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Unreasonable Effectiveness of Thermodynamics

• Thermodynamics offered insights into quantum mechanics before a microscopic 
treatment was available, e.g., UV catastrophe of blackbody radiation.

• Similarly, studies of thermodynamics of black holes have lent surprising insights into 
quantum gravity, e.g,

• Hawking radiation:                          

• Bekenstein-Hawking area law:          

• Holographic principle

• It seems worthwhile to leverage this unreasonable effectiveness of thermodynamics 
for the swampland program.
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WGC and Black Holes

• Extremal black holes are kinematically unstable:    

• Consistency with dimensional reduction, modular invariance, unitarity/causality suggests 
stronger version e.g. Tower WGC [Andriolo, Junghans, Noumi, GS, ‘18] and sub-Lattice WGC 
[Heidenreich, Reece, Rudelius, ‘16];[Montero, GS, Soler, 16]. 

• Tower WGC is also motivated by the distance conjecture [Ooguri, Vafa, ’06] and the emergence 
proposal [Heidenreich, Reece, Rudelius, ‘18];[Grimm, Palti, Valenzuela, ‘18].

[Arkani-Hamed, Motl, Nicolis, Vafa ’06]
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Figure 2. An extremal black hole can decay only if there exist particles

whose charge exceeds their mass.

The difficulties involving remnants are avoided if macroscopic black holes can evaporate

all their charge away, and so these states would not be stable. Since extremal black holes

have M = QMPl, in order for them to be able to decay into elementary particles, these

particles should have m < qMPl. Our conjecture also naturally follows from Gell-Mann’s

totalitarian principle (“everything that is not forbidden is compulsory”) because there should

not exist a large number of exactly stable objects (extremal black holes) whose stability is

not protected by any symmetries.

Another heuristic argument leading to same limit on Λ is the following. Consider the

minimally charged monopole solution in the theory. With a cutoff Λ, its mass is of order

Mmon ∼ Λ/g2 and its size is of order Rmon ∼ 1/Λ. It would be surprising for the minimally

charged monopole to already be a black hole because the values of all charges carried by

a black hole should be macroscopic (and effectively continuous); after all, a black hole is a

classical concept. Demanding that this monopole is not black yields

Mmon

M2
PlRmon

<∼ 1 ⇒ Λ <∼ gMPl (5)

2.3 Simple parametric checks

It is easy to check the conjecture in a few familiar examples. For U(1)’s coming from closed

heterotic strings compactified to four dimensions, for instance, we have

gMPl ∼ Ms , (6)
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M ext

Mild form: WGC satisfied by 

large but finite mass BHs.



Evidence from String Theory
• Evidence from string theory (e.g., heterotic string spectrum [Arkani-Hamed, Motl, Nicolis, Vafa ’06]):

• While this provides evidence for stronger forms of the WGC, we need detailed knowledge 
of the UV complete theory (e.g. spectrum, modular invariance, …).

• Connection to BH instability is less clear. 

• What physically goes wrong if the spectrum does not follow this pattern?

where QL is 22-dimensional vector and QR is 6-dimensional vector. The charges are quan-

tized, lying on the 28-dimensional even self-dual lattice with
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Figure 4. The charge M of the heterotic string states of charge Q approaches

the M = Q line from below. The yellow area denotes the allowed region.

The extremal black hole solutions in this theory were constructed by Sen [8]. For Q2
R −

Q2
L > 0, there are BPS black hole solutions with mass
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R (22)

where we work in units with MPl = 1. For Q2
L − Q2

R > 0, the black holes are not BPS; still,

the extremal black holes have mass

M2 =
1

2
Q2

L . (23)

We can compare this with the spectrum of perturbative heterotic string states, given by

M2 =
1

2
Q2

R + NR =
1

2
Q2

L + NL − 1 (24)

where NR,L are the string oscillator contributions and where we chose units with α′ = 4.

The −1, coming from the tachyon in the left-moving bosonic string, is crucial. Note that

this spectrum nicely explains the BH spectrum of the theory, as the highly excited strings

are progenitors of extremal black holes. Consider large QL, QR , with Q2
R > Q2

L. Then,
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Further checks in string and F-theory 

constructions [Lee, Lerche, Weigand]; …



Extremal BHs
• Leading corrections to the extremality bound, e.g. in Einstein-Maxwell theory:

• The leading corrections increase Q/M for extremal electric heterotic BHs [Yats, Motl, Padi, ‘06].

• This behavior (A) was shown [Hamada, Noumi, GS, ‘18] to follow from gravitational positivity bounds 
(unitarity, causality) under the assumption of Regge boundedness & gravity subdominance.

• RG running to deep IR [Charles, ’19];[Arkani-Hamed et al, ’21]: log running from massless fields eventually 
dominates if the BH is exponentially large, .rH ≳ 104000H−1

today

conditions, at least one of the outgoing particles must have a smaller M/Q ratio than
the original particle.

The argument extends to black holes, which are believed to be the low-energy
description of elementary particles whose masses are much above the Planck scale.
Since it is unnatural to have an infinite number of exactly stable particles, the mass-

charge relation for extremal black holes M = Q cannot be exact: the M/Q ratio for
extremal black holes should decrease with decreasing Q, so that for every extremal

black hole there is another black hole with a smaller M/Q ratio (see figure 1). Because
states with M/Q < 1 must exist, the most natural expectation is that the black holes,
states with very high values of M, Q, also satisfy M/Q < 1, although the difference

from 1 is tiny.

Figure 1: The classical mass-charge relation for extremal black holes is represented by the

dashed line; it must be valid in the limit M ! MPl. Curve A shows a possible exact mass-

charge relation. Curve B is unacceptable because it would imply an infinite number of states

that cannot decay.

Since the net force between black holes with M = Q vanishes, the previous argu-
ment also predicts that the net force will become repulsive. This is indeed expected
because if the force were attractive, heavier bound states with a lower M/Q ratio would

be possible, again creating an infinite number of states that cannot decay. While the
relation between the decrease of the mass and the repulsion is trivial in the case of

– 2 –
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From Black Holes to Strings
• String theory suggests a tower of superextremal states hugging extremality from below:

• The correspondence principle [Susskind, ’93];[Horowitz, Polchinski ’96]: . 

• Extremal BHs with near horizon BTZ geometry: matching of anomalies ensures , 
superextremal states stay superextremal upon turning on  [Aalsma, Cole, GS, ’19].

SString = 𝒪(1) SBH

SString = SBH
gs

where QL is 22-dimensional vector and QR is 6-dimensional vector. The charges are quan-

tized, lying on the 28-dimensional even self-dual lattice with

Q2
L − Q2

R ∈ 2 (21)

Moving around in moduli space corresponds to making SO(22, 6) Lorentz transformations

on the charges.

Q = M

Q

M

Figure 4. The charge M of the heterotic string states of charge Q approaches

the M = Q line from below. The yellow area denotes the allowed region.

