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@ Short reminder of the Kaluza - Klein
programme

@ Higher-Dimensional Unified Gauge Theories

and Coset Space Dimensional Reduction
(CSDR)

© The model
@ Embedding in the heterotic 10D Superstring
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Further Research Activity

@ Fuzzy extra dimensions —
realistic 4-d GUTs

@ Reduction of couplings in ' = 1 gauge
theories — GUTs, Finite Unified
Theories, reduced MSSM

@ Noncommutative (fuzzy) Gravity
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o Kaluza-Klein observation: of a
pure gravity theory on M* x S! leads to a U(1) gauge
theory coupled to gravity in four dimensions. The

gravity provided
of gravitation and electromagnetism.

e Generalization to MP = M* x B, with B a compact
Riemannian space with a non-abelian isometry group S
leads after dim. reduction to gravity coupled to Y-M in 4
dims.

Kerner '68
Cho - Freund '75
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Problems

@ No classical ground state corresponding to the assumed
MP.

o Adding fermions in the original action, it is impossible to

obtain chiral fermions in four dims.
Witten '85

@ However by adding suitable matter fields in the original
action, in particular Y-M one can have a classical stable
ground state of the required form and massless chiral

fermions in four dims.
Horvath - Palla - Cremmer - Scherk 77
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Coset Space Dimensional Reduction (CSDR)

Original motivation

Use higher dimensions

e to the and sectors

e to the with and
fields

* provides further (fermions

in adj. reps)

Forgacs - Manton '79, Manton '81, Chapline - Slansky '82
Kubyshin - Mourao - Rudolph - Volobujev '89
Kapetanakis - Z'92, Manousselis - Z'01 —' 08
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Further successes

(a) chiral fermions in 4 dims from vector-like reps in the
higher dim theory

(b) the metric can be deformed (in certain non-symmetric
coset spaces) and more than one scales can be
introduced

(c) Wilson flux breaking can be used

(d) Softly broken susy chiral theories in 4 dims can
result from a higher dimensional susy theory

G. Zoupanos N = 1, 10D, Eg gauge theory reduction



Theory in D dims — Theory in 4 dims

MP - M* x B
| I
M xt oyt

1. Compactification

B - a compact space
dimB=D—-4=d
2. Dimensional Reduction
Demand that £ is independent of the extra y* coordinates
e One way: Discard the field dependence on y* coordinates

e An elegant way: Allow field dependence on y* and employ
a symmetry of the Lagrangian to compensate

Obvious choice: Gauge Symmetry
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Allow a non-trivial dependence on y“, but the condition
that a symmetry transformation by an element of the isometry
group S of B is compensated by a gauge transformation.

L independent of y® just because is gauge invariant.

Integrate out extra coordinates

B=S/R S: Qa=1{9i,Qa}
|

R S/R

(91, Q)] = f§ Ok, [t Qa] = fa O »
[Qa, O] = fup9: +

¢ . . .
where fS vanishes in symmetric S/R
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Consider a Yang-Mills-Dirac theory in D dims based on group G
defined on MP? — M* x S/R, D=4 +d

uv 0
gMN: (770 _gab> n“yzdiag(laflaflafl)
d = dimS — dimR gab — coset space metric

1 i
A= /d4xd4y«/—g[— ZTr(FM,\,FKA)gMKgNA + 51/1FMDM¢
1
Dy =0u—0u—Au , Ou= 5'9MNAENA

where 0 is the spin connection of MP and % is in rep F of G

We require that any transformation by an element of S acting
on S/R is compensated by gauge transformations.
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Au(x,y) =g(s)Au(x,s 'y)g~ ()

+9(5)0ag ™" (5)
D(x,y) =F ()W, s y)fH(s)
g,f - gauge transformations in the adj, F of G corresponding to
the s transformation of S acting on S/R
J,b - Jacobian for s

() - Jacobian + local Lorentz rotation in tangent space

Above conditions imply constraints that D-dims fields
should obey.
Solution of constraints:

@ 4-dim fields

@ Potential

@ Remaining gauge invariance
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Taking into account all the constraints and integrating out the
extra coordinates, we obtain in 4 dims:

A=C / d*x <—iTrFWF“” + % Ea:Tr(Du(baD“(ba)
i - A
+V(9) + SUTDtp — S9TDat)
1

Du:au_A;u Da:aa_ea_¢aa ‘9a:§‘9ab02bC

C— volume of cs, 6,— spin connection of cs

V((b) - _igacgder{(fa%¢C - [¢a; ¢b]) c?i(lsD - [¢C’ ¢d])}

A=1,...,dimS, f— structure constants of S.
Still V(¢) only formal since ¢, must satisfy f2¢p — [¢q, ¢i] = 0.
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1) The 4-dim gauge group

H = CG(RG)
ie. GDRgXxXH

where G is the higher-dim group and H is the 4 dim group.
2) Scalar fields

SDOR
adjS = adjR+ v
GDORg xXH
adjG D (adjR, 1) + (1,adjH) + X(ry, hy)

Ifo=1Xs;
when s; = r; = survives in 4 dims.
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3) Fermions

GDORg xXH
F=>Y (t,h)

spinor of SO(d) under R

Oq = E ]

for every t; = 0; = survives in 4 dims.

Possible to obtain a theory in 4 dims starting from
Weyl fermions in a rep.

However, even starting with Weyl (+ Majorana) fermions
in reps of G in D = 4n + 2 dims we are also led
toa theory.

G. Zoupanos N = 1, 10D, Eg gauge theory reduction



If D is even:

e, = 4w,
UV=U,®V_=op+op,

where op, 0], are non-self conjugate spinors of SO(1,D — 1).

The (SU(2) x SU(2)) x SO(d) branching rule is:

op = (2,1;04) + (1,2;0%)
op = (2,1;04) + (1,2;04)

Starting with fermions

equal number of left and right-handed
reps of the 4-dim group H

Ny

condition either op or of,
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Weyl condition cannot be applied in odd dims. In that case:
op=(2,1;0q) + (1,2;04),

where o4 is the unique spinor of SO(d)
equal number of left and right-handed
~ reps in 4 dims

Most interesting case is when D = 4n + 2 and we start with a
rep. In that case o4 is non-self-conjugate and o7,

Ga.

Then the decomposition of o4, 54 of SO(d) under R is:
O'd:ZO'k7 6’d226’k.

Then:

GDORs XH

= o i -conyj
+— F= Z(r h;) — either self-conjugate or
i
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Then according to the rule from o4 we will obtain in 4 dims
left-handed fermions f;, = Y hE.

Since o4 is non-self-conjugate, f;, is non-self-conjugate.

Similarly, from o4, we obtain the right-handed rep
Yo =2 hy.

Moreover since F vectorlike, fl{f ~ h{;, i.e. H is chiral theory
with double spectrum.

We can still impose Majorana condition (Weyl and Majorana are
compatible in 4n 4 2 dims) to eliminate the doubling of the
fermion spectrum.

Majorana condition (reverses the sign of all int. qu. nos) forces
Jr to be the charge conjugate of f .

If F complex — chiral theory just h¥ is different from h.
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An easy case in calculating the potential, its minimization and
SSB:

If GO S = H breaks to K = Cg(S):

G D S X K + gauge group after SSB
U N

G D R X H < gauge group in 4 dims
But

fermion masses
2 a 1 1 ab
M2V = D,D*V — —RU — = XPF ¥ >0
4 2 N —

=0
ifSCaG

comparable to the compactification scale.
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Supersymmetry breaking by dim reduction over

symmetric CS (e.g SO(7)/S0O(6))

Consider G = Eg in 10 dims with Weyl-Majorana fermions in
the adjoint rep of Eg, i.e. a susy Eg.
Embedding of R = SO(6) in Eg is suggested by the
decomposition:
Eg D SO(6) x SO(10)
248 = (15,1) + (1,45) + (6, 10) + (4, 16) + (4, 16)

adjS = adjR+ v
21 =15+ 6 < vector

Spinor of SO(6):
In 4 dims we obtain a gauge theory based on:

H = Cg,(SO(6)) = SO(10)

with scalars in 10 and fermions in 16.

G. Zoupanos N = 1, 10D, Eg gauge theory reduction



Theorem: When S/R symmetric, the potential
leads to spontaneous breakdown of H.

