

The Gravitino and the Swampland

based on [arXiv 2104.08288], JHEP 06 (2021) 071 in collaboration with Niccolò Cribiori and Dieter Lüst

Marco Scalisi

November 10th, 2021 - Ringberg Castle

Motivations

- The Gravitino Mass Conjecture
- Tests of the GMC
- Phenomenological implications of the GMC
- Conclusions

Motivations

- The Gravitino Mass Conjecture
- Tests of the GMC
- Phenomenological implications of the GMC
- Conclusions

at present

 $M_{SUSY}^2 \simeq m_{3/2} M_P$

at present

no definite indication on **expected mass range of** $m_{3/2}$ (besides model-dependent results)

at present

no definite indication on **expected mass range of** $m_{3/2}$ (besides model-dependent results)

Is there any **fundamental property of quantum gravity** that might give us information about the mass of the gravitino?

Ooguri, Vafa 2006

(reviews)

Palti 2019

Beest, Calderon-Infante, Mirfendereski, Valenzuela 2021

Higuchi bound for the graviton

 $m_{graviton}^2 > 2H^2$

Higuchi 1987

Higuchi bound for the graviton

$$m_{graviton}^2 > 2H^2$$

Higuchi 1987

AdS Distance Conjecture

Lüst, Palti, Vafa 2019

No EFT with finite number of fields interpolating AdS, Minkowski and dS

Higuchi bound for the graviton

Higuchi 1987

AdS Distance Conjecture

Lüst, Palti, Vafa 2019

 $m_{graviton}^2 > 2H^2$

No EFT with finite number of fields interpolating AdS, Minkowski and dS

Issues with light charged gravitini

Cribiori, Dall'Agata, Farakos 2020 Dall'Agata et al 2021

see Dall'Agata's talk

The Gravitino and the Swampland

Marco Scalisi | MPP

Motivations

The Gravitino Mass Conjecture

Tests of the GMC

Phenomenological implications of the GMC

Conclusions

The Gravitino and the Swampland

The limit of **small gravitino mass**

$$m_{3/2} \rightarrow 0$$

always corresponds to the **massless limit of an infinite tower of states** and to the breakdown of the effective field theory.

The limit of **small gravitino mass**

 $m_{3/2} \to 0$

always corresponds to the **massless limit of an infinite tower of states** and to the breakdown of the effective field theory.

Same proposal made in 2104.10181 by Castellano, Font, Herráez, Ibáñez

Evidences of infinite tower mass related to $m_{3/2}$

Antoniadis, Bachas, Lewellen, Tomaras 1988 Palti 2020

The Gravitino and the Swampland

AdS Distance Conjecture (ADC)

Lüst, Palti, Vafa 2019

The limit of small AdS cosmological constant

 $|\Lambda| \to 0$

is accompanied by a light infinite tower with mass

 $m \sim \left|\Lambda\right|^a$

AdS Distance Conjecture (ADC)

Lüst, Palti, Vafa 2019

The limit of small AdS cosmological constant

$$|\Lambda| \to 0$$

is accompanied by a light infinite tower with mass

a

$$m \sim |\Lambda|$$

for SUSY AdS vacua $m_{3/2}^2 = -\frac{\Lambda}{3}$ GMC = ADC n = 2a

$$m_{3/2} \rightarrow 0$$
 implies $\Lambda \rightarrow 0$
i.e. GMC \rightarrow ADC
(in AdS space!)

The Gravitino and the Swampland

Motivations

The Gravitino Mass Conjecture

Tests of the GMC

Phenomenological implications of the GMC

The scalar potential is given by

Cremmer, Ferrara, Girardello, Van Proeyen 1983

$$V = V_F + V_D - 3m_{3/2}^2 \qquad \text{with } m_{3/2} = e^{K(\phi,\bar{\phi})/2} |W(\phi)|$$

with V_F and V_D being the supersymmetry breaking terms

The scalar potential is given by

Cremmer, Ferrara, Girardello, Van Proeyen 1983

$$V = V_F + V_D - 3m_{3/2}^2$$

trivially follows

with
$$m_{3/2} = e^{K(\phi,\phi)/2} |W(\phi)|$$

with V_F and V_D being the supersymmetry breaking terms

The scalar potential is given by

Cremmer, Ferrara, Girardello, Van Proeyen 1983

We identify the tower with the Kaluza-Klein (KK) states, with mass

$$m_{KK} = \left(\frac{1}{\mathcal{V}}\right)^{2/3}$$

for isotropic manifolds

with \mathscr{V} being the **internal 6-dimensional volume**

We identify the tower with the Kaluza-Klein (KK) states, with mass

 $m_{KK} = \left(\frac{1}{\mathcal{V}}\right)^{2/3}$

for isotropic manifolds

with \mathcal{V} being the **internal 6-dimensional volume**

Kähler potential and **super-potential**

$$K(\phi,\bar{\phi}) = -\alpha \log \mathcal{V}(\phi,\bar{\phi}) + K'$$

remaining part dependent on the **complex structure moduli** and on the **dilaton**

$$\langle W \rangle \sim \mathscr{V}^{\beta/2}$$

scaling at the minimum of the potential

We identify the tower with the Kaluza-Klein (KK) states, with mass

 $m_{KK} = \left(\frac{1}{\mathcal{V}}\right)^{2/3}$

for isotropic manifolds

with $\,\mathscr{V}$ being the internal 6-dimensional volume

Kähler potential and **super-potential**

$$K(\phi, \bar{\phi}) = -\alpha \log \mathscr{V}(\phi, \bar{\phi}) + K'$$

remaining part dependent on the **complex structure moduli** and on the **dilaton**

$$\langle W \rangle \sim \mathscr{V}^{\beta/2}$$

scaling at the minimum of the potential

Gravitino mass

$$m_{3/2} \sim \left(\frac{1}{\mathcal{V}}\right)^{\frac{\alpha-\beta}{2}} \qquad \cdots \qquad m \sim \left(m_{3/2}\right)^n \cdots \rightarrow \qquad n = \frac{4}{3(\alpha-\beta)}$$

Anti-de Sitter

For background
$$AdS_d \times S^{d'} \quad \dots \quad n = 1$$

Anti-de Sitter

- For background $AdS_d \times S^{d'} \quad \dots \quad n = 1$
- Supersymmetric IIB AdS vacua (KKLT)

Kachru, Kallosh Linde, Trivedi 2003

 $\langle W \rangle \sim T e^{-cT}$

$$K = -3\log(T + \overline{T}) + \dots = -2\log\mathcal{V} + \dots$$

$$\bigvee$$

$$\mathcal{V} = (\operatorname{Re}T)^{3/2}$$

Anti-de Sitter

For background
$$AdS_d \times S^{d'} \longrightarrow n = 1$$

Supersymmetric IIB AdS vacua (KKLT)

Kachru, Kallosh Linde, Trivedi 2003

isotropic scaling of the KK masses not valid! *Blumenhagen, Brinkmann, Makridou 2019 Bena, Dudas, Grana, Lüst 2018 Blumenhagen, Kläwer, Schlechter 2019*

Anti-de Sitter

Non-SUSY IIB AdS vacuum (Large Volume Scenario) Balasubramanian, Berglund, Conlon, Quevedo 2005

Minkowski

No-scale models

Cremmer, Ferrara, Kounnas, Nanopoulos 1983 Ellis, Kounnas, Nanopoulos 1984

$$K = -3\log(T + \overline{T})$$
 $W = \text{const}$

• for heterotic string compactifications
$$\mathscr{V} = (T + \overline{T})^3$$
 \cdots $\alpha = 1$ $\beta = 0$ $n = 4/3$

• for type IIB GKP orientifolds $\mathscr{V} = (T + \overline{T})^{3/2}$ \longrightarrow $\alpha = 2$ $\beta = 0$ n = 2/3

Scherk-Schwarz models

Scherk, Schwarz 1979

No-scale models with F-term and D-term

Dall'Agata, Zwirner 2013

de Sitter

GMC in de Sitter can also be supported by its **validity in anti-de Sitter spaces**

Some of the best and most studied dS constructions have

The Gravitino and the Swampland

Content: spin-2 graviton $g_{\mu\nu}$, **two spin-3/2 gravitini** ψ^A_μ , spin-1 graviphoton A^0_μ , vector- and hyper-multiplets

Content: spin-2 graviton $g_{\mu\nu}$, **two spin-3/2 gravitini** ψ^A_μ , spin-1 graviphoton A^0_μ , vector- and hyper-multiplets

We find a relation between the gravitino mass and the gravitino gauge coupling

Content: spin-2 graviton $g_{\mu\nu}$, **two spin-3/2 gravitini** ψ^A_μ , spin-1 graviphoton A^0_μ , vector- and hyper-multiplets

We find a relation between the gravitino mass and the gravitino gauge coupling

The Gravitino and the Swampland

Content: spin-2 graviton $g_{\mu\nu}$, **two spin-3/2 gravitini** ψ^A_μ , spin-1 graviphoton A^0_μ , vector- and hyper-multiplets

We find a relation between the gravitino mass and the gravitino gauge coupling

Motivations

- The Gravitino Mass Conjecture
- Tests of the GMC

Phenomenological implications of the GMC

Gravitino and Quantum Gravity Cut-off

quantum gravity cut-off = "species scale"

Dvali 2007 Dvali, Redi 2007

number of states below the cut-off

in the case of states equally spaced (as for KK or winding modes)

$$m \sim M_P \left(\frac{m_{3/2}}{M_P}\right)^n$$

mass of the tower

Gravitino and Quantum Gravity Cut-off

The mass of the gravitino **sets the quantum gravity cut-off**

$$\Lambda_{QG} \simeq M_P \left(\frac{m_{3/2}}{M_P}\right)^{\frac{n}{3}}$$

The mass of the gravitino **depends on the number of states** with mass under Λ_{OG}

Gravitino and Quantum Gravity Cut-off

In the case of a **charged gravitino**

(if n < 3 and assuming $g_{3/2} < 1$)

Marco Scalisi | MPP

Gravitino and (Quasi-)de Sitter Space

Perturbative control of our EFT of de Sitter requires

(analogous of the **Higuchi bound**)

model-independent lower bound on the gravitino mass in terms of the Hubble parameter

Gravitino and (Quasi-)de Sitter Space

Perturbative control of our EFT of de Sitter requires

but, no EFT of SUSY breaking! _

Kallosh, Linde 2004

_

A lower bound on $m_{3/2}$ from CMB

In the slow-roll approximation

$$H = \sqrt{\frac{\pi^2 A_s r}{2}} M_P \simeq 10^{-4} \sqrt{r} M_P$$

1

the bound
$$m_{3/2} > M_P^{\frac{n-3}{n}} H^{\frac{3}{n}}$$
 becomes

$$m_{3/2} > \left(10^{-12} \ r^{\frac{3}{2}}\right)^{\frac{1}{n}} \ M_P$$

lower bound on the gravitino mass in terms of the **tensor-to-scalar ratio** *r*

A lower bound on $m_{3/2}$ from CMB

In the slow-roll approximation

$$H = \sqrt{\frac{\pi^2 A_s r}{2}} M_P \simeq 10^{-4} \sqrt{r} M_P$$

the bound
$$m_{3/2} > M_P^{\frac{n-3}{n}} H^{\frac{3}{n}}$$
 becomes

$$m_{3/2} > \left(10^{-12} \ r^{\frac{3}{2}}\right)^{\frac{1}{n}} \ M_P$$

lower bound on the gravitino mass in terms of the **tensor-to-scalar ratio** *r*

(log-log Plot)

An upper bound on the scalar field range in terms of $m_{3/2}$

If the quasi-de Sitter phase is **sustained by a scalar field displacement**, the **Swampland Distance Conjecture** (SDC) predicts

$$\Lambda_{QG} = \Lambda_0 \ e^{-\lambda \Delta \phi}$$

$$\downarrow$$

$$\Delta \phi < \frac{1}{\lambda} \log \frac{M_P}{\Lambda_{QG}}$$

with $\Lambda_0 \leq M_P$ original naive cut-off of the EFT

see for example MS, Valenzuela 2018

Ooguri, Vafa 2006

An upper bound on the scalar field range in terms of $m_{3/2}$

If the quasi-de Sitter phase is sustained by a scalar field displacement, the **Swampland Distance Conjecture** (SDC) predicts

Ooguri, Vafa 2006

see for example MS, Valenzuela 2018

for $n \simeq \lambda \simeq 1$, it constrains large scalar field variations (*i.e.* $\Delta \phi > 1$) just for very high values of the gravitino mass close to the Planck scale

 $m_{3/2} > 10^{-2} M_P$

FESTINA LENTE BOUND

(lower bound on the mass of a charged particle in de Sitter space)

In the case of the gravitino, it reads

would point at a bound $g_{3/2}\gtrsim 0.08$

Montero, Van Riet, Venken 2019

Montero, Vafa, Van Riet, Venken 2021

Motivations

- The Gravitino Mass Conjecture
- Tests of the GMC
- Phenomenological implications of the GMC

We have proposed the
we have proposed the
Gravitino Mass Conjecture
stating that
the limit of small gravitino mass
$m_{3/2} \rightarrow 0$
$m_{3/2} ightarrow 0$ corresponds to the massless limit of an
$m_{3/2} ightarrow 0$ corresponds to the massless limit of an infinite tower of states and

we have focused mainly on $m \sim \left(m_{3/2}\right)^n$

We have discussed differences andsimilarities of theGravitino Mass Conjectureand the AdS Distance Conjecturefor SUSY AdSGMC=ADCfor non-SUSY vacuaGMC≠ADC

we have focused mainly on

$$m \sim (m_{3/2})$$

n

We have discussed differences and similarities of the **Gravitino Mass Conjecture** and the AdS Distance Conjecture for SUSY AdS GMC=ADC for non-SUSY vacua GMC≠ADC We have tested the GMC in a number of

examples of string compactification to D=4

in AdS, Minkowski and dS

```
We have found a relation between
the gravitino mass and the gravitino
gauge coupling in \mathcal{N} = 2
g_{3/2} \sim e^{\frac{K}{2}} \sim m_{3/2}
In this context, the GMC is related to the
absence of global symmetry conjecture
```

```
We have found a relation between
   the gravitino mass and the gravitino
         gauge coupling in \mathcal{N} = 2
              g_{3/2} \sim e^{\frac{K}{2}} \sim m_{3/2}
In this context, the GMC is related to the
absence of global symmetry conjecture
we have found a lower bound in dS space
            m_{3/2} > M_P^{\frac{n-3}{n}} H^{\frac{3}{n}}
  (similar to Higuchi bound for the graviton)
```