The extremal black hole solutions in this theory were constructed by Sen [8]. For Q2
R −

Q2
L > 0, there are BPS black hole solutions with mass

M2 =
1

2
Q2

R (22)

where we work in units with MPl = 1. For Q2
L − Q2

R > 0, the black holes are not BPS; still,

the extremal black holes have mass

M2 =
1

2
Q2

L . (23)

We can compare this with the spectrum of perturbative heterotic string states, given by

M2 =
1

2
Q2

R + NR =
1

2
Q2

L + NL − 1 (24)
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The −1, coming from the tachyon in the left-moving bosonic string, is crucial. Note that

this spectrum nicely explains the BH spectrum of the theory, as the highly excited strings

are progenitors of extremal black holes. Consider large QL, QR , with Q2
R > Q2

L. Then,
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Turn on a small string coupling

gc ∼ N−1/4 ≪ 1

The excited string states turned into BHs



Charge Convexity Conjecture
• Another way to formulate the WGC is the existence of a self-repulsive state [Arkani-Hamed, Motl, 

Nicolis, Vafa ’06]. It was emphasized by [Palti, ’17] that the formulations differ in the presence of 
scalars, and further studied in [Lust, Palti, ‘17]; [Lee, Lerche, Weigand, ’18]; [Heidenreich, Reece, Rudelius, ’19], 
….

• This weakly coupled gravitational picture has motivated the Charge Convexity Conjecture:
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Figure 16: Figure showing the long-range forces acting on the Weak Gravity Conjecture
particle and the associated Feynman exchange diagrams. The repulsive electromagnetic force is
mediated by the gauge field Aµ and acts with strength Q2, the attractive gravitational force
is mediated by the graviton hµ⌫ and acts with strength m2, and the attractive scalar force is
mediated by a massless scalar � with strength µ2. The Weak Gravity Conjecture (3.38) is then
the statement that the repulsive force should be at least as strong as the sum of the attractive
forces.

Note that since the scalar fields may have a spatially varying profile, we should specify that
(3.43) holds at infinity. Indeed, on the extremal black hole horizon the scalar fields are fixed to
their attractor values such that they solve @jMADM = 0 [98]. The equation (3.43) is analogous
to (3.38), suggesting a connection to discharge of black holes. However, obtaining the precise
requirement on particles in order for black holes to discharge in generality is not simple. In
particular, the dependence of the black hole mass MADM on the scalar fields may in general be
di↵erent to the dependence of the particle mass m, in which case it is di�cult to establish a
direct relation between the black hole statement (3.43) and the particle one (3.38). Nonetheless,
the analogy between (3.43) and (3.38) is certainly strong motivation for the validity of (3.38),
especially once we note that the form of (3.38) is almost uniquely fixed by requiring invariance
under scalar fields reparameterisation and electric-magnetic duality.

For simple black holes it is possible to study the condition for discharge quite explicitly. A
simple black hole solution is the so-called dilaton black hole [99]. We will actually consider a slight
variant where the action will have two symmetries U(1)0 and U(1)1 (see, for example [100]). It
is a restriction of the general action (3.37) to two decoupled U(1)s, with related gauge couplings,
and a single (canonically normalized) scalar field �. Specifically, we take

I00 ⌘ � 1

4g2
0

= �e�2� , I11 ⌘ � 1

4g2
1

= �e2� , R00 = R11 = 0 . (3.44)

We consider a black hole with purely electric charges q0 and q1. Note that the gauge couplings
are inversely related. This means that we could actually map the electrically charged black hole
solutions with two U(1)s to dyonic black hole solutions with just one U(1). The analysis in this
section can be viewed in terms of either of these pictures. With this choice of charges, the black
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1 Introduction

In this note we consider properties of local operators in unitary Conformal Field Theories

(CFTs) with continuous global symmetries (in d > 2 space-time dimensions). We propose

that such operators should satisfy a certain convexity-like property:

Abelian Convex Charge Conjecture: Consider any CFT with a U(1) global symme-

try. Denote by � (q) the dimension of the lowest dimension operator of charge q. Then this

must satisfy a convex-like constraint

� (n1q0 + n2q0) � � (n1q0) +� (n2q0) , (1.1)

for any positive integers n1, n2, for some q0 of order one.

Equivalently, the conjecture states that the operator product expansion (OPE) of the

lowest-dimension operators with positive charges has no singular terms, whenever the charges

1

Conjectured to hold for all CFTs, 

not only holographic ones.

[Aharony, Palti, ’21]



Charge Convexity Conjecture
• For holographic CFTs, evidence of the CCC came mostly from studying the large q limit:

 which coincides with the (classical) extremality bound for large AdS BHs: 

• However, there is a regime of  where  is large compared with the central charge  but not 
as large as that correspond to AdS black holes: flat space BHs have classically .

• Higher derivative corrections turn the extremality curve concave. If  a multi-particle state 
with the same charge but smaller mass, the CCC is a priori not violated.

• Why should the CCC impose an opposite condition on such a multi-particle state as that on 
a healthy BH?

Mext ∼ Qd/(d−1)
ext

q q c
Mext ∼ Qext

∃

Δ(q) = Aqd/(d−1) + …

ΔAdS BH ≫ Δflat space BH ∼ 𝒪(c)



Black Hole Extremality
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Figure 3: Extremal curves of two-derivative, charged black holes (in units where `AdS = RdS = 1).
For flat space the curve is linear, M =

p
2Q, while for AdS the curve is convex, eventually growing

as M ⇠ Q
3/2. For de Sitter we have the “shark fin” shape; the top edge are Nariai black holes and

the lower edge is concave.

2 Thoughts

For charged black holes in the two-derivative theory the extremal curve bends away from the linear
Q ⇠ M line in a way that depends on the sign of the cosmological constant: see Figure 3.

Asymptotics Extremal curve Concave/convex?

Flat space: ⇤ = 0 M
2
ext = 2Q2 @

2
H

@Q2

���
T=0

= 0

AdS: ⇤ = 3
`2

> 0 M
2
ext =

4
3Q

2 + 32⇡2
`
2

27

⇣
1 + 3Q2

8⇡2`2

⌘3/2
� 1

�
@
2
H

@Q2

���
T=0

> 0

de Sitter: ⇤ = �
3
R2 < 0 M

2
ext =

4
3Q

2
�

32⇡2
R

2

27

⇣
1� 3Q2

8⇡2R2

⌘3/2
� 1

�
@
2
H

@Q2

���
T=0

< 0

Table 1: The expressions for de Sitter correspond to the “maximal charge” branch of the extremal,
T = 0 curve of Figure 3, rather than the Nariai branch.

The expectation from WGC in flat space is that Mext vs. Q shifts “downward” so that Mext(Q)
is a concave function of Q. This phrasing cannot immediately extend to (A)dS, since the leading-
order extremal curve is de Sitter is already convex and the leading-order extremal curve in AdS is
far from the M ⇠ Q line.

Let’s explore di↵erent statements of stability and see how they extend to ⇤ 6= 0.
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Monotonicity Continues
• We have evidence that this monotonicity continues from flat space BHs to large AdS BHs 

[Loges, Noumi, GS, work in progress]. This result if universal has consequences on  corrections to 
 operators in the dual CFT (to be formulated more precisely).

