Holomorphic boundary conditions for topological field theories via branes in twisted supergravity

Ioannis Lavdas

LMU München, Arnold Sommerfeld Center for Theoretical Physics

Based on arXiv: 2110.15257

In collaboration with I. Brünner and I. A. Saberi

Geometry, Strings and the Swampland Workshop

Ringberg, 2021

ARNOLD SOMMERFELD

CENTER FOR THEORETICAL PHYSICS

Motivation and Objective:

Twisting 3d N=4 theories with boundaries:

• Very interesting implications:

Susy compactifications on $\Sigma_{\mathfrak{g}}$ Study bulk TFT using bdy VOA data

> Gaiotto '18 Gaiotto - Costello - Creutzig '18

• Central issue:

Compatibility of boundary with bulk topological twist via appropriate deformation

Gaiotto-Costello '18

In this talk:

Show how topological twist is implemented as a deformation of a holomorphically twisted theory, by engineering the theories in brane world volumes in a particular background

Outline:

3d N=4 theories with boundaries:

Topological and Holomorphic twists

Boundaries, deformations and compatibility

Brane engineering:

Bulk and boundary theory
Twisting and background geometry

Twisted IIB supergravity:

Holomorphic brane engineering

Background deformations and compatibility

Summary, future directions and ongoing work

Superconformal algebra:

$$\mathfrak{g}(3,\mathcal{N}=4)=\mathfrak{osp}(4|4)\supset\mathfrak{so}(3,2)\times\mathfrak{so}(4)_R$$

$$Q \in [\mathbf{2}]^{(\mathbf{2},\mathbf{2})}$$
 $SO(4)_R \simeq SU(2)_C \times SU(2)_H$

• 3d N=4 Hypermultiplet

Scalars: $(q, \tilde{q}) \in [\mathbf{1}]^{(\mathbf{1}, \mathbf{2})}$

Fermions: $(\psi, \tilde{\psi}) \in [\mathbf{2}]^{(\mathbf{2}, \mathbf{1})}$

Twisting:

•
$$\mathfrak{h}_{C,H}: SU(2)_L \to SU(2)_L \times SU(2)_{C,H}$$

•
$$Q: Q^2 = 0$$
, $Q_{\text{BRST}} \to Q + Q_{\text{BRST}}$

 $\mathcal{Q}_C, \mathcal{Q}_H \to \text{Topological twist}$

 $Q_{
m hol}
ightarrow ext{Holomorphic twist}$

Superconformal algebra:

$$\mathfrak{g}(3,\mathcal{N}=4)=\mathfrak{osp}(4|4)\supset\mathfrak{so}(3,2)\times\mathfrak{so}(4)_R$$

$$Q \in [\mathbf{2}]^{(\mathbf{2},\mathbf{2})}$$
 $SO(4)_R \simeq SU(2)_C \times SU(2)_H$

• 3d N=4 Hypermultiplet

Scalars: $(q, \tilde{q}) \in [\mathbf{1}]^{(\mathbf{1}, \mathbf{2})}$

Fermions: $(\psi, \tilde{\psi}) \in [\mathbf{2}]^{(\mathbf{2}, \mathbf{1})}$

Twisting:

•
$$\mathfrak{h}_{C,H}: SU(2)_L \to SU(2)_L \times SU(2)_{C,H}$$

•
$$Q: Q^2 = 0$$
, $Q_{\text{BRST}} \to Q + Q_{\text{BRST}}$

$$\mathcal{Q}_C, \mathcal{Q}_H \to \text{Topological twist}$$

$$\mathcal{Q}_{\mathrm{hol}}
ightarrow ext{Holomorphic twist}$$

Consider topological supercharges as deformations of the holomorphic one:

$$Q_H = Q_{\text{hol.}} + \zeta Q_H$$

$$Q_C = Q_{\text{hol.}} + \zeta Q_C$$

Gaiotto-Costello '18

- Apply to construction of appropriate boundary conditions!

• $\mathcal{N} = (0,4)$: Compatible with bulk *holomorphic* but *not topological* twist

Deformable to be *compatible* with bulk topological twist

• $\mathcal{N} = (2,2)$: Compatible with both holomorphic and topological twist

• (0,4) b.c for free hypermultiplet: Parametrized deformation,

$$Q_{\text{hol.}} + \zeta Q_{H,C} \longrightarrow \mathcal{J}_{\perp}^{\text{hol}} + \zeta \mathcal{J}_{\perp}^{H,C} = 0$$

- $C: \tilde{\mathcal{B}}_D \phi: (0,4)$ Dirichlet b.c can be deformed to be compatible with C-twist
- $\tilde{\mathcal{B}}_N \phi$: (0,4) Neumann b.c can be deformed to be compatible with H-twist

$$ullet$$
 $S_{\partial}\mapsto S_{\partial}+\mathcal{S}$, $\delta_{Q_{
m hol}}\mathcal{S}=\mathcal{J}_{\partial}^{Q_{
m hol}}$

Defo preserving H,C-deformed susy if:

N:H-twist
$$\tilde{\mathbb{S}} = \mathbb{S}_{Sb}$$
Symplectic Boson VOAD:C-twist $\tilde{\mathbb{S}} = \mathbb{S}_{Fc}$ Symplectic Fermion VOA

$$D$$
: C-twist $\tilde{\mathbb{S}} = \mathbb{S}_{Fc}$

Brane engineering:

• 3d N=4 theories can be realized as brane world volume theories:

	0		3	4	5	6	7	8	9
D3						•			
D5							•	•	•
NS5									

• Boundaries realized from extra IIB five-branes:

$$\mathcal{N} = (0, 4)$$

D5'	•	•	•	•	•	•			
NS5'	•	•				•	•	•	•

Brane engineering:

Twisting homomorphisms:

• Appropriate choice of target space geometry Bershadsky, Vafa, Sadov '96

$$M_3 \hookrightarrow T_{H,C}^* M_3 \subset CY_3$$

Several points intracable:

Q-cohomology?