Moreover in this case we have:

Es D SO(7) x SO(9)
U N
Es D SO(6) x SO(10)

= Final gauge group after breaking:
K = Cg(SO(7)) = SO(9)

CSDR over symmetric coset spaces original
supersymmetry.
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Soft Supersymmetry Breaking by CSDR over

non-symmetric CS.

We have examined the dim reduction of a supersymmetric Eg
over the 3 existing 6—dim CS:

G2/SU(3),  Sp(4)/(SU(2) X U(1))nonmax, SU(3)/U(1) x U(1)

Non-symmetric CS admit torsion and the two latter more than
one radii.
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Consider supersymmetric Eg in 10 dims and S/R = Gy/SU(3).

We use the decomposition:

Eg D SU(S) X Eg
248 = (8,1) + (1,78) + (3,27) + (3,27)

and choose R = SU(3)
adjS = adjR+ v
14 =8+
vector
Spinor: under R = SU(3)

= In 4 dim theory: with:
scalars in 27 = (8 and fermions in 27, 78

ie.:
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The Higgs potential of the genuine Higgs 5:
40 o i 5 gk
V(B)=8-— 35 — [4duB' B 8" + h.c]
+ B3 dyed "™ By
11 o o
3 L PEHAR
which obtains F-terms contributions from the superpotential:
_1 i o pk
W(B) = §d¥7kB BB
D-term contributions:
1 11 ; ;
-D*D*, D" =4/ -B(G" )i
2 2
The rest terms belong to the SSB part of the Lagrangian:
SSB 40 o i pj gk
‘cscalar = ?ﬁ - [4dgkﬂ ﬂjﬂ + hC}

Mgaugino = (1 + 37—)

Sl
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Reduction of 10-dim, V' = 1, Eg over

S/R=SU(3)/U(1) x U(1) X Z3

Irges - Z’11
We use the decomposition:
Es D Eg X SU(3) D Eg x U(1)4 x U(1)p
and choose R = U(1)a x U(1)p,
~ H = Cg(U(1)a x U(1)p) =
Eg D Eg X U(l)A X U(I)B
248 = 1(0,0) T Lio,0) T 1(3,1/2) T 1(=3,1/2)
Lo-1)+ Lo + 1(-3-1/2) + L(3-1/2)
78(070) + 27(371/2) + 27(_371/2) + 27(07_1)
27(-3,-1/2) T 27(3,-1/2) +27(0,1)
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adjS = adjR + < vector

U
8 = (0,0) +(0,0) +

S0(6) > SU(3) O U(1)a x U(1)p
=143=
N a

spinor
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4-dim theory

N =1,E x U(1)a x U(1)s with chiral supermultiplets:

A1 270319y, B 1273172y, C' 12701y, At (g9, Bt 1(—g,1/9y, C: 1(o,—1)

Scalar potential:

2,_2 1+1+1 N 4R? s)i +(4R% s)da
‘fy=2(~ - ~ ° \alay _°
¢ B5\Rl R R RBRE R/ \BR R

4RZ 8 ARZ 8 4R 8\ ; 4R?2 8\ _
+( _7>55 ( _7)55+( v+ — 2 |7

RE R \RR R’ RIE R} RIR R}

R Ry Rs i ik R Ry R3
+ \/isoK + + )d-- at + ( + + —)aﬁ + h.c}
Ry T Riks T Rk )P (ke T Rk T RoRs )7

2
+ 5 (al@ey + 8@ + (6

2
+ 22 (a(@ay + a(@a + (-5)5 + B(-9)5)

2
+ 5 (' ohes + athla-+ 83808 + B(HE + (18 +7(-11)
+ 400! B dyged "™ o1 B + 408" dged" "™ Brym + 400’y dyged ™ vy
+40(@B)(@8) + 40(3%)(3%) + 10(76) (00

where o, 8,7, a, 8,7 are the scalar components of A", B', C', A, B, C.
’ 77 ) ) fy p
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Superpotential: W(A', B/, C*, A, B, C) = /40dgxA'B' C* + /40ABC
D-terms: %DO‘D“ + %DIDI + %DzDg where:

D% = = (0 (6 oy + B'(G™h +7(G))
D1 = Y22 (a3t + a()a + B(~38) + B(-3)5)
Dy = Y20 (ol ey +a(3)a+ 408 + B)5 +' (16 + (-1

Soft scalar supersymmetry breaking terms, LB
4R? 8 ; 4R? 8\ _ 4R; 8
(R%R% — E%) a‘a; + (R%R2 - E%) ao + (R%Rz - g IB/BL

4R? 8 4R2 8 4RZ 8
(R%RZ _E)ﬁ“( RER _E)”+ (R%Rz R2)W+

R R Rs L R R Rs
V280 [( + + ) dgra By + ( + + ) af +h.c} ,
ReRs | RiRs | RoRr ) @R R:Rs '« RiRs | RoRi) ™)

RIARIHRE
(L+s), e

Potential, V = Vg 4 Vp 4 Viop

Gaugino mass, M = T torsion coeff.
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The Wilson flux breaking

M* x B, — M* x B, B= B,/FS/R
FS/R_a freely acting discrete symmetry of B,.
B becomes multiply connected

For every element g € F S/R,
~~ Vg = Pexp (—i/ TaAf\‘,,(x)dxM> €H
Yg

If the contour is non-contractible ~ V; # 1 and then
f(g(x)) = Vyf(x), which leads to a breaking of H to

K' = Cy(TH), where TH is the image of the homomorphism
of FS/R into H.

Matter fields under FS/R g TH.
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In the case of SU(3)/U(1) x U(1) a freely acting discrete group

is:
%
FSR=Z3Cc Ww,w=_2
W

Ws,r: Weyl group of S, R.
g = diag(1, wl, w?1), w=e*"/3 ¢ Zg

The fields that are under FS/R ¢ TH ,ie.

Ay = ’VSAM’YS_I

A'=yA', B =wypB, O =wipc
A=A, B=wB, C=uw’C

~ N'=1, SU(8).x SU(3), x SU(3)r,

Recall that 27 =(1,3,3)+(3,3,1) + (3,1, 3)
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with matter superfields in:

(1a37§)(3,1/2)’ (3,5, 1)(07—1)’ (g’ 173)(—371/2)

HY HS v dgl  ug' DE d -a -d
L=\H; H) e |, ¢=|dy uwg DF|, 9= w u u

Yk e S dy ug’ DR D, D Dj

and the surviving singlet

0 — (17 17 1)(3,1/2) .

Introducing non-trivial windings in R can appear 3 identical flavours
in each of the bifundamental matter superfields and singlet
superfield.
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Further Gauge Breaking of SU(3)>

Babu - He - Pakvasa °86; Ma - Mondragon - Z °04;
Leontaris - Rizos ’06; Sayre - Wiesenfeldt - Willenbrock 06

Two generations of L acquire vevs that

0 0 0 0 0 0
=00 o |, P =0 o0 o
00V V 0 0

each one alone is not enough to produce the (MS)SM gauge group:
SU(3). x SU(3), x SU(3)r — SU(3). x SU(2)., x SU(2)g x U(1)
SU(3). x SU(3)L x SU(3)g — SU(3), x SU(2) x SU(2)p x U(1)
Their gives the desired breaking:
SU(3). x SU(8) x SU(3)gr — SU(3). x SU(2). x U(1)y
then proceeds by:

Va 0 0
L= o v, 0
0 0 O
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Choice of Radii

— Soft terms ~ + Manolakos - Patellis - Z *20

R;
— Soft ~ é

Two main possible directions:

) R; — calculation of the Kaluza-Klein contributions of the
4D theory
x Eigenvalues of the and operators unknown.
° R; — SUSY breaking
Ri ~ 3— with Ry such that

m% ~ —O(TeVz), mf,z ~ _O(M(ZEUT)7 Aabe ~ Mgur
where miz,S are the squared soft scalar masses and ag. are the
soft trilinear couplings.