• Here, we present evidence for this monotonic behavior (on the gravity side) based on earlier 
works on the thermodynamics of (axio)-dilatonic Einstein-Maxwell BHs [Loges, Noumi, GS, ’19];
[Loges, Noumi, GS, ’20] and BTZ black holes [Aalsma, Cole, Loges, GS, ’20].

1/q
Δ(q) ≥ 𝒪(c)

Uncorrected
Corrected

M=Q
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This monotonicity implies a Tower WGC



BH Thermodynamics and WGC



Corrections to Extremality
• Higher order corrections change the BH solution and the extremality bound. Finding 

corrected solutions is often intractable (especially with additional scalars).

• Thermodynamic approach sidesteps this difficulty:

• Evaluating free energy G to first order requires only the uncorrected solution:

• Subtleties for boundary terms & counter-terms [Reall Santos ’19]

Z = Tr (e−β(H−ΦQ)) = ∑
saddles

e−IE ≡ e−βG(T,Φ,P)

G = M − TS − QΦ dG = − SdT − QdΦ + ΨdP

IE = I(0)
E + αiI(i)

E + 𝒪(α2)

IE[ϕ(0) + αδϕ] = I(0)
E [ϕ(0) + αδϕ] + αiI(i)

E [ϕ(0) + αδϕ] + 𝒪(α2) = I(0)
E [ϕ(0)] + αiI(i)

E [ϕ(0)] + 𝒪(α2)



Ensembles

Euclidean Action

Grand Canonical
Fixed: T,�, Qm

Canonical
Fixed: T,Qe, Qm

Microcanonical
Fixed: M,Qe, Qm

WGC: zext > 1 WGC: �S
��
z=1

> 0

Figure 1: Relationship between different ensembles and the weak gravity conjecture.
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, (3.15)
✓
@M

@↵i

◆

T,�,Qm
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✓
@(TIE,i)

@T

◆

�,Qm,↵j

� T�

✓
@IE,i

@�

◆

T,Qm,↵j

, (3.16)

where IE,i denote the Euclidean versions of the terms in the four-derivative action, equa-
tion (3.9). One may then transition to different ensembles, as outlined in figure 1, by
inverting to leading order in ↵i. The weak gravity conjecture is directly a statement about
the charge-to-mass ratio in the canonical ensemble, where at fixed temperature (T = 0) we
expect Q/M ⇠ zext > 1.

One also expects that at fixed mass and charge, the entropy of z = 1 black holes
increases in the presence of higher derivative corrections. Using standard thermodynamic
manipulations, the corrections to the entropy in the microcanonical ensemble are3

✓
@S

@↵i

◆

M,Qe,Qm

= �

✓
@(�G)

@↵i

◆

T,�,Qm

= �IE,i(T,�, Qm) , (3.17)

where T and � are implicitly functions of M , Qe and Qm. We find that these corrections
are never O(↵i) for extremal black holes, in agreement with the Supplemental Material
of [8].

4 Mass and Entropy Corrections

We turn now to the execution of the procedure outlined in section 3. There are several
special choices of the exponential coupling constant and/or charges for which equation (2.7)

3The first equality is found by using the definition of the free energy, equation (3.6) and the triple
product rule along with
✓
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+
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@Qe
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M,Qm,↵i

✓
@Qe

@↵i

◆

T,�,Qm

+

✓
@S

@↵i

◆

M,Qe,Qm

.
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• WGC naturally phrased at fixed Q, P and .

• Correlated with  (microcanonical ensemble) [Hamada, Noumi, GS, ’18];[Goon, Penco, ’19]

T → 0
ΔS |z=1 > 0



Einstein-Maxwell-Dilaton
• Given the importance of scalars in formulating the WGC, consider:

• Zeroth-order dyonic BH solutions ( ):

• Horizons:          Extremality: 

λ2 = 1/2

r = 0, ξ ξ → 0+

ℒ =
1
2

R −
1
2

(∂ϕ)2 −
1
4

e−2λϕF2 + 𝒪(α) corrections

ds2 = −
r(r − ξ)

(r + Pe)(r + Pm)
dt2 +

(r + Pe)(r + Pm)
r(r − ξ)

dr2 + (r + Pe)(r + Pm)dΩ2
2

F =
Q

4π(r + Pe)2
dt ∧ dr +

P
4π

d(cos θ) ∧ dφ

e−2λϕ =
r + Pe

r + Pm

Q2 = (4π)2Pe(Pe + ξ), P2 = (4π)2Pm(Pm + ξ)



Scalar WGC
• Uncorrected solution satisfies the extremality bound:

• Long range scalar force: 

•  is not an independent parameter (no scalar hair), in particular 

• Scalar WGC is satisfied by BHs if the corrections make:

e−2λϕ ∼ 1 +
Qϕ

r
+ …

Qϕ ∝ Q − P M2 ≥ 0

M2 = (4πξ)2 + 2 (Q2 + P2 − Q2
ϕ) ≥ 2 (Q2 + P2 − Q2

ϕ)

M2 + 2Q2
ϕ < 2 (Q2 + P2)
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Figure 16: Figure showing the long-range forces acting on the Weak Gravity Conjecture
particle and the associated Feynman exchange diagrams. The repulsive electromagnetic force is
mediated by the gauge field Aµ and acts with strength Q2, the attractive gravitational force
is mediated by the graviton hµ⌫ and acts with strength m2, and the attractive scalar force is
mediated by a massless scalar � with strength µ2. The Weak Gravity Conjecture (3.38) is then
the statement that the repulsive force should be at least as strong as the sum of the attractive
forces.

Note that since the scalar fields may have a spatially varying profile, we should specify that
(3.43) holds at infinity. Indeed, on the extremal black hole horizon the scalar fields are fixed to
their attractor values such that they solve @jMADM = 0 [98]. The equation (3.43) is analogous
to (3.38), suggesting a connection to discharge of black holes. However, obtaining the precise
requirement on particles in order for black holes to discharge in generality is not simple. In
particular, the dependence of the black hole mass MADM on the scalar fields may in general be
di↵erent to the dependence of the particle mass m, in which case it is di�cult to establish a
direct relation between the black hole statement (3.43) and the particle one (3.38). Nonetheless,
the analogy between (3.43) and (3.38) is certainly strong motivation for the validity of (3.38),
especially once we note that the form of (3.38) is almost uniquely fixed by requiring invariance
under scalar fields reparameterisation and electric-magnetic duality.

