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(Refined) Distance Conjecture



Landscape vs. Swampland
• At this workshop I don’t need to introduce the concept of the landscape/swampland dichotomy


• In the near future, many jobs will be replaced by AI. Many of you may think you are safe. But I have 
asked a currently existing AI (GPT-J) about it:


• So let’s see what the AI has to say about the swampland

“I don’t know what exactly you want to write about, but I have to say that 
writing a string theory paper is not very difficult. I’ve written more 

than a dozen papers on string theory…”

“For the past few years, I’ve been interested in the ‘Swampland Program’…”

https://6b.eleuther.ai



Landscape vs. Swampland

“In the landscape, we have a space of flux vacua. For each vacuum, there is 
a potential that we can calculate. To each vacuum, we can associate a 

string theory. For example, the type IIB string theory on $AdS_5 \times 
S^5$ has a dual field theory…


…my understanding is that the landscape corresponds to quantum fluctuations 
of the geometry of space-time which, if there are many possible vacua, will 

give rise to a very large number of quantum universes.”

Regarding the landscape:

About the swampland:

“The swampland is a mysterious region of the multiverse where most of its 
inhabitants are professional swindlers, con artists, and liars. It is a place 
of great despair and disappointment, and a graveyard of failed schemes. It is 
a place of low expectations and little trust. The swampland is not a place 

where people like to live, nor a place where people want to go.”



Landscape vs. Swampland

Finally:

“…So it seems like de Sitter space might be a member of the landscape. Or am 
I missing something?…”



Distance Conjecture

 Infinite tower of states with  ∃! m ∼ e−αΔϕMp

Ooguri, Vafa ‘06

Δϕ → ∞
…
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Distance Conjecture

emergent string mn ∼ ndecompactification mn ∼ n

 Infinite tower of states with  ∃! m ∼ e−αΔϕMp

Emergent String Conjecture

Lee, Lerche, Weigand ’18-’20

DK, Lee, Wiesner, Weigand ’21

and talk by Timo on Monday



Distance Conjecture

emergent string mn ∼ ndecompactification mn ∼ n

 Infinite tower of states with  ∃! m ∼ e−αΔϕMp

Emergent String Conjecture

also deep relation with WGC!
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Distance Conjecture

Very strong and very weak at the same time:


 Universal, devastating behaviour


 Decay rate  in  not specified


 Statement about geodesics in moduli 
    space, not physical trajectories in a potential


 Universality broken in bulk of moduli space
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Refined Distance Conjecture
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• DC should apply to finite  in the following sense:ΔΦ

For displacements  with  there must be an 
infinite tower of states with mass scale 

ΔΦ > ΔΦc ΔΦc ≃ 1
m ≤ m0 e−αΔϕ

Tower can be avoided only for 

 distances!

O(1)

Δϕ ≲ 1



Refined Distance Conjecture
There should not exist a family of theories with moduli spaces  such that ℳN ΔϕN

N→∞⟶ ∞

ΔϕN



Refined Distance Conjecture

 in


Calabi-Yau Moduli Spaces



Type IIA on CY3

• Type IIA on a Calabi-Yau threefold yields 4D  SUGRAN = 2

S4D = ∫ ( 1
2κ2

R ⋆ 1−gij̄ dti ∧ ⋆dt̄ j̄−huv dqu ∧ ⋆dqv) + ( 1
2

Im (𝒩IJ) FI ∧ ⋆FJ +
1
2

Re (𝒩IJ) FI ∧ FJ)
• Vector multiplet moduli space: complexified Kähler moduli


• Compute distances:  from holomorphic prepotential 





• Hard to compute from first principles


•  are a priori local coordinates at the large volume point 
  domain unclear

gij̄ ℱ

ℱ = 1
6 kijktitjtk + 1

2 aijtitj + biti + 1
2 c + ∑β>0 n0

β Li3(e2πitβ)

ti

→



Mirror Symmetry

ℳ = ℳK × ℳCS

Type IIA string theory
ℳ = ℳK × ℳCS

Type IIB string theory

M W

• Mirror symmetry: full non-perturbative prepotential from periods of the 
holomorphic three-form  of a mirror Calabi-Yau manifoldΩ

⃗Π = ∫ ⃗Σ
Ω3 = ( zI

∂Iℱ) , ti =
zi

z0



RDC for the Quintic
Blumenhagen, DK, Schlechter, Wolf ’18
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RDC for the Quintic
Blumenhagen, DK, Schlechter, Wolf ’18

Periods: 

