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Unreasonable Effectiveness of Thermodynamics

Thermodynamics offered insights into quantum mechanics before a microscopic
treatment was available, e.g., UV catastrophe of blackbody radiation.

Similarly, studies of thermodynamics of black holes have lent surprising insights into
quantum gravity, e.g,
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Hawking radiation: Iy =
87TGMkB
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Bekenstein-Hawking area law: S = E

Holographic principle

It seems worthwhile to leverage this unreasonable effectiveness of thermodynamics
for the swampland program.



WGC and Black Holes

Extremal black holes are kinematically unstable:
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Mild form: WGC satisfied by
large but finite mass BHSs.

Consistency with dimensional reduction, modular invariance, unitarity/causality suggests
stronger version e.g. Tower WGC and sub-Lattice WGC

Tower WGC is also motivated by the distance conjecture and the emergence
proposal



Evidence from String Theory

Evidence from string theory (e.g., heterotic string spectrum ):

Further checks in string and F-theory
constructions

While this provides evidence for stronger forms of the WGC, we need detailed knowledge
of the UV complete theory (e.g. spectrum, modular invariance, ...).

Connection to BH instability is less clear.

What physically goes wrong if the spectrum does not follow this pattern?



Extremal BHSs

Leading corrections to the extremality bound, e.g. in Einstein-Maxwell theory:
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The leading corrections increase Q/M for extremal electric heterotic BHs

This behavior (A) was shown to follow from gravitational positivity bounds
(unitarity, causality) under the assumption of Regge boundedness & gravity subdominance.

RG running to deep IR . log running from massless fields eventually

dominates if the BH is exponentially large, ry; 2 1()4000Htg(1iay.



From Black Holes to Strings

String theory suggests a tower of superextremal states hugging extremality from below:

Turn on a small string coupling

g. ~N1"<«1

The excited string states turned into BHs

The correspondence principle :Sstring = O(1) Spy-

Extremal BHs with near horizon BTZ geometry: matching of anomalies ensures Ssmng = Spp»
superextremal states stay superextremal upon turning on g



Charge Convexity Conjecture

Another way to formulate the WGC is the existence of a self-repulsive state
It was emphasized by that the formulations differ in the presence of
scalars, and further studied in
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This weakly coupled gravitational picture has motivated the Charge Convexity Conjecture:

Abelian Convex Charge Conjecture: Consider any CEFT with a U(1) global symme-
try. Denote by A (q) the dimension of the lowest dimension operator of charge q. Then this

must satisfy a convex-like constraint COnJeCtured _to hOld fOr a" CFTS,
A (n1go + nago) > A (nago) + A (nago) | (1.1) not only holographic ones.

for any positive integers ny, nq, for some qo of order one.



Charge Convexity Conjecture

For holographic CFTs, evidence of the CCC came mostly from studying the large g limit:

A(g) = Ag¥4=D 4 .
d/(d—1)

which coincides with the (classical) extremality bound for large AdS BHs: M., ~ ot

However, there is a regime of g where ¢ is large compared with the central charge ¢ but not
as large as that correspond to AdS black holes: flat space BHs have classically M, , ~ O, ..

Apds pr > Apa space BH ™~ O(c)

Higher derivative corrections turn the extremality curve concave. If 4 a multi-particle state
with the same charge but smaller mass, the CCC is a priori not violated.

Why should the CCC impose an opposite condition on such a multi-particle state as that on
a healthy BH?
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Black Hole Extremality
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A — 2 _ 90)2 0%H _
Flat space: A =0 Mz =20 ozl 0
292 | 2 3/2 2
AdS: A= 32 >0 M2, = 3Q* 4 251 (1 + 8%2) - 1] S >0
- 3/
de Sitter: A =~ <0 | M2, = 3Q° — 2512 | (1 - 3907 - 1] SoF, <0

AdS

flat

dS



Monotonicity Continues

We have evidence that this monotonicity continues from flat space BHs to large AdS BHs
This result if universal has consequences on 1/¢g corrections to
A(g) > O(c) operators in the dual CFT (to be formulated more precisely).
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This monotonicity implies a Tower WGC

0.0
0.0

Here, we present evidence for this monotonic behavior (on the gravity side) based on earlier
works on the thermodynamics of (axio)-dilatonic Einstein-Maxwell BHs
and BTZ black holes



BH Thermodynamics and WGC



Corrections to Extremality

Higher order corrections change the BH solution and the extremality bound. Finding
corrected solutions is often intractable (especially with additional scalars).