For simple black holes it is possible to study the condition for discharge quite explicitly. A
simple black hole solution is the so-called dilaton black hole [99]. We will actually consider a slight
variant where the action will have two symmetries U(1)0 and U(1)1 (see, for example [100]). It
is a restriction of the general action (3.37) to two decoupled U(1)s, with related gauge couplings,
and a single (canonically normalized) scalar field �. Specifically, we take

I00 ⌘ � 1

4g2
0

= �e�2� , I11 ⌘ � 1

4g2
1

= �e2� , R00 = R11 = 0 . (3.44)

We consider a black hole with purely electric charges q0 and q1. Note that the gauge couplings
are inversely related. This means that we could actually map the electrically charged black hole
solutions with two U(1)s to dyonic black hole solutions with just one U(1). The analysis in this
section can be viewed in terms of either of these pictures. With this choice of charges, the black
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Thermodynamics (Grand Canonical Ensemble)

• From , it is most direct to obtain the thermodynamic functions in the GCE:IE

G(T, Φ, P) =
1 − Φ2

2T
+

P2T
2(1 − Φ2)

+ 𝒪(α) corrections

S(T, Φ, P) =
1 − Φ2

2T2
−

P2

2(1 − Φ2)
+ 𝒪(α) corrections

Q(T, Φ, P) =
Φ
T

−
P2ΦT

2(1 − Φ2)2
+ 𝒪(α) corrections

Ψ(T, Φ, P) =
PT

1 − Φ2
+ 𝒪(α) corrections

M(T, Φ, P) =
1
T

−
P2Φ2T

(1 − Φ2)2
+ 𝒪(α) corrections

T → 0, Φ2 → 1,
T

1 − Φ2
fixed

Extremality:



Thermodynamics (Canonical Ensemble)
• The WGC is most naturally phrased at fixed  and  (hence in CE):Q, P T → 0

G(T, Q, P) = P [1 +
1
8

Q2T2 + …] + 𝒪(α) corrections

S(T, Q, P) =
QP
2 [1 +

1
2

(Q + P)T + …] + 𝒪(α) corrections

Φ(T, Q, P) = [1 −
1
2

PT + …] + 𝒪(α) corrections

Ψ(T, Φ, P) = [1 −
1
2

QT + …] + 𝒪(α) corrections

M(T, Q, P) = (Q + P)[1 +
1
8

QPT2 + …] + 𝒪(α) corrections

Extremality:

T → 0



Leading Corrections
• Seven independent 4-derivative operators:

• We have computed all thermodynamic quantities to linear order in  [Loges, Noumi, GS, ’19], e.g. 
for the  operator: 

with .

αi
F4

ζ = P/Q

we may read off

S = �

✓
@G

@T

◆

�,Qm

, Qe = �

✓
@G

@�

◆

T,Qm

,  =

✓
@G

@Qm

◆

T,�

. (3.7)

These relations allow one to compute thermodynamic quantities in the presence of higher-
derivative corrections, to which we turn next.

3.2 Higher-Derivative Corrections

Effective theories allow one to systematically parametrize the effects of UV physics in terms
of a small number of numerical coefficients. The values of these Wilson coefficients are
determined by the UV theory, up to field redefinitions.

In string frame we assume an action of the form

I =

Z
d4x

p
�g e

�2��
⇥
L0(g,A, @�) + Lh.d.(g,A, @�)

⇤
, (3.8)

this structure being motivated by the low-energy string effective action at leading order
in gs. Returning to Einstein frame, the most general collection of parity-preserving, four-
derivative terms for 4D EMd theory may be written as

↵iIi ⌘

Z
d4x

p
�g

h
↵1

4
e
�6��

�
F

2
�2

+
↵2

4
e
�6��

�
F eF

�2
+

↵3

2
e
�4��

�
FFW

�
+

↵4

2
e
�2��(RGB)

+
↵5

4
e
�2��(@�)4 +

↵6

4
e
�4��(@�)2

�
F

2
�
+

↵7

4
e
�4��(@�@�FF )

i
, (3.9)

where we have used the compact notation

(FFW ) = Fµ⌫F⇢�W
µ⌫⇢�

, (RGB) = Rµ⌫⇢�R
µ⌫⇢�

� 4Rµ⌫R
µ⌫ +R

2
,

(@�)4 = (@µ�@
µ
�)2 , (@�@�FF ) = @µ�@⌫�F

µ
⇢F

⌫⇢
,

(3.10)

and where W is the Weyl tensor. We have chosen to parametrize these in terms of RGB,
rather than W

2, so that we may more easily compare with previous Einstein-Maxwell results
in the � ! 0 limit where the Gauss-Bonnet term becomes topological. Note that the first
duality of equation (2.2) is maintained, while the electromagnetic duality is broken. We
will treat electric and magnetic solutions separately in section 4.

Upon adding these higher-derivative terms the equations of motion which need to be
solved are altered, leading to perturbed solutions for g, A and �. We favor, however, a
thermodynamic approach which has recently been used in [17] and [18]. Equations (3.5)
and (3.7) are used along with the following fact:

IE[g,A,�] = IE[g,A,�] +O(↵2
i ) . (3.11)

We emphasize that g, A and � are the EMd solutions without higher derivative corrections,
whereas IE is the full Euclidean action including the higher-derivative terms. For a proof
of the above in Einstein gravity we refer the reader to Ref. [17].

Given equations (3.7) and (3.11), corrections in the grand canonical ensemble are
✓
@G

@↵i

◆

T,�,Qm

= TIE,i , (3.12)
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In the canonical ensemble, the above leads to

G0 = Qm


1 +

1

8
Q

2
eT

2 +
1

8
Q

2
e(Qe +Qm)T 3 + · · ·

�
, (4.40)

S0 =
QeQm

2


1 +

1

2
(Qe +Qm)T +

3

8
(Qe +Qm)2T 2 + · · ·

�
, (4.41)

 0 = 1�
1

2
QeT �

1

8
Qe(Qe + 2Qm)T 2 + · · · , (4.42)

M0 = (Qe +Qm)


1 +

1

8
QeQmT

2 +
1

8
QeQm(Qe +Qm)T 3 + · · ·

�
. (4.43)

The electromagnetic duality of the classical solution is evident. Corrections to the mass in
the canonical ensemble take the form

�iM = �
2

5qeqm
Mi(⇣) +O(T 2) , (4.44)

where

M1(⇣) =
(1� ⇣)(8 + 103⇣ � 137⇣2 � 37⇣3 + 3⇣4) + 60⇣(1� 2⇣2) log ⇣

6(1 + ⇣)(1� ⇣)5
, (4.45a)

M2(⇣) =
2

⇣2(1 + ⇣)
, (4.45b)

M3(⇣) = �
(1� ⇣)(39� 146⇣ � 86⇣2 + 334⇣3 � 21⇣4) + 60⇣(1� 6⇣ + 6⇣2 + ⇣

3) log ⇣

36(1 + ⇣)(1� ⇣)5
,

(4.45c)

M4(⇣) = �
(1� ⇣)(71 + 111⇣ � 309⇣2 + 331⇣3 � 24⇣4) + 60⇣(4� 6⇣ + 4⇣2 + ⇣

3) log ⇣

24(1 + ⇣)(1� ⇣)5
,

(4.45d)

M5(⇣) =
(1� ⇣)(3 + 178⇣ + 478⇣2 + 178⇣3 + 3⇣4) + 60⇣(1 + ⇣)(1 + 5⇣ + ⇣

2) log ⇣

96(1 + ⇣)(1� ⇣)5
,

(4.45e)

M6(⇣) =
(1� ⇣)(9 + 299⇣ + 239⇣2 � 121⇣3 � 6⇣4) + 60⇣(2 + 6⇣ � ⇣

3) log ⇣

48(1 + ⇣)(1� ⇣)5
, (4.45f)