— squarks
— sleptons
- soft Higgs squared masses

: in this scenario Mcomp = Mgur
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Lepton Yukawas and u terms

At the GUT scale

su(3)® L SuU(3). x SU(2), x U(1)y

29y SU(8)e X U(1)em

S (9~ (01) ~

)

The GUT breaking vevs and the < 612 > vevs the two

e The two global U(1)s forbid Yukawa terms for
—\3
— introduce operators: LeHy (%)
° for each generation of Higgs doublets are absent
— 3 >
— solution through operators: H&S)H((is)ﬁ( )%

— K is the of the conjugate scalar component of either S, vg or 6,
or any combination of them
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Approximate Scale of Parameters

Parameter Scale
soft trilinear couplings O(GUT)
squark masses O(GUT)
slepton masses O(TeV)
1) O(TeV)
unified gaugino mass My | O(TeV)
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Gauge Unification

There exist three basic scales: Mgyr, My and Mrey .

@ Squarks, Higgsinos of the two first families and the new
exotic quarks decouple at an intermediate scale M,

@ Every other high-scale parameter decouples at Mgyr

Concerning the gauge couplings:
@ )9 are used as input to determine Mgyr

@ «j3 is found within of the experimental value

as(MZ) = Scale GeV
Mgur ~
EXP Mint ~
aP(My) = 0.118740.0016 Mooy | <

No proton decay problem due to the global symmetries.
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1-loop Results

1-loop B-functions used throughout the analysis that change between
the three scales Mgyr, My and Mrpey.

— my(Mz) and my are found within 20 of the experimental values

o my,(My) = GeV  mf*(My) =2.83+0.10 GeV

o My = GeV mFP =172.4 +£ 0.7 GeV
— my, is found within of the experimental value

o my, = GeV mi** = 125.10+0.14 GeV

— tan 3 ~

— M, > GeV
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CSDR and the Einstein-Yang-Mills system

EYM theory with cosmological constant in 4 + d dimensions:

_16 G

L= V=GR — =GR — /=g
The corresponding equations of motion are:
DyF™ =0, Ruyy— %RQMN = —81GTun
Solutions of the coupled EYM

system corresponding to M* x B - B a coset space and «, 3
coset indices + demanding M* to be

1
A= ZTr(FagFO‘B)
A is absent in 4 dims: eliminates the vacuum energy of the

gauge fields
A equal to the of the theory
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The potential of the reduced low-energy limit of 10-d

heterotic string over SU(3)/U(1) x U(1)

Low-energy effective action of Eg X Eg heterotic string (bos part):

1 1, soux €% .
leX 7|g‘ R — 56M®8M<I> — EHMNAHMNA +

T ok2

Shet - Tr FMNFMN>

o k2 =81G19 the 10-d gravitational constant

@ o the Regge slope parameter

@ R the Ricci scalar of the 10-d (target) space

o @ the dilaton scalar field

e H the field strength tensor of the 2-form By field

@ F the field strength tensor of the Eg x Eg gauge field

Also, g§ = 2% s the string coupling constant @0 is the
constant mode of the dilaton)
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Application of the CSDR over SU(3)/U(1) x U(1) leads to a

4 — d scalar potential Chatzistavrakidis - Z 09
The contributions of the three sectors after the CSDR:
1 3 R? RS R?

Vor = — e’ 62 7""%_ 212_ 222_ 232

4K2 R R R RZPR RR RR

15 [(bf+ b5 +b5)° 2 42, 2 "
Vu = B P 2 b b b3)(d; — h.c.

H 2K2e [ (R1R2R3)2 +flaRRR3( 1+ by + 3)( gkaﬁ]'y C

V—a—/e’%ch 4R2_8aoc+ 4R2_ 86+ 4R3_§ ;
7 82 RRZ R T\ RR2 “T\rrR)TT
R2+R+R igf 1 i ~aNj i ~aN i ~an )2
+ \FSOW( gea' B9 + he) + 6 (a(G*Yiey + B(G* )8 +7(G*Yiy)
i 10
+5(a'ai— B'8)" + (ozaﬂrﬂﬁx—zvm)
+40aiﬁ‘dgkdklma1/8m + 40,6 ’Y’dgkdklmﬁl’ym + 40ai*yjdgkdklma1’ym]

Possible to the gravity contribution by the
presence of and sectors.

Gibbons ’84; De Wit - Smit - Dass '87;
Maldacena - Nunez ’01, Manousselis - Prezas - Z 06
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THANK YOU!

reduction
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