Consider a theory with N, species below cut-off A

“~
We should be
able to describe

— it within EFT

Smallest BH
describable in EFT

q o A2—d
BH > 1 Similar one in
But! VS =P A\ < [Agmon, Bedroya, Kang, Vafa '22] , o
( Sspecies ~ N)

“ Sort of a new definition for N, [van de Heisteeg, Vafa, Wiesner ‘23]

Checked that N ~ N, (at leading order!)
[Blumenhagen, Gligovic, Paraskevopoulou ‘23] [Basile, Liist, Montella ‘23]
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Alert: Non-heuristic argument... but no connection to species :)

O(1)
Mér
SEFT— Pl [ddx [— R+Z@@ (R) 4 ...
@k The gravitational EFT cutoff !

R > A — Low energy EFT expansion in gravitational sector breaks down!

Advantages: More rigorous, valid beyond asymptotic limit!

Higher-curvature
corrections to EFT

But: How to compute this?

=3 Compute higher-curvature corrections to EFT from top-down in UV complete theory!

[van de Heisteeg, Vafa, Wiesner, (Wu) '22-'23]+[Cribiori, List ‘23]+[Castellano, Herrdez, Ibanez ‘23]
Coincide with previous notions asymptotically!
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and A, Rest of the talk: A;
Explain more in detail these connections, in a fascinating example

=3 D0 black hole in 10d Type IIA !
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10d Type llA effective action (in Einstein frame)
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MS 1,
Siia” = 2P [dlox\/jg (R—5(0¢)2—5€2¢|F2\2> T

\ Low energy approximation to full-fledge String Theory
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R? and R> terms? =$ Forbidden by maximal supersymmetry!

1
4 class | tree loop
R™ terms! = 5, = 5,1 - 3 .91l (577 4 57) First time in my life that
SUSY made a
C( ) 1 computation harder :(
f _ 10 ¢ 4 . 4
Extensive literature: ST = a W el + SGIOGIOR
9-9'. [Grimm, Ma’yer, S~ Bunch of contractions of
Weissenbacher 15?] - 2 o Iy .1 ) four Riemann tensors
+ references therein S0P = ?J'd Xy/—g eV | Lt R™ — §€10€10R (cumbersome)



Higher Derivative Emergence in 10d Type 1A

R*terms! = §, , = Sclass T 211(5 + S'oor)




Higher Derivative Emergence in 10d Type lIA

R*terms! =9 S, = Scfglss | @tree + §loop) Four graviton scattering
"ol 2“\ level |
at tree level and one loop

in string perturbation theory

(small g, = e? expansion)
Note: No higher-loops!
(e.g. required for M-theory)



Higher Derivative Emergence in 10d Type lIA

R* terms! = SIIA — SCZISS | (Stree + SZOOp) Four graviton scattering
el 2“\ evel |
at tree level and one loop

) in string perturbation theory

Famously shown to be reproduced by (small g = o? expansion)
=

Note: No higher-loops!
(e.g. required for M-theory)

1-loop computation in M-theory on R!? x S
[Green, Gutperle, Vanhove '97]



Higher Derivative Emergence in 10d Type lIA

R* terms! = SIIA — Slclfglss | Gtree + SlOOp) Four graviton scattering
3- 211 at tree level and one loop
) in string perturbation theory

Famously shown to be reproduced by (small g = o? expansion)
=

Note: No higher-loops!
(e.g. required for M-theory)

1-loop computation in M-theory on R!? x S
[Green, Gutperle, Vanhove '97]

Momentum
ke ZonS!
8w L 8w
Small 10d
momentum

Euv Suv



Higher Derivative Emergence in 10d Type lIA

R* terms! = SIIA — Slclfglss | Gtree + SlOOp) Four graviton scattering
3- 211 at tree level and one loop
) in string perturbation theory

Famously shown to be reproduced by (small g = o? expansion)
=

Note: No higher-loops!
(e.g. required for M-theory)

1-loop computation in M-theory on R!? x S
[Green, Gutperle, Vanhove '97]

Momentum
ke ZonS!
8w L 8w
Small 10d R roﬁz TR
momentum R o T2 -

8 8w



Higher Derivative Emergence in 10d Type lIA

R* terms! = SIIA — Slclfglss | Gtree + SlOOp) Four graviton scattering
3- 211 at tree level and one loop
) in string perturbation theory

Famously shown to be reproduced by (small g = o? expansion)
=

Note: No higher-loops!
(e.g. required for M-theory)

1-loop computation in M-theory on R!? x S
[Green, Gutperle, Vanhove '97]