M7(⇣) = �
5(1� ⇣

2)(1 + 28⇣ + ⇣
2) + 60⇣(1 + 3⇣ + ⇣

2) log ⇣

48(1 + ⇣)(1� ⇣)5
. (4.45g)

These functions are in fact all finite for ⇣ ! 1, as seen in figure 3. The charge-to-mass
ratio, z = (Qe +Qm)/M , at extremality is thus

zext = 1 +
2

5qeqm
↵iMi(⇣) . (4.46)

The weak gravity conjecture for general ⇣ is then

C
h=1
dyon(↵i; ⇣) ⌘ ↵iMi(⇣) > 0 . (4.47)

We note that the ↵1, ↵2 and ↵5 contributions to C
h=1
dyon are always positive, while the ↵7

contribution is always negative. The equal-charge and magnetic limits agree with those
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M(T, Q, P) = (Q + P) −
32π2α1

5QP



A Positivity Puzzle

Figure 3: The functions Mi(⇣), with solid and dashed lines indicating positive and negative
values respectively. Only M2 is nonzero for ⇣ ! 1.

found above (the factor of 4⇣ is due to our definition of Mi):

lim
⇣!1

C
h=1
dyon(↵i; ⇣) = CQe=Qm(↵i) , lim

⇣!1
(4⇣) Ch=1

dyon(↵i; ⇣) = C
h 6=1
mag (↵i)

��
h=1

. (4.48)

The magnetic limit here should not be taken too seriously, since the extremal limit is not
captured by the expansions of section 4.1 and there is no reason to expect that the extremal
and h ! 1 limits commute.

For the entropy corrections, inverting

M = (Qe +Qm)

✓
1�

2

5qeqm
C
h=1
dyon(↵i; ⇣) +

1

8
QeQmT

2 + · · ·

◆
(4.49)

for T when z = (Qe +Qm)/M = 1 gives

T ⇡

16⇡
q
Ch=1

dyon(↵i)
p
5QeQm

. (4.50)

The entropy correction is then

�S
��
z=1

=
4⇡
p
5
(Qe +Qm)

q
Ch=1

dyon(↵i) +O(↵i) . (4.51)

As before, the leading contributions comes only from �S0.

4.5 Dyonic, h = 1/2

With �
2 = 3/2 (h = 1/2) the exponential coupling corresponds to the KK reduction of

Einstein gravity on M4 ⇥ S
1, with the radion playing the role of the dilaton. In this case

equation (2.7) has for solutions

He(r) = 1 +
Pe

r
+

P
(2)
e

r2
, Hm(r) = 1 +

Pm

r
+

P
(2)
m

r2
, (4.52)
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zext = 1 +
32π2

5QP
αiMi(ζ) Gravitational positivity bound : α1,2,5,7 > 0



Staying Positive
• Under the same assumption of Regge boundedness and gravity subdominance (e.g. 

integrating out scalars or UV completions with open string Regge tower), . 

• Further non-trivial checks [Loges, Noumi, GS, ’20]: including axion but with symmetries in action

•  (broken to  by non-perturbative effects): positivity bounds 

• : gravitational 4-derivative terms are not subdominant, but WGC follows from 
NEC.

•  SUSY: puzzling term which give  are necessary to ensure that the 
extremality bound is uncorrected for BPS states.

• For healthy theories, the leading corrections shift the extremality bound positively, making 
BHs a WGC state.

zext > 1

SL(2,ℝ) SL(2,ℤ) ⇒ zext > 1

O(d, d, ℝ)

N ≥ 2 Δzext < 0



Covariant Formulation of WGC



A New Spin on the WGC

• We reformulate the WGC as a covariant integrated condition:

derived using the covariant phase formalism of Iyer-Wald. 

• Construct a Hamiltonian generating a diffeomorphism parametrized by  and gauge 
transformation . 

• The Hamiltonian obeys a conservation law on-shell. Off-shell variation gives:

ξ
A → A + dλ

for reviews). Healthy EFTs that enjoy an embedding in a consistent theory of quantum
gravity are said to reside in the landscape, while EFTs that cannot be embedded in quantum
gravity belong to the swampland. In the absence of experimental data sufficiently sensitive
to directly probe quantum gravity, swampland criteria are helpful in constraining the space
of EFTs that arise in its low-energy limits.

The swampland conjecture that is the focus of this paper is the Weak Gravity Con-
jecture (WGC) [4], which in its original form states that any theory with a U(1) gauge
field must include at least one state whose charge-to-mass ratio exceeds that of extremal
black holes in that theory. This allows extremal black holes to decay, unless protected by
a symmetry (such as supersymmetry). Further refinements of the WGC specify the energy
scales at which these states should appear. Strong forms of the conjecture require the states
in question to be light or part of a tower [5] or charge sublattice [6, 7] of (super)extremal
states. Milder forms of the WGC allow the states to be heavy or even given by black holes
with an extremality bound that is corrected by quantum or higher-derivative corrections.1

This latter version is referred to as the “mild form” of the WGC and requires that cor-
rections increase the charge-to-mass ratio of extremal black holes in a canonical ensemble
(fixed charge and temperature). Because the sign of the corrections to the extremality
bound depends on the sign of the Wilson coefficients, unitarity and causality play a crucial
role.

In fact, several proofs applying in different restricted settings and making use of ther-
modynamics [9, 10] or unitarity and causality [10–12] have been given by now, but it has
become clear that generically one needs additional UV information and that the WGC
cannot follow solely from IR consistency. In the presence of a massless graviton, positivity
bounds cannot completely constrain the correction to the extremality bound due to a sin-
gularity in the forward limit of graviton exchange in the t-channel.2 It is thus of interest
to identify the minimal set of assumptions needed to prove the WGC. To manage expecta-
tions, we will not identify this minimal set of assumptions in this paper. Instead, we will
reinterpret the mild form of the WGC as a criterion on matter that generates corrections
to the extremality bound. In a way, this is similar to using energy conditions to exclude
pathological matter contributions (see [14] for example). This results in a condition on the
stress tensor that is equivalent to the WGC. For a d-dimensional black hole this condition
is given by Z

⌃
dd�1

x

p

h �T
e↵
ab ⇠

a
n
b
 0 . (1.1)

Here ⌃ is a Cauchy slice with normal vector n
a and ⇠

a is a Killing vector for which the
horizon is a Killing horizon. �T

e↵
ab

is an effective stress tensor whose definition will be
given in the main body of this article. This condition has several attractive features.

1
These milder forms of the WGC can in some cases be upgraded to stronger forms using modular

invariance and the matching of anomalies [8].
2
In [10, 11] an assumption about the UV-theory completing the higher-derivative corrected theory was

made and in [13, 14] the effective action was imposed to be duality invariant. Subtleties in the compactifi-

cation argument of [12] have been pointed out in [10, 15]. For example, one finds Type II string amplitudes

satisfying unitarity and analyticity that do not satisfy the strict positivity bounds [16].