Thermodynamic approach sidesteps this difficulty:

/Z ="Ir (e_ﬁ(H_(DQ)) = Z ¢ e = o= PG(I,Q.P)
saddles
G=M-TS-0®  dG = —SdT — Qd® + YdP
Evaluating free energy G to first order requires only the uncorrected solution:
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Il + adp] = V(¢ + adp] + a,l (¢ + adp] + O(@®) = IP[$O] + a1 [6 V] + O(a®)

Subtleties for boundary terms & counter-terms



FEuclidean Action

l

Grand Canonical
Fixed: T, ®, (),

Ensembles

Canonical
Fixed: T, Q., Qm

l

WGCO: Zewt > 1

WGC naturally phrased at fixed Q, Pand 7" — 0.

Correlated with AS ‘z=1 > () (microcanonical ensemble)

Microcanonical
Fixed: M, Q., Qm,

l

WGC: AS‘Zzl > ()




Einstein-Maxwell-Dilaton

Given the importance of scalars in formulating the WGC, consider:

| | |
L = ER — E(dqﬁ)z — Ze‘z’wF > + O(a) corrections

Zeroth-order dyonic BH solutions (17 = 1/2):

dsz _ V(r_ 5) dt2 I (7'+Pe)(r+Pm) dr2 n (r_l_Pe)(r_I_Pm)dQ%
(r+Pe)(r+Pm) I’(I"—f)
F = C dt A dr - Pd(cosé’)/\d(p
dn(r + P,)? 4r
o2 = T Q% = (4n)*P,(P, + &), P2 = (4n)2P, (P, + &)
r+ P,

Horizons: r = 0, & Extremality: £ = 07



Scalar WGC

Uncorrected solution satisfies the extremality bound:
M? = (4r&)* 42 <Q2 + P? — Qé) > 2 <Q2 + P? — Qé)

O
Long range scalar force: e %*? ~ 1 + = + ...
r

Q¢ x O — P is not an independent parameter (no scalar hair), in particular M? > 0

Scalar WGC is satisfied by BHs if the corrections make:
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Thermodynamics (Grand Canonical Ensemble)

From [, it is most direct to obtain the thermodynamic functions in the GCE:
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Thermodynamics (Canonical Ensemble)

_ 1
G(T,0,P)=P |1 8Q2T2 ] O(a) corrections

P
sr.om=2"

| i
1 + E(Q + P)T+ ...| + O(a) corrections

1
O(T,0,P) = [1 — 5PT+ ...| + O(a) corrections

i , i
Y(T,D,P)=|1- 5QT+ ...| + O(a) corrections

1
MT,O,P)=Q+P)|1+ gQPT2 + ...| + O(a) corrections

. The WGC is most naturally phrased at fixed O, P and T — 0O (hence in CE):

Extremality:

T — 0



Leading Corrections

Seven independent 4-derivative operators:

h= [ e 73 SR 4 SR 4 B EEW) § S
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We have computed all thermodynamic quantities to linear order in «;
for the F** operator:

2 . B 2 om 3 A o2
M(T,Q,P) = (0 + P) R2r°a; (1 —¢)(8+103¢ —137¢> — 37C° + 3C*) +60¢(1 — 2¢*) log ¢

S0P 6(1+¢)(1 - ¢)°

with £ = P/Q.

, e.g.



Zow = 1+

0.01

10~

A Positivity Puzzle
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Staying Positive

Under the same assumption of Regge boundedness and gravity subdominance (e.g.
integrating out scalars or UV completions with open string Regge tower), z,.. > 1.

Further non-trivial checks . Including axion but with symmetries in action

SL(2,R) (broken to SL(2,Z) by non-perturbative effects): positivity bounds = z,_, > 1

O(d, d, R): gravitational 4-derivative terms are not subdominant, but WGC follows from
NEC.

