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Refined Distance Conjecture

At distances beyond O(MPl) an infinite tower of states appears
which becomes exponentially light with the distance:

m(ϕ) = m(ϕ0)e
−α∆(ϕ,ϕ0)

MPl (1)

Metric on moduli space

gi j = ∂i∂jK (2)

K = − log(−i Π̄ · Σ · Π)− log(S + S̄) (3)

Requires global expressions for the periods

This includes different phases and regions close to the
boundaries.

Numerically doable, but bad convergences for h2,1 > 1.

Modular expressions can help. [Kläwer 21]



What is a global closed form?

For this talk: Any function that

Can be evaluated for any value where it is defined

Derivatives known

Can be integrated

This includes all usual functions ( log, sin, arctan, polynoms, etc.)
as well as some more uncommon (polylogs, complete elliptic
integrals K(x), 2F1)



Periods

Let X be a CY hypersurface or CICY in WCP. (This assumption
will be dropped later)

Choose symplectic basis γα ∈ H3(X ,Z) α = 0, . . . , 2h2,1 + 1.

Πα(x) =

∫
γα

Ω(x) (4)

The x denote the moduli of the CY, Ω is the unique holomorphic
3-form.



How to compute the periods?

The periods fulfill a system of differential equations, the
Picard-Fuchs equations.

Dl =
∏
li>0

(
∂

∂ai

)li

−
∏
li<0

(
∂

∂ai

)−li

, l ∈ {li} , (5)

xk = (−1)l
(k)
0 a

l
(k)
0
0 . . . al

(k)
s
s (6)

Dl ω = 0 (7)



Local Solutions at LCS

Around the LCS point a ’closed’ form is given by
[Hosono, Klemm, Theisen, Yau 93’]

ω0 =
∞∑

ni=0;i=1,...,h2,1

h2,1∏
i=1

xni+ρii

 Γ
[
1−

∑h2,1

k=1 l
(0)
k (nk + ρk)

]
Γ
[
1−

∑h2,1

k=1 l
(0)
k ρk

]
·

p∏
j=1

Γ
[
1−

∑h2,1

k=1 l
(j)
k ρk

]
Γ
[
1−

∑h2,1

k=1 l
(j)
k (nk + ρk)

] .
Depends on the charge vectors l , the moduli xi and the indices ρi



Local Solutions at LCS

D1,i =
1

2πi
∂ρi ,

D2,i =
1

2

Kijk

(2πi)2
∂ρj∂ρk ,

D3 = −1

6

Kijk

(2πi)3
∂ρi∂ρj∂ρk ,

(8)

ω =


ω0

D1,i ω0

D2,i ω0

D3 ω0


∣∣∣∣∣∣∣∣
ρi=0

(9)



ϵ expansion of hypergeometric functions

One can rewrite the fundamental period at the LCS as a
hypergeometric function, e.g. for 3 parameters:

ω0 =
∞∑

n1=0

∞∑
n2=0

xn1+ρ1yn2+ρ2zρz f (n1, n2, ρ1, ρ2, ρ3) pFq(a⃗, b⃗, z) .

The periods are given by up to third derivatives with respect to the
indices ρ. These appear in the parameters of the hypergeometric
function.
→ Need to expand the pFq around its parameters ( to order 3).



ϵ expansion of hypergeometric functions

Well studied in the amplitudes community (2003-2013)
[Weinzierl 04’, Kalmykov, Kniehl 10’, Greynat, Sesma 13’. . . ]

Recently much progress in the math community (2014-2020)
[Wan, Zucker 14’, Aiblinger 15’, Campbell, D’Aurizio, Sondow 17’, Cantarini, D’Aurizio 18’, Zhao 19’,Zhao

20’. . . ]

Still a hard computation!



The program

Compute the elliptic curve case

Reduce the computation of certain K3s to this case using
Clausen’s identity

Generalize to any geometric 2-dimensional PF operator

Use generalizations of Clausens’s identity to compute the
periods of any 1-parameter K3/Fano 3-fold in closed form



Elliptic curves

There are exactly 4 complete intersection elliptic curves.

P1,1,1,1[2 2] P1,1,2[4] P1,1,1[3] P1,2,3[6]

These correspond to the fundamental periods

2F1(
1

2
,
1

2
, 1, x) 2F1(

1

4
,
3

4
, 1, x) 2F1(

1

3
,
2

3
, 1, x) 2F1(

1

6
,
5

6
, 1, x)

Exactly matching Ramanujan’s theory of elliptic functions of
alternative bases.
Special cases of the Legendre family of hypergeometric functions:

2F1 (a, 1− a, 1, x) (10)

Choosing other values for a allows for easy violations of the
distance conjecture. But the possible values are restricted by the
monodromy representations of the 3-punctured sphere!



The simplest case

a = 1/2

ω0 = xρ 3F2(1,
1

2
+ ρ1,

1

2
+ ρ1; 1 + ρ1, 1 + ρ1; x) . (11)

We need the parameter derivatives of

2F1(
1

2
,
1

2
; 1; x) =

π

2
K (x) . (12)

Can be rewritten as

∞∑
n=0

Γ[n + 1/2]Γ[n + 1/2]

Γ[n + 1]Γ[n + 1]
xn (Ψ(n + 1/2) + Ψ(n + 1/2)− 2Ψ(n + 1))

Or equivalently using the harmonic number representation of the
polygamma functions:

∞∑
n=0

Γ[n + 1/2]Γ[n + 1/2]

Γ[n + 1]Γ[n + 1]
xn

(
Hn−1/2 + Hn−1/2 − 2Hn

)



Expansion for Elliptic curves

∞∑
n=0

Γ[n + 1/2]Γ[n + 1/2]

Γ[n + 1]Γ[n + 1]
xn

(
Hn−1/2 + Hn−1/2 − 2Hn

)
Hxn =

1

x

(
Hn + Hn− 1

x
+ Hn− 2

x
+ . . .+ Hn− x−1

x

)
+ log(x)

H2n =
1

2

(
Hn + Hn− 1

2

)
+ log(2)

Allows rewriting of the sum into combinations of harmonic
numbers with integer coefficients.



Expansion for Elliptic curves

Allows rewriting of the sum into combinations of harmonic
numbers with integer coefficients.

∂ρω0|ρ=0 =
∞∑
n=0

Γ[n + 1/2]Γ[n + 1/2]

Γ[n + 1]Γ[n + 1]
xn (2H2n − 2Hn)

Generating functions actually known!

∞∑
n=0

(
2n

n

)2

Hn
xn

42n
= K (1− x) +

1

π
K (x) log

(
x2

16(1− x)

)
(13)

∞∑
n=0

(
2n

n

)2

H2n
xn

42n
=

1

2
K (1− x) +

1

π
K (x) log

(
x

4(1− x)

)
(14)



Global closed forms for parameter derivatives

Even Better:

∂c 2F1(a, 1− a, c, x)|c=1 = −
π

2 sin(πa)
2F1(a, 1− a, 1, 1− x)−

1

2

(
Ψ(1−

a

2
) + Ψ(

a+ 1

2
)−Ψ(1)−Ψ(

1

2
)−

π

sin(πa)
− log(

1− x

x
)

)
2F1(a, 1− a, 1, x)

[Nicholson 18’]

∂ϵ 2F1(a+ ϵ, b + ϵ, a+ b, x)|ϵ=0 = log

(
1

1− x

)
2F1(a, b, a+ b, x)

[Blaschke 18’]

Combining these gives a closed form for the periods of all 4
elliptic curves.

The expressions simplify for explicit values of a!



Combining Everything

t =
ω1

ω0
=

1

2πi

∂ρω0

ω0
|ρ=0 =

i

2

K (1− x)

K (x)
− i

π
log(4)

Exactly of the form expected for the inverse of a triangle map.

The only closed form for an ϵ-expansion needed!

Rest of this talk: How to use this result to compute the
periods of K3s and Fano 3-folds.



Clausen’s identity

The Legendre family enjoys a classical identity

3F2({a, 1− a,
1

2
}, {1, 1}, x) = 2F1({

a

2
,
1− a

2
}, {1}, x)2

= 2F1({a, 1− a}, {1}, 4x(1− x))2

[Clausen 1828’]

relates the fundamental period of certain K3s to the periods
of elliptic curves!

The structure is such that the first ϵ-derivative can also be
computed!

The identity does not help with the second derivative.



Period identities

Compactification on K3 manifolds results in an N = 4
supersymmetric theory

→ no instanton corrections to the prepotential
→ condition on the periods:

ω2 =
ω2
1

ω0
. (15)

→ knowledge of the first two periods is sufficient!
Note: Both relations, Clausen’s identity as well as the period
relation follow from the fact, that the PF operator of K3s are the
symmetric squares of second order operators of the elliptic curves.



Example: P11222[8]

ϕ

ψ

0 ϕ = 1

|8ψ4| ≶ |ϕ± 1|

γ2

γ1

γ3
γ4 γ5 =

arctanh
(

1√
2

)
√
2

heterotic duality

Kläwer 21’

γ6

γ7

γ8 = 0

γ9

LV

P1

Landau-

Ginzburg

orbifold

Figure: Definitions of curves in the moduli space of P11222[8]. The dotted
blue lines represent a sketch of the phase boundaries.



Computing the distance

F = −1

6
Kijkti tj tk +

1

2
aij ti tj + bi ti −

1

2
χ
ζ(3)

(2πi)3
. (16)

K111 = 8 , K112 = K121 = K211 = 4 , b1 =
7

3
, b2 = 1 , χ = −168 .

→ gt1,t1 ||t2|=∞ =
1

2Im(t1)2
(17)

t1(x) =
i

2

√
4 + 2

√
2− 2

√
1− x1√

2 +
√
2
√

1 +
√
1− x1

K

(
2
√
2
√

1+
√
1−x1

2+
√
2
√

1+
√
1−x1

)
K

(
2
√

2−2
√
1−x1

2+
√

2−2
√
1−x1

) , (18)

→ ∆(LG,Conifold) =
arctanh

(
1√
2

)
√
2



Some comments

No logarithms appear in the mirror map!

The usual log combines with the infinite instanton series.

Underlying all of this is modularity, but it is neither used nor
needed!

x1(t
1) =

256

j+2 (t1)
. (19)

j+2 (t1) = 24
(θ3(qt1)

4 + θ4(qt1)
4)4

θ2(qt1)
8θ3(qt1)

4θ4(qt1)
4
, (20)

Inverting this relation is hard! ( but extremely good
approximations are possible, see Kläwer 21’)
The hypergeometric treatment gives directly the inverse relation.



An aside: Apéry-like sequences

Apéry used the sequence

un = 1, 3, 19, 147, 1251, 11253, 104959 . . .

in his proof of the irrationality of ζ(2). It follows the recursion
relation

n2un− (A(n−1)2+A(n−1)+B)un−1+C (n−1)2un−2 = 0 , (21)

for A=11, B=3, C=-1.[
θ2 − x(Aθ2 + Aθ + B) + x2C (θ + 1)2

]
f̃ (x) = 0 , (22)

This inspired Zagier to search for more integer sequences of this
type.



A B C Name Generating Function
7 2 -8 A 1

1−2x 2F1(
1
3 ,

2
3 , 1, 27x

2/(1− 2x)3)

9 3 27 B
1

1−3x 2F1(
1
3 ,

2
3 , 1,−27x3/(1− 3x)3)

= 2F1(
1
3 ,

1
3 , 1, 27x(1− 9x + 27x2))

12 4 32 E
1

1−4x 2F1(
1
2 ,

1
2 , 1, 16x

2/(1− 4x)2)

= 2F1(
1
2 ,

1
2 , 1, 16x(1− 4x))

17 6 72 F 1
1−6x 2F1(

1
3 ,

2
3 , 1,−27x3(8x − 1)/(1− 6x)3)

10 3 9 C
√
2

p
1/2
1

2F1(
1
2 ,

1
2 , 1, 64x

3/p21)

11 3 -1 D 1

p
1/4
2

2F1(
1
12 ,

5
12 , 1, 1728x

5(1− 11x − x2)/(p2)
3))



Apéry-like sequences

Periods of the 6 curves with 4 singularities. Beukers 02’,Zagier 09’

Closed forms for all sequences know!

ω0 = f (x) 2F1(a, 1− a, 1, g(x)) (23)

Exactly of the type whose ϵ expansion is known. They form a nice
”basis” of functions. The (twisted) symmetric squares of them
span all K3s and Fano 3-folds with PF operators of order 2!



(twisted) symmetric squares

Almkvist, van Straten, Zudilin 11’[
θ2 − x(Aθ2 + Aθ + B) + x2C (θ + 1)2

]
f (x) = 0 ,[

θ3 − 2x(2θ + 1)(Aθ2 + Aθ + B) + 4Cx2(θ + 1)(2θ + 1)(2θ + 3)
]

f (x)2 =
1

1− Cx2
f̃

(
1− Ax + Cx2

(1− Cx2)2

)
.

[θ3 − 2x(2θ + 1)(Aθ2 + Aθ + B) + 4x2C (θ + 1)3 ]f̃ (x) = 0 ,

f (x)2 =
1

1− Ax + Cx2
f̃

(
−x

1− Ax + Cx2

)
.

Rewriting these identities for f̃ (x) leads to identities of the form

f̃ (x) = g(x) 2F1(a, 1− a, 1, h(x))2 .

Compare to Clausen’s identity:

f̃ (x) = 2F1(a, 1− a, 1, 4x(1− x))2 .



K3 manifolds Lian, Yau 95’



Fano 3-folds, Golyshev 05’



multi parameter models

For more than one modulus there exist analogues of the period
relations: Hosono 00’

D2 ω0 =
1

2

∑
a,b Ka,b D1,a ω0 D1,b ω0

ω0
− 1 , (24)

Moreover, in examples the solutions are expressible in terms of
products of 2F1 functions, e.g for the fibre of P4

112812[24]:

L1 = θx (θx − 2θz)− x

(
θx +

1

6

)(
θx +

5

6

)
, (25)

L2 = θ2z − z (2θz − θx + 1) (2θz − θx) . (26)

ω0(x) = 2F1(
1

6
,
5

6
, 1, x) ,

ω1(x) = −2π 2F1(
1

6
,
5

6
, 1, 1− x) + log(432) 2F1(

1

6
,
5

6
, 1, x) .



multi parameter models

The combinations ω0(S)ω0(R), ω1(S)ω0(R),ω1(R)ω0(S) and
ω1(S)ω1(R) are all annihilated by L1 and L2, where S and R are
algebraic functions given by the solutions to the system

R + S − 864RS − x = 0 , (27)

RS − (1− 432R)(1− 432S)− x2z = 0 . (28)



CY 3-folds

Method can not work for CY 3-folds. Obvious obstruction:
Instantons break the period relations.

Remnants of period relations visible at special points in moduli
space (e.g. Legendre relation of periods at the conifold).

PF operator of more complicated, i.e. non-hypergeometric,
operators often match the structure as expected from twisted
cubes!

E.g AESZ 16:

θ4 − 4x(2θ + 1)2(5θ2 + 5θ + 2) + 28x2(θ + 1)2(2θ + 1)(2θ + 3)

For comparison the K3 operator

θ3 − 2x(2θ + 1)(Aθ2 + Aθ + B) + 4Cx2(θ + 1)(2θ + 1)(2θ + 3)

The order x2 or higher is necessary! Easy to show that no
factorization of cubes can exist for the hypergeometric case.



Summary

We can compute closed forms for periods of K3s and Fano
3-folds.

Requires solutions of a 2-d operator as well as a generalized
Clausen identity/ twisted symmetric square.

Distance computations agree with results from heterotic
duality.

No known CY 3-fold examples in the literature, but so far only
non-twisted symmetric cubes have been studied.

Higher orders in the quadratic equations?



The End

Thank You