– 2 –

[Aalsma, Cole, Loges, GS, ’20]

an integral of the stress tensor. To do so, it will be useful to employ the covariant phase
space formalism of Iyer and Wald, which we review in App. A. Viewing the Lagrangian as
a d-form, we consider Einstein-Maxwell theory, possibly with a cosmological constant:

L =
1

22
(R� 2⇤) ✏�

1

2
F ^ ?F . (2.8)

Here 2 = 8⇡Gd and ✏ is the volume form on the d-dimensional background. As explained in
the appendix, for any infinitesimal diffeomorphism parametrized by ⇠ or gauge transforma-
tion parametrized by � we can construct a Hamiltonian that obeys a conservation equation
that is satisfied on-shell. We now consider an off-shell variation of the Hamiltonian. We
then find (see (A.26)) the following conservation equation:

d�H = �2� ? (Eg · ⇠)� (◆⇠A+ �)d ? �F . (2.9)

The left-hand side is a variation of the exterior derivative of the Hamiltonian and the right-
hand side contains a term Eg that captures the gravitational equations of motion and a
second term that arises from a variation with respect to the gauge field A. Because the
background satisfied Einstein’s equations, we can rewrite the first term as

� 2� ? (Eg · ⇠) = � ? �Tab⇠
bdxa . (2.10)

Now let us consider a black hole (not necessarily in asymptotically flat space). Integrating
(2.9) over a Cauchy slice ⌃ of constant Killing time t located somewhere between the (outer)
horizon and spatial infinity, we can use Stokes’ theorem to write

�H =

Z

S
d�2
1

�H =

Z

S
d�2
hor

�H+

Z

⌃
dd�1

x

p

h (�Tab + Fac�F
c

b )na
⇠
b
. (2.11)

To arrive at this form, we picked a gauge in which ◆⇠A + � vanishes at the horizon and
we assumed that �Fab dies off sufficiently fast at infinity. Here hab is the induced metric
on ⌃ and n

a its unit normal vector. The second integral on the right-hand side consists
of two terms, which arise from varying both the metric and gauge field. The sum of both
contributions can be thought of as an effective stress tensor

�T
e↵
ab = �Tab + Fac�F

c

b , (2.12)

and we arrive at the following relation
 Z

S
d�2
1

�

Z

S
d�2
hor

!
�H =

Z

⌃
dd�1

x

p

h �T
e↵
ab n

a
⇠
b
. (2.13)

As we will see next, when we specify a black hole background the first integral on the left-
hand side becomes proportional to the asymptotic charges of the black hole and the second
integral gives the correction to the horizon. At fixed asymptotic charges, we then find a
identity relating the shift of the black hole horizon to the stress tensor, reformulating the
WGC as a condition on the stress tensor. A non-covariant version of this relation already
appeared in [27] in the context of the four-dimensional Reissner-Nördstrom black hole. Here
we considered Einstein-Maxwell theory, but a generalization to a more general theory with
stationary black hole solutions is straightforward.
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Asymptotic charges correction to the horizon



A New Spin on the WGC

• Advantages: No need to solve the corrected Einstein equations to derive corrections to 
the extremality bound; Valid for any corrections, not just higher derivative corrections   

• For charged 4d BH and BTZ BHs respectively, the asymptotic charges are: 

• Our covariant energy condition amounts to evaluating:

[Aalsma, Cole, Loges, GS, ’20]

an integral of the stress tensor. To do so, it will be useful to employ the covariant phase
space formalism of Iyer and Wald, which we review in App. A. Viewing the Lagrangian as
a d-form, we consider Einstein-Maxwell theory, possibly with a cosmological constant:

L =
1

22
(R� 2⇤) ✏�

1

2
F ^ ?F . (2.8)

Here 2 = 8⇡Gd and ✏ is the volume form on the d-dimensional background. As explained in
the appendix, for any infinitesimal diffeomorphism parametrized by ⇠ or gauge transforma-
tion parametrized by � we can construct a Hamiltonian that obeys a conservation equation
that is satisfied on-shell. We now consider an off-shell variation of the Hamiltonian. We
then find (see (A.26)) the following conservation equation:

d�H = �2� ? (Eg · ⇠)� (◆⇠A+ �)d ? �F . (2.9)

The left-hand side is a variation of the exterior derivative of the Hamiltonian and the right-
hand side contains a term Eg that captures the gravitational equations of motion and a
second term that arises from a variation with respect to the gauge field A. Because the
background satisfied Einstein’s equations, we can rewrite the first term as

� 2� ? (Eg · ⇠) = � ? �Tab⇠
bdxa . (2.10)

Now let us consider a black hole (not necessarily in asymptotically flat space). Integrating
(2.9) over a Cauchy slice ⌃ of constant Killing time t located somewhere between the (outer)
horizon and spatial infinity, we can use Stokes’ theorem to write

�H =

Z

S
d�2
1

�H =

Z

S
d�2
hor

�H+

Z

⌃
dd�1

x

p

h (�Tab + Fac�F
c

b )na
⇠
b
. (2.11)

To arrive at this form, we picked a gauge in which ◆⇠A + � vanishes at the horizon and
we assumed that �Fab dies off sufficiently fast at infinity. Here hab is the induced metric
on ⌃ and n

a its unit normal vector. The second integral on the right-hand side consists
of two terms, which arise from varying both the metric and gauge field. The sum of both
contributions can be thought of as an effective stress tensor

�T
e↵
ab = �Tab + Fac�F

c

b , (2.12)

and we arrive at the following relation
 Z

S
d�2
1

�

Z

S
d�2
hor

!
�H =

Z

⌃
dd�1

x

p

h �T
e↵
ab n

a
⇠
b
. (2.13)

As we will see next, when we specify a black hole background the first integral on the left-
hand side becomes proportional to the asymptotic charges of the black hole and the second
integral gives the correction to the horizon. At fixed asymptotic charges, we then find a
identity relating the shift of the black hole horizon to the stress tensor, reformulating the
WGC as a condition on the stress tensor. A non-covariant version of this relation already
appeared in [27] in the context of the four-dimensional Reissner-Nördstrom black hole. Here
we considered Einstein-Maxwell theory, but a generalization to a more general theory with
stationary black hole solutions is straightforward.
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∂t ↔ M, ∂ϕ ↔ J, λ ↔ Q

δM − ΦδQ +
r+

2G4
δf(r+) = ∫Σ

d3x hδTeff
ab naξb , ξ = ∂t

δM − ΩδJ +
1

8G3
δN(r+)2 = ∫Σ

d2x hδTeff
ab naξb , ξ = ∂t − Ω∂ϕ



Spinning WGC



Spinning WGC

• WGC is a statement that charged extremal BHs are unstable.

• Q: Is there an analogous statement for rotating BHs?

• A: Probably not - heuristic motivation is gone (Penrose process).

• However, for BTZ BHs, there is a spinning WG Theorem:

• Even though gravity is not dynamical in 3d, BTZ geometry is distinguished as it appears 
as near-horizon limit of many stringy BHs.