Momentum
ke ZonS!
8 k 8uv

Small 10d

o0
L Y ek
momentum 72
» »

S1 radius



Higher Derivative Emergence in 10d Type lIA

R* terms! = SIIA — Slclfglss | Gtree + SlOOp) Four graviton scattering
3- 211 at tree level and one loop
) in string perturbation theory

Famously shown to be reproduced by (small g = o? expansion)
=

Note: No higher-loops!
(e.g. required for M-theory)

1-loop computation in M-theory on R!? x S
[Green, Gutperle, Vanhove '97]

Momentum
]
ke Zon$ t8t8R4 kinematics
gﬂy k g,ul/
O
Small 10d ~ l J ﬁ Z e_MR_zkz
momentum :
0 v k
g/w g/,u/

S1 radius



Higher Derivative Emergence in 10d Type lIA

R* terms! = SHA — Slclfglss | @tree + SlOOp) Four graviton scattering
3- 211 at tree level and one loop
) in string perturbation theory

Famously shown to be reproduced by (small g = o? expansion)
=

Note: No higher-loops!
(e.g. required for M-theory)

1-loop computation in M-theory on R!? x S
[Green, Gutperle, Vanhove '97]

Momentum
]
ke Zon$ t8t8R4 kinematics
gﬂy k g,ul/
1 OO
Small 10d — Z _MR_zkz
momentum O Tz
8uv

S! radius Twice divergent!
Infinite sum and
diverging integral



Higher Derivative Emergence in 10d Type lIA

R* terms! = SHA — Slclfglss | @tree + SlOOp) Four graviton scattering
3- 211 at tree level and one loop
) in string perturbation theory

Famously shown to be reproduced by (small g = o? expansion)
=

Note: No higher-loops!
(e.g. required for M-theory)

1-loop computation in M-theory on R!? x S
[Green, Gutperle, Vanhove '97]

Momentum Poisson

1
K€ Zond t8t8R4 kinematics ~summation magic
g,m/ k g,uy (
1 Oo —2 2 ~ 3 ~
Small 10d L Z _mtR% ~CK+§( )K
R>

momentum O 72
uv

S! radius Twice divergent!

Infinite sum and
diverging integral



Higher Derivative Emergence in 10d Type lIA

R* terms! = SHA — Slclfglss | @tree + SlOOp) Four graviton scattering
3- 211 at tree level and one loop
) in string perturbation theory

Famously shown to be reproduced by (small g = o? expansion)
=

Note: No higher-loops!
(e.g. required for M-theory)

1-loop computation in M-theory on R!? x S
[Green, Gutperle, Vanhove '97]

Momentum Poisson

1 : :
k€ ZonS t8t8R4 kinematics summation magic

g,m/ k g,uy (
OO

Small 10d 1 Z _mR—Zk2 “(CF + 5(3)16

momentum % O 72 TR3

Spv Only divergence!

S! radius Twice divergent!

Infinite sum and
diverging integral



Higher Derivative Emergence in 10d Type lIA

R* terms! = SHA — Slclfglss | @tree + SlOOp) Four graviton scattering
3- 211 at tree level and one loop
) in string perturbation theory

Famously shown to be reproduced by (small g = o? expansion)
=

Note: No higher-loops!
(e.g. required for M-theory)

1-loop computation in M-theory on R!? x S
[Green, Gutperle, Vanhove '97]

Momentum Poisson

1 . :
k€ ZonS t8t8R4 kinematics summation magic
8w k 8w (

Small 10d 1 Oo Z _mR—Zk2 N ~ n §(3)I€ Going to Type IIA: '

momentum % O T2 TR3 Reproduces R* terms o
Suv Only divergence!

S! radius Twice divergent!
Infinite sum and
diverging integral



Higher Derivative Emergence in 10d Type lIA

R* terms! = SIIA — Slclfglss | Gtree + SlOOp) Four graviton scattering
3- 211 at tree level and one loop
) in string perturbation theory

Famously shown to be reproduced by (small g = o? expansion)
=

Note: No higher-loops!
(e.g. required for M-theory)

1-loop computation in M-theory on R!? x S
[Green, Gutperle, Vanhove '97]

Momentum
ke ZonS!
g S

Small 10d Type llA perspective
- s

momentum

S 8w



Higher Derivative Emergence in 10d Type lIA

R* terms! = SHA — Slclfglss | @tree + SlOOp) Four graviton scattering
3- 211 at tree level and one loop
) in string perturbation theory

Famously shown to be reproduced by (small g = o? expansion)
=

Note: No higher-loops!
(e.g. required for M-theory)