. N > 2 SUSY: puzzling term which give Az, . < 0 are necessary to ensure that the
extremality bound is uncorrected for BPS states.

For healthy theories, the leading corrections shift the extremality bound positively, making
BHs a WGC state.



Covariant Formulation of WGC



A New Spin on the WGC

We reformulate the WGC as a covariant integrated condition:
/ 491 VR 6TER eont < 0
>

derived using the covariant phase formalism of lyer-Wald.

. Construct a Hamiltonian generating a diffeomorphism parametrized by ¢ and gauge
transformation A — A + dA.

- The Hamiltonian obeys a conservation law on-shell. Off-shell variation gives:

[ [ o= [amieviorgee
S 2 Jsio? 5

Asymptotic charges correction to the horizon



A New Spin on the WGC

- Advantages: No need to solve the corrected Einstein equations to derive corrections to
the extremality bound; Valid for any corrections, not just higher derivative corrections

/ —/ 5H:/dd_1x\/ﬁéT§gn b
R 5

-+ For charged 4d BH and BTZ BHs respectively, the asymptotic charges are:

0, & M, d¢<—>J, R0,

- Qur covariant energy condition amounts to evaluating:

SM — ®S5Q A 5f( J d*x\/h6T gt | &=,
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Spinning WGC



Spinning WGC

- WGC is a statement that charged extremal BHs are unstable.
- Q: Is there an analogous statement for rotating BHs?
- A: Probably not - heuristic motivation is gone (Penrose process).

- However, for BTZ BHs, there is a spinning WG Theorem:

J J
Extremal BTZ BHs satisfty — > lim —

M_M—>ooM

ext

- Even though gravity is not dynamical in 3d, BTZ geometry is distinguished as it appears
as near-horizon limit of many stringy BHs.



Corrections to BTZ

-+ Consider the 3d action on an AdSs background perturbed by the leading 4-derivative
operators (purely gravitational):
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- Directly compute the shift in BH horizon (covariant formulation):
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Holographic RG Arugment

AdSuv(0) 4 0%

\ field redefinition

AdSgr (¢) ® AdSir(¢) + h.d.

 Not necessary to assume that the UV CFT is dual to pure Einstein gravity (though
convenient because the central charge takes the Brown-Henneaux form).

- As long as the NEC is satisfied in the bulk, the c-theorem implies a decrease In
central charge in the IR and an increase in extremality bound.



Charged WGC

Many charged extremal solutions have a near horizon BTZ geometry; in fact one often
uses this to compute their entropy.

Given the entropy-extremality relation , can we use the spinning
WGC to infer the charged WGC?

An example is the boosted 5D black string which has an M-theory origin as the
intersection of three M5-branes:

Boosted 5D black string

reduce on string near horizon
(boosted) direction limit

4D Charged BH BTZ x S2



Extremality and Entropy

The boosted 5D black string is described by the 5D action:
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Total Landscaping

The entropy of the BTZ and 4d charged BH agree at zero temperature, but the extremality
bounds do not.

The entropy-extremality relation IS between the extremality bound
(fixed Q/J, T') & the microcanonical entropy (fixed Q/J, M).

The extremality bounds for the spinning WGC and charged WGC do not line up; rather
they together strengthen the WGC in 5D:
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Summary



Summary

- Thermodynamics of BHs has lent insights into quantum gravity. Worthwhile to leverage this
effectiveness for swampland criteria such as WGC, RFC, CCC, ...

. We provided evidence that the extremality curve (M vs () for BHs approaches the classical
extremality bound monotonically from below: (axio)-dilatonic Einstein-Maxwell BHs, BTZ BHs.

- Evidence that this monotonicity behavior continues from the flat space BH regime to the large
AdS BH regime If universal, this behavior has interesting
consequences for 1/g corrections to A(g) > O(c) operators in dual CFT.

- Covariant formulation of WGC in terms of effective stress tensor (lyer-Wald).

-+ Spinning WGC via c-theorem and Total Landscaping Principle.