[Aalsma, Cole, Loges, GS, ’20]

Extremal BTZ BHs satisfy
J
M

≥ lim
M→∞

J
M ext



Corrections to BTZ

• Consider the 3d action on an AdS3 background perturbed by the leading 4-derivative 
operators (purely gravitational):

• Directly compute the shift in BH horizon (covariant formulation):

• Redefinition of the AdS length:  ℓ′ = ℓ − 42πG3 (3α1 + α2)

[Aalsma, Cole, Loges, GS, ’20]

∫ d3x −g [ 1
16πG3 (R +

2
ℓ2 ) + α1ℓR2 + α2ℓRabRab]

δTab = −
4(3α1 + α2)

ℓ3
gab + 𝒪(α2) ; ∫Σ

d2x hδTabnaξb = −
4πr2

+

ℓ3 (3α1 + α2)

c′ =
3ℓ′ 

2G3
=

3ℓ
2G3 [1 −

48πG3(3α1 + α2)
ℓ ] and

|J3 |
ℓM3

≤ 1 +
48πG3(3α1 + α2)

ℓ



Holographic RG Arugment
[Aalsma, Cole, Loges, GS, ’20]

Figure 2. If we perturb an AdS space with AdS length ` by a relevant deformation �', this triggers
an RG flow until we reach an IR fixed point describing an AdS space with length `

0. When �'

satisfies the NEC, ` > `
0. By a field redefinition, the action of the IR AdS space can be related to

an AdS space with length ` and higher-derivative corrections.

3.1 Example: Scalar perturbation

We now give an explicit example of a holographic RG flow where the relevant perturbation
is a scalar field. Because BTZ black holes are related to empty AdS by a modular trans-
formation, we find it convenient to describe a flow between two AdS spaces. A modular
transformation does not modify the central charge and the AdS flow is therefore sufficient
to show that the central charge decreases. Of course, one could also consider a direct flow
between two BTZ black holes as in [35], which is technically more involved. As expected,
those results are also in agreement with the c-theorem.

To describe the flow, it will be useful to take the following domain-wall ansatz for the
metric.

ds2 = d⇢2 + e
2A(⇢)

�
�dt2 + dx2

�
, (3.22)

where we take x ⇠ x+2⇡. Empty AdS space (with a compactified x-coordinate) corresponds
to A(⇢) = ⇢/`. We now perturb the Einstein-Hilbert action by a scalar field �, writing

I =

Z
d3x

p
�g

✓
1

22
R�

1

2
@a�@

a
�� V (�)

◆
. (3.23)

Taking the scalar field to depend only on the radial coordinate ⇢, we can write the action
in the following form:

I = V2

Z
d⇢ e2A(⇢)

"✓
W (�)�

1


Ȧ(⇢)

◆2

�
1

2

⇣
�̇(⇢) +W

0(�)
⌘2

#
(3.24)

+ V2

Z
d⇢ @⇢


e
2A(⇢)

✓
W (�)�

2

2
Ȧ(⇢)

◆�
.

Here V2 =
R
dtdx. The dot denotes a derivative with respect to ⇢, the prime a derivative

with respect to � and W (�) is any function that solves

V (�) = �
2
W (�)2 +

1

2
W

0(�)2 . (3.25)
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• Not necessary to assume that the UV CFT is dual to pure Einstein gravity (though 
convenient because the central charge takes the Brown-Henneaux form).

• As long as the NEC is satisfied in the bulk, the c-theorem implies a decrease in 
central charge in the IR and an increase in extremality bound.



Charged WGC

• Many charged extremal solutions have a near horizon BTZ geometry; in fact one often 
uses this to compute their entropy.

• Given the entropy-extremality relation [Hamada, Noumi, GS ’18], can we use the spinning 
WGC to infer the charged WGC?

• An example is the boosted 5D black string which has an M-theory origin as the 
intersection of three M5-branes: 

[Aalsma, Cole, Loges, GS, ’20]

Boosted 5D black string

4D Charged BH BTZ x S2

reduce on string 
(boosted) direction

near horizon
 limit



Extremality and Entropy

• The boosted 5D black string is described by the 5D action: 

WMNOP is the Weyl tensor and 

[Aalsma, Cole, Loges, GS, ’20]

The extremal limit corresponds to r0 = 0 and the extremality bound is given by

J3

`M3
=

p
`(`+ 2r0)

`+ r0
 1 . (4.26)

Instead of explicitly performing the near-horizon limit an alternative way of obtaining the
same BTZ ⇥ S

2 solution is to use c-extremization [32]. This will be especially useful when
we include higher-derivative corrections. Going to Euclidean signature and evaluating the
five-dimensional action, we find that the c-function takes the form

c(`, `S2) =
3⇡

2G5
`
2
`
2
S2

✓
�R+

3

4
FMNF

MN

◆
=

3⇡`
⇥
`
2
�
3Q2

� 4`2
S2

�
+ 12`4

S2

⇤

4G5`
2
S2

. (4.27)

Extremizing with respect to ` and `S2 we find the following lengths and central charge

` = 2Q , `S2 = Q , c =
3Q

G3
, (4.28)

where we used G5 = 4⇡`2
S2G3. This coincides with the solution found by taking the near-

horizon limit. The entropy can be found using Cardy’s formula [34]

S = 2⇡

r
c

6

⇣
h�

c

24

⌘
+ 2⇡

r
c

6

⇣
h̄�

c

24

⌘
. (4.29)

After using (3.9), we find that in the extremal limit

S
��
T=0

= ⇡

s
`2M3

G3
=

⇡Q
2

G4
, (4.30)

where we wrote G3 =
RG4
2Q2 . The extremal entropy of the BTZ matches that of the extremal

four-dimensional black hole.

4.3 Including higher-derivative corrections

We are now ready to include higher-derivative corrections to the five-dimensional action
and see how the BTZ near-horizon geometry and four-dimensional black hole are modified.
The most general four-derivative corrections to five-dimensional Einstein-Maxwell theory
are

I =
1

16⇡G5

Z
d5x

p
�g

⇣
R�

3

4
FMNF

MN + ↵1Q
2
FMNF

MN
FOPF

OP (4.31)

+ ↵2Q
2
FMNFOPW

MNOP + ↵3Q
2
E5

⌘
.

Here WMNOP is the Weyl tensor and

E5 = RMNOPR
MNOP

� 4RMNR
MN +R

2
, (4.32)

is the five-dimensional Euler density. We normalize the higher-derivative operators with Q

so that the ↵i are dimensionless.
Readers uninterested in technical details can skip the next two subsections and instead

directly look at Table 1, where we give an overview of the corrections to the entropy and
extremality bounds. Take notice that the BTZ extremality bound does not coincide with
the four-dimensional extremality bound.
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Table 1. Overview of the corrections to the extremality bounds, entropies and temperatures.
z = J3

2QM3
for the BTZ black hole and z = Q

G4M4
for the four-dimensional black hole. It is clear that

thermodynamics at z = 1 only makes sense if the WGC is satisfied (else z = 1 is a naked singularity
with no horizon). Results for BTZ⇥S

2 are presented also in terms of “four-dimensional quantities”
via the correspondence G3 = 2⇡R

4⇡Q2G4. The relation between ais and ↵is are given in (4.34).

4.3.1 Four-dimensional black hole solution

To obtain the four-dimensional action with higher-derivative corrections we perform a
Kaluza-Klein reduction along the x-direction, just as before, using the ansatz (4.8). Taking
magnetic and electric charges equal the reduced action takes the following form.

I =
1

16⇡G4

Z
d4x

p
�g

⇣
R�

1

4
Fµ⌫F

µ⌫ +
a1

4
Q

2
�
Fµ⌫F

µ⌫
�2 (4.33)

+
a2

2
Q

2
Fµ⌫F⇢�W

µ⌫⇢� +
a3

2
Q

2
E4

⌘
.

The Wilson coefficients are related to the coefficients appearing in the five-dimensional
action as

a1 = ↵1 +
3

8
↵2 +

1

2
↵3 , a2 = ↵2 +

1

2
↵3 , a3 = 2↵3 . (4.34)

Because the four-dimensional Euler density E4 is topological, it will affect neither the equa-
tions of motion nor the extremality bound. To determine the corrections to the extremality
bound and entropy, we will make use of a thermodynamic approach, which has the advan-
tage that we don’t need to explicitly know the corrected metric. Instead, we can evaluate
the corrected Euclidean action on the uncorrected solution [10, 17]. As an additional check,
we show in App. B that this approach agrees with a direct computation of the corrected
metric.
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Total Landscaping

• The entropy of the BTZ and 4d charged BH agree at zero temperature, but the extremality 
bounds do not. 

• The entropy-extremality relation [Hamada, Noumi, GS ‘18] is between the extremality bound 
(fixed  ) & the microcanonical entropy (fixed ).

• The extremality bounds for the spinning WGC and charged WGC do not line up; rather 
they together strengthen the WGC in 5D:

Q/J, T Q/J, M

[Aalsma, Cole, Loges, GS, ’20]

Figure 4. Comparison of the complementary bounds in Eq. (4.62). The dashed lines show equality
and the gray and blue shaded regions show where all three inequalities are simultaneously satisfied
with ↵1 > 0 and ↵1 < 0, respectively.

5 Discussion

Understanding precisely the neccesary and sufficient conditions for proving the mild form
of the WGC is an interesting question that can shed light on the boundary between those
effective theories which are consistent with quantum gravity (the landscape) and those that
are pathological (the swampland). In particular, one may wonder what sorts of matter
configurations correct the extremality bound in a manner consistent with the WGC. To
understand this better, we reformulated the shift in the extremality bound of a black hole
in terms of an integrated condition on the stress tensor. When this integral of the stress
tensor is negative, the horizon is shifted positively in a microcanonical ensemble. As a
particular application we evaluated this condition for four-dimensional Reissner-Nördstrom
and rotating BTZ black holes perturbed by higher-derivative corrections, but it can be
applied to any stationary black hole and more general corrections.

Applying this condition to extremal rotating BTZ black holes suggests a spinning ver-
sion of the WGC that posits that corrections to the extremality bound should increase the
extremal angular momentum-to-mass ratio. Although the spinning WGC does not follow
from standard arguments of black hole decay, we showed that when a BTZ black hole is per-
turbed by a relevant operator it obeys the spinning WGC as a consequence of the c-theorem
in the dual two-dimensional CFT.

We then studied the spinning WGC in the context of a five-dimensional boosted black
string with higher-derivative corrections. The string has a near-horizon BTZ⇥S

2 geometry
and describes a four-dimensional charged black hole upon a Kaluza-Klein reduction. While
the entropy of the four-dimensional black hole at zero temperature agrees with the entropy
computed from the BTZ geometry, their extremality bounds do not coincide. By applying
both the spinning and charged WGC to the black string we derived positivity conditions on
the five-dimensional Wilson coefficients that are stronger than those obtained by applying
the charged WGC alone.

Because the three-dimensional spinning WGC does not directly imply the four-dimensional
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and the thermodynamic quantities are given by (3.15) and (3.16). We find that the ex-
tremality bound in a canonical ensemble is corrected as

J3

2QM3
 1 +

8↵1 + 3↵2 � 12↵3

2
, (4.58)

so that this spinning WGC is satisfied when

8↵1 + 3↵2 � 12↵3 � 0 (4.59)

Notably, this combination of Wilson coefficients does not coincide with the combination
appearing in the extremality bound of the four-dimensional black hole. The state z =

J3/(2QM3) = 1 has a temperature

T |
z=1 =

s
G3J3(8↵1 + 3↵2 � 12↵3)

⇡Q3
. (4.60)

At this temperature, the microcanonical entropy is given by

S|
z=1 = 2⇡Q

r
M3

G3

 
1 +

r
8↵1 + 3↵2 � 12↵3

2

!
. (4.61)

A summary of all corrections to the extremality bounds and the entropy are displayed in
Table 1.

4.4 WGC bounds

In Sec. 4.3 we demonstrated that the WGC as phrased in terms of a corrected extremality
bound differs for two distinct limits of the five-dimensional black string. The corrected
angular momentum-to-mass ratio of the near-horizon BTZ ⇥ S

2 black hole and corrected
charge-to-mass ratio of the four-charge black hole after a Kaluza-Klein reduction to four
dimensions depend on different combinations of the five-dimensional Wilson coefficients.

Alternatively, we may impose that the mild form of the WGC holds for each of these
independently, allowing us to more strongly constrain the ↵i appearing in five dimensions.
This is similar in spirit to the works of [5, 39] where the lattice and tower WGC respectively
were argued for based on robustness under toroidal compactifications. In fact, we can go
further than only combining the bounds of Eqs. (4.46) and (4.59) by asking that the mild
WGC be satisfied also for electric black holes in five dimensions. Such bounds for charged
black holes are known, appearing for example in [27]. With the normalizations of Eq. (4.31),
these three bounds read

8↵1 + 3↵2 � 12↵3 � 0 (near-horizon BTZ ⇥ S
2)

8↵1 + 7↵2 + 6↵3 � 0 (4D 4-charge black hole)

)
5D boosted
black string

8↵1 � ↵2 � 6↵3 � 0 (5D electric black hole)

(4.62)

These conditions are compatible with one another, as shown in Fig. 4, and together provide
more stringent bounds on the allowed values of the ↵i. One could also ask what bounds
arise for more general charged black holes in four dimensions after a Kaluza-Klein reduction,
but since both the radion and axion can be sourced we do not consider such backgrounds
here.
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Summary



Summary

• Thermodynamics of BHs has lent insights into quantum gravity. Worthwhile to leverage this 
effectiveness for swampland criteria such as WGC, RFC, CCC, …

• We provided evidence that the extremality curve (  vs ) for BHs approaches the classical 
extremality bound monotonically from below: (axio)-dilatonic Einstein-Maxwell BHs, BTZ BHs.

• Evidence that this monotonicity behavior continues from the flat space BH regime to the large 
AdS BH regime [Loges, Noumi, GS, work in progress]. If universal, this behavior has interesting 
consequences for  corrections to  operators in dual CFT.

• Covariant formulation of WGC in terms of effective stress tensor (Iyer-Wald).

• Spinning WGC via c-theorem and Total Landscaping Principle.

M Q

1/q Δ(q) ≥ 𝒪(c)