1-loop computation in M-theory on R!? x S
[Green, Gutperle, Vanhove '97]

Momentum
ke ZonS!
8 L 8 8 8
Small 10d Type llA perspective Low energy
momentum 10d gravitons

8 8 8 8w



Higher Derivative Emergence in 10d Type lIA

R* terms! = SIIA — Slclfglss | Gtree + SlOOp) Four graviton scattering
3- 211 at tree level and one loop
) in string perturbation theory

Famously shown to be reproduced by (small g = o? expansion)
=

Note: No higher-loops!
(e.g. required for M-theory)

1-loop computation in M-theory on R!? x S
[Green, Gutperle, Vanhove '97]

Momentum
ke ZonS!
8 L 8 8 8
Small 10d Type llA perspective Low energy
momentum 10d gravitons
8 8 8 (' 8

Infinite tower of
DO-branes + SUSY partners



Higher Derivative Emergence in 10d Type lIA

R* terms! = SIIA — Slclfglss | Gtree + SlOOp) Four graviton scattering
3- 211 at tree level and one loop
) in string perturbation theory

Famously shown to be reproduced by (small g = o? expansion)
=

Note: No higher-loops!
(e.g. required for M-theory)

1-loop computation in M-theory on R!? x S
[Green, Gutperle, Vanhove '97]

Momentum
ke ZonS!
8 L 8 8 8
Small 10d Type llA perspective Low energy
momentum 10d gravitons
8 8 8 (' 8

Infinite tower of
DO-branes + SUSY partners

= Integrating out DO tower !



Higher Derivative Emergence in 10d Type lIA

R* terms! = SIIA — SCZISS | (Stree + SlOOp) Four graviton scattering
REEE 2“\ level and one |
at tree level and one loop

) in string perturbation theory

Famously shown to be reproduced by (small g = o? expansion)
=

Note: No higher-loops!
(e.g. required for M-theory)

1-loop computation in M-theory on R!? x S
[Green, Gutperle, Vanhove '97]

Momentum
ke ZonS!
8 L 8 8 8
Small 10d Type llA perspective Low energy
momentum 10d gravitons
8w 8w 8w (' 8w
ngher Derlvatlve Emergence in Type lHA Infinite tower of
R4 terms emerge in the IR by | ‘f DO-branes + SUSY partners
integrating out DO tower = Integrating out DO tower !

§ (+ fast movers of massless fields) §
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2
2
Ubiquitous in string theory models! 8(¢) > Vas¢p — oo
/ Singular zero size BH horizon — Pathology?
Extremal BH solution: e e.g.[Hamada, Montero, Vafa, Valenzuela '21]

\ @(r) — oo: Core explores asymptotic limit!
— Connection to SDC!

Previous works: Including higher-curvature corrections cloaks the singularity in an stretched horizon!
[Sen '95] [Dabholkar ‘'04] [Dabholkar, Kallosh, Maloney '04] ...

o 4d NV = 2,4 — Limited supergravity approach (see later)

But! Supergravity matches microscopic entropy counting a la [Strominger, Vafa '96] !
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10d Type IlA effective action (in Einstein frame)
3

Ml 1 1 3
SiiA” = 2P [dlox\/__g (R—E(()ﬁb)z—aeszz\z) + o

Looks like the previous action :)

ds* = f(r)~"*(=dr*) + f(r)"*(dr* + r°d€¥)

Extremal BH solution 3/4
e?") = g™ f(r)

with RR F, charge N N DO-!aranes ]
p7g°°N supergravity solution
— 1 > 4
fir) =1+
r/ Usually not considered

from this perspective!

Vol(S®) —» 0and R — '
Horizonatr =0 < Small BH /
P(r) = comPp g — 0
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Question: Is this singularity cloaked behind a stretched horizon ?

From the String Theory microscopic perspective

... it depends on the microscopic interpretation :)

Defect interpretation: The solution describes the bound state of N DO-branes as a defect in the EFT
=3 No horizon needed! The singularity just signals that the object has been integrated out!

BH interpretation: The solution describes the ensemble of states with fixed mass and N units of DO charge

Entropy of this thermodynamic ensemble?

1 bound state of N DO-branes 1 DO + 1 bound state of N — 1DO0s N DO-branes

® (9

= # of microstates = partitions of N: S ~ \ﬁV as N = o0

*[SBH ~ Aporizon ™ \ﬁ\f (in Planck units) — Large horizon!] Prediction!
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Question: Is this singularity cloaked behind a stretched horizon ?