• Solve PF differential equation / GKZ system locally


• analytically continue to get a global picture



RDC for the Quintic
Blumenhagen, DK, Schlechter, Wolf ’18

Metric Geodesics

d2xμ

dτ2
+ Γμ

αβ
dxα

dτ
dxβ

dτ
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ℙ4
1,1,1,1,2[6]

ℙ4
1,1,1,1,4[8]

ℙ4
1,1,1,2,5[10]

• Other toric one-parameter  analogous:


• Three special points  at finite or infinite distance (finer classification via LMHS)


• Interested in the case where only  (LV/LCS) is at infinite distance


•  is the maximal distance to the large volume convergence region


• Relevant tower is always KK - no emergent string

CY3

ψ = 0, 1, ∞

t(ψ = ∞) = i∞

ΔΦc

ℙ4
1,1,1,1,1[5]

ℙ4
1,1,1,1,4[8] ΔΦc

t = i∞

ΔΦc ≈ 0.43

ΔΦc ≈ 0.40

ΔΦc ≈ 0.22

ΔΦc ≈ 0.21

, decreasing< 1

RDC for h1,1 = 1
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RDC for h1,1 = 2
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• More moduli  more phases / convergence regions


• Example:  with mirror 

→

ℙ1,1,2,2,6[12] (x12
0 + x12

1 + x6
2 + x6

3 + x2
4 − 12ψx0x1x2x3x4 − 2ϕx6

0 x6
1 = 0)/G

more examples 
in our paper
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Modular Curves

and the


Refined Distance Conjecture



Heterotic/IIA Duality

• For Calabi-Yau threefold with : possible fibration structure 
 

 genus one (elliptic) fibration over  
 K3 fibration over 


• K3 fibration: “emergent string limit” where the fiber shrinks


• The relevant string is obtained by wrapping an NS5-brane on the K3 
 fundamental heterotic string, propagating on a dual  compactification

h11 = 2

⇒ B2
⇒ B1 = ℙ1

→ K3 × T2

ℙ1

K3

Lee, Lerche, Weigand ‘19



• Canonical example of Het/IIA duality with :  


• Dual to het. string with  at self-dual radius , instanton embedding  into 

h1,1 = 2 ℙ3
1,1,1,3[6] → ℙ4

1,1,2,2,6[12] → ℙ1

T2 T = U (10, 10, 4) E8 × E8 × SU(2)

• At weak coupling:     


• Moduli space geometry at  should reduce to the  
fundamental domain as  sweeps out the complex plane


• Moduli space metric degenerates to  


• Geodesics: circles in the upper half-plane ending on the real line

eShet = ϕ2 , j(T) ∼ ψ6

ϕ

|ϕ | = ∞ SL(2,ℤ)
ψ

gTT̄ = 1
Im(T)

Kachru, Klemm, Lerche, Mayr, Vafa ‘95

Het/IIA Duality and RDC for ℙ4
1,1,2,2,6[12]

Kachru, Vafa ’95



Het/IIA Duality and RDC for ℙ4
1,1,2,2,6[12]

t T

mirror Het/IIA

ΔΦc

• Reproduce our previous result:


• Distance: ΔΦc = ∫
γ

gTT̄ = ∫ 2π/3
π/2

dα

2 sin(α)
= ln(3)

2 2
≈ 0.39 = 0.27 + corrections

j(T ) = 1728 (c
T − ρ
T − ρ̄ )

3

+ … T = e2πi/3 + const. × ( ψ6

ϕ )
1/3

+ …

exact! pert. mirror symmetry calculation

slow convergence

i
e2πi/3

DK, 2108.00021
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Generalization
• Modular symmetries appear also in other K3-fibered threefolds (selected examples): 

 
:        

:         
:     


•  are (partial normalisers of) congruence subgroups of 


• Large base limit: mirror map is given by the corresponding Hauptmodul  
 analogous computations


• Moduli space degenerates into modular curve 


• Congruence subgroups have larger fundamental domains than   challenge for RDC?

⇒ ℙ4
1,1,2,2,2[8] Γ0(2)+ ⊂ SL(2,ℝ)

⇒ ℙ5
12,24[6,4] Γ0(3)+ ⊂ SL(2,ℝ)

⇒ ℙ6
12,25[4,4,4] Γ0(4)+ ⊂ SL(2,ℝ)

Γ0(N)+ SL(2,ℤ)

j+
n (T)