Holomorphic twist?

Deformations?

$$\Gamma_{\mu\nu} \to \Gamma_{\mu\nu} + \Gamma_{(\mu+3)(\nu+3)},$$

$$\mu, \nu = 0, 1, 2$$

$$\Gamma_{\mu\nu} \to \Gamma_{\mu\nu} + \Gamma_{(\mu+7)(\nu+7)},$$

Defined as:

Supergravity background where, the bosonic ghost (q) of local supersymmetry acquires non-vanishing v.e.v

- EoM satisfied for q being a cov. const. spinor: q = Q
- Susy theory on this background: $Q_{BRST} + Q$

Different choice of bosonic ghosts — different twists

Interested in a particular vev, giving the holomorphic twist of the IIB background:

Holo twist of IIB supergravity: BCOV theory on \mathbb{C}^5

Costello, Li '16

- BCOV theory is the closed string field theory of the topological B-model
- → deformations of CY-complex structure

Bershadsky, Cecotti, Ooguri, Vafa '94

• Fields of the theory in terms of *polyvector* fields:

$$PV^{i,j}(\mathcal{X}) = \Omega^{0,j}(\mathcal{X}, \wedge^i T\mathcal{X})$$

$$PV^{i,j}(\mathcal{X}) \xrightarrow{\Omega_{V}} \Omega^{d-i,j}(\mathcal{X})$$

• Residula supersymmetries: Focus on $PV^{2,0}, PV^{0,0}$

Holomorphic Hanany-Witten: the case of the hypermultiplet

✓ Holomorphic configuration on bulk and brane

Next: need to add the D5s

The D5 support is not along a complex submanifold of \mathbb{C}^5 Deform, using the bivector $\partial_{w_1} \wedge \partial_{w_2}$

bulk:
$$\mathbb{C}_{z_1} \times \mathbb{C}_{w_2} \times \mathbb{C}_{z_2} \times \mathbb{C}_{w_1} \times \mathbb{C}_{z_3}$$

$$\cong \qquad \cong \qquad \cong \qquad \cong \qquad \cong$$

$$\mathbb{R}^2_{01} \times \mathbb{R}^2_{26} \times \mathbb{R}^2_{34} \times \mathbb{R}^2_{59} \times \mathbb{R}^2_{78}$$

$$\boxed{D3: \qquad \mathbb{C}_{z_1} \times \mathbb{C}_{w_2} \times 0 \times 0 \times 0}$$

$$\boxed{D5: \qquad \mathbb{C}_{z_1} \times \mathbb{R}_2 \times \partial I_6 \times 0 \times \mathbb{R}_9 \times \mathbb{C}_{z_3}}$$

Theory topological along $w_{1,2}$

Next:
$$\mathcal{N} = (0,4)$$
 boundary

Introduce *Dirichlet* boundary conditions: D5'

bulk:
$$\mathbb{C}_{z_1} \times \mathbb{C}_{w_2} \times \mathbb{C}_{z_2} \times \mathbb{C}_{w_1} \times \mathbb{C}_{z_3}$$

$$\cong \qquad \cong \qquad \cong \qquad \cong \qquad \cong \qquad \cong$$

$$\mathbb{R}^2_{01} \times \mathbb{R}^2_{26} \times \mathbb{R}^2_{34} \times \mathbb{R}^2_{59} \times \mathbb{R}^2_{78}$$

$$\boxed{D3: \qquad \mathbb{C}_{z_1} \times (\mathbb{R}_+)_2 \times I_6 \times 0 \times 0 \times 0}$$

$$\boxed{D5: \qquad \mathbb{C}_{z_1} \times \mathbb{R}_2 \times \partial I_6 \times 0 \times \mathbb{R}_9 \times \mathbb{C}_{z_3}}$$

$$\boxed{D5': \qquad \mathbb{C}_{z_1} \times 0 \times \mathbb{R}_6 \times \mathbb{C}_{z_2} \times \mathbb{R}_5 \times 0}$$

Which are the admissible deformations?

• Look among residual deformations and control which is compatible with the above:

Pin down the following two:

$$Q_H = z_2 \quad \& \quad Q_C = \partial_{z_1} \wedge \partial_{z_2}$$

- ✓ Deforming by \mathcal{Q}_C retains moduli along z_3 while making the rest z-directions topological.
 - Holomorphic solutions to the eom

- X Deforming by Q_H retains the z_2 moduli
 - No solutions to the eom!

Results in agreement with the original compatibility criterion

(and of course with our field theory analysis
c.f. closing remarks;))

Concluding remarks

- Geometrization of holomorphic twist and on its deformation to topological
- Applicable to more general theories
- Field theory analysis BV

To be studied:

- Defect bulk operators and boundary VOAs
- Mirror-Symmetry checks (branches, holomorphic twist and dual pairs)?
- Theories with higher supersymmetry? (e.g ABJM)

Thank you for your attention...!