From EFT perspective, stretched horizon is generated by adding higher-derivative terms

=3 From singular to non-singular — Not a small perturbation!

Stretched horizon appears from competition between classical vs higher derivative terms !

Problem: All higher-derivative terms are as relevant!

=3 EFT analysis limited: The best we can do is to truncate EFT

Hope/Expectation: A clever truncation of EFT action can capture

1. Existence of the stretched horizon

2. Scalings with parameters (e.g. reproduce § ~ \/N)
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Best way to look for extremal BH horizon? == Entropy function formalism [Sen ‘05]

In a nutshell:

Near horizon limit of

Ansatz: .
charge N extremal BH Plug into
(Geometry = AdS, X 5¢72) action
v/Ansatz variables!
Look for Entropy function: & (v“, N)
extrema

If extremum exist, horizon found!

~
Near horizon solution: v¥(N)

- <

LHorizon entropy: E(VvY(N), N)
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Type llA + 8-derivative terms:

Easier to do going through M-theory: {glOd, F,, ¢} — Zi14 '

11d M-theory effective action + R* terms

Plug 11d uplift of 10d ansatz

‘ Leads to runaway
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Does &8~derivaives compete against &9 to generate an extremum?

N - i \/ Similar to
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D0 Stretched Horizon: EFT Perspective

Best way to look for extremal BH horizon? == Entropy function formalism [Sen ‘05]

Type llA + 8-derivative terms:

Easier to do going through M-theory: {glOd, F,, ¢} — Zi14 '

11d M-theory effective action + R* terms

Plug 11d uplift of 10d ansatz

‘ Leads to runaway
%(N, gV, ,Ba e) :8—derivatives

Does &8~derivaives compete against &9 to generate an extremum?

N - i \/ Similar to
umerical search | - YES! :) [Sinha, Suryanarayana '06]

Checks:
Approximations Microscopic counting Species scale horizon

g ~ N = 0 of S~vVNf o~ A~ ML o

(different treatment of R* terms)
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UV: Theory with a bunch of heavy species! [Harlow ‘15] [Heidenreich, Reece, Rudelius '17+'18]
[Grimm, Palti, Valenzuela ‘18]
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An Speculative but Suggesting Picture

UV: Theory with a bunch of heavy species! [Harlow ‘15] [Heidenreich, Reece, Rudelius '17+'18]
[Grimm, Palti, Valenzuela ‘18]

Consider system of species According to (stronger form of) emergence:
(e.g. bunch of DO-branes) There is no gravity here!

Species
EFT not able to capture microscopic details

But should capture macroscopic info about system

. .. | Integrate out Gravity can do it through black holes
IR limit , = - .
species (thermodynamic interpretation of BHs)

For smallest A7 Unavoidable emergence of gravity:
entropy system | Gravity required to emerge in order to capture

BH horizon emerges to Capture thermOdynamiCS of SpeCieS in the UV ?
coarse-grained description of the system o Just food for thought! :)
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Conclusions and Questions
Species Emergence of
O O

Smallest BH
describable in EFT

Singular zero size BH

RO

l Include higher

curvature terms
AjSpecies Scale
BH Horizon

}A—ll

\)

Lots of species

UV  Species .
running in loops

Integrate

out species
, Emergence of
Higher :

higher curvatures
IR curvatures

and A

Higher-curvature
corrections to EFT

Questions:

Extend connections ? More evidence for
beyond asymptotic limit g

F'e

DO stretd&hcrizon./v Holography!

‘- Thank you for your attention!
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Best way to look for extremal BH horizon? == Entropy function formalism [Sen ‘05]

Example: 10d Type IlA at classical level

|
ds? = — (—rzdtz | dr2> - de%
2

M 1
Action: SICZZSS — %[ddX1 [—g (R — E(agb)z — Ee%(ﬁ ‘ F’2 ‘2)4_

Entropy function: &NV, g, v, f,e) ~ eN — J dQer/—g &L
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D0 Small BH from Entropy Function

Best way to look for extremal BH horizon? == Entropy function formalism [Sen ‘05]

Example: 10d Type IlA at classical level

Sy’ <ﬁ262g3/2 — 4(f — 28)v)

\)

1054

Entropy function: &(N, g, v, f,e) = eN

Extremize w.r.t {e, Vv, ,B}

N8/ 7

&N, g,) ~
gol

e S W PO ORI S TR O R S D N BV — g

Runaway towards g, — o

t and v ~ gS_3/14

o = - g ~ -
7 O

— 0 (zero S® volume) }
:

AR o sBa 23 e s A BB < WO 0 - A A Lo £~

Reproduces small BH behavior !