→

X0(N)+ = ℋ/Γ0(N)+

SL(2,ℤ) ⇒

Klemm, Lerche, Mayr ’95

Lian, Yau ’94 ‘95

DK, 2108.00021



ℙ4
1,1,2,2,2[8] ℙ5

12,24[4,6] ℙ6
12,25[4,4,4]

dist(p1p2) = 1

2
log (cot ( π

8 )) ≈ 0.62 dist(p4p5) = 2 coth−1( 3) ≈ 0.93 dist(p7p8) = ∞

, , Γ0(2)+ Γ0(3)+ Γ0(4)+
DK, 2108.00021

ΔΦc ΔΦc
ΔΦc



 and beyond…Γ0(5)+

• For  with  the fundamental domains get more and more complicated. Often multiple finite 
distance geodesics:

Γ0(N)+ N > 4

 growth∼ log(N)

DK, 2108.00021

X0(12)+



 and beyond…Γ0(5)+
DK, 2108.00021
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 and beyond…Γ0(5)+
DK, 2108.00021
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Can this be realized?



 and beyond…Γ0(5)+

• Are  for  realised in Calabi-Yau moduli spaces?


• They do arise as moduli spaces of lattice polarised K3 surfaces mirror to general degree  polarised K3 
surfaces (K3 with primitive ample divisor that satisfies )


• Toric constructions of such K3 surfaces are limited to 


• Polarised K3 surfaces of higher degree can be constructed in Grassmannian ambient spaces


• They arise as complete intersections defined by the zero locus of a section of a vector bundle


• Example: Degree 10 K3 surface 
 
                         ambient:                                                (6-dimensional)  
                         vector bundle:                          (rank 4)  
                         section:                   generic 
                         K3:                                                               (co-dimension 4)

X0(N)+ N > 4

2N
D2 = 2N

N ≤ 4

Y = Gr(2,5)
V = O(1)⊕3 ⊕ O(2)
s0 ∈ Γ(Y, V)

{s0 = 0}

DK, 2108.00021

Mukai ’88-‘16

Dolgachev ’95

Doran, Harder, Novoseltsev, Thompson ‘17



 and beyond…Γ0(5)+

• To obtain a CY fibration, we promote the ambient space to the Grassmann bundle of a rank  vector 
bundle  over 


• The vector bundle  has to be twisted appropriately by  such that the canonical class of the 
resulting threefold is trivial


• Provided this results in a smooth threefold, we obtain the desired Calabi-Yau

n
E ≃ ⊕i 𝒪(ti) ℙ1

V 𝒪ℙ1(1)

Gr(k, n)

DK, 2108.00021

Gr(k, E)

⟶
ℂn

ℙ1

Ez



 and beyond…Γ0(5)+
DK, 2108.00021

• We find configurations of vector bundles that tentatively realise values of  up to 19, e.g.


N=5:        


            


N=6:        


            


     RDC violated by these models?

N

Y = Gr (2,𝒪⊕4 ⊕ 𝒪(1)) VY = (𝒪Y(1)⊕3 ⊕ 𝒪Y(2)) ⊗ p*𝒪(1)

J3
2 = 7 J2

2 ⋅ J1 = 10 c2 ⋅ J1 = 24 c2 ⋅ J2 = 58 χ = − 102

Y = Gr (2,𝒪⊕5) VY = (𝒪Y(1) ⊗ p*𝒪(1))⊕2 ⊕ S∨ ⊗ det(Q)

J3
2 = 24 J2

2 ⋅ J1 = 12 c2 ⋅ J1 = 24 c2 ⋅ J2 = 72 χ = − 92

⟹

See also Knapp, Scheidegger, Schimannek ’21 
for this example and similar construction of 

genus one fibered CY3 with 5-section

…



Heterotic Duals?
• Would be great to understand heterotic duals in detail


• Vacua can not descend from toroidal compactification of 6D theory (  !)


• Rather, they can likely be thought of as arising from fibering special 8D heterotic vacua over K3


• It is natural to expect that the 8D theory sits at a gauge enhancement point


• Because  appear, we expect enhancement to occur at a reduced self-dual radius 
, induced e.g. by Wilson lines


• Such 8D heterotic vacua have been classified recently


• Possible match for : vacuum with gauge group 


• Very naive calculation of spectrum gives match het <-> IIA

h11 = 2

Γ0(N)+

Rsd = 1/ N

N = 2 (E7 × E7 × SU(4))/ℤ2

Font, Fraiman, Graña, Núñez, Freitas ’20 ‘21



Summary & Future Directions
• We have tested the refined distance conjecture using mirror symmetry and het/IIA duality 

 : mirror symmetry is a very efficient tool                                                               RDC holds 
 : for K3 fibrations (het. dual), there is a large base/weak coupling limit in which the moduli 

space degenerates into a moduli space for a congruence subgroup     tension with RDC for large 


• Large  necessarily involves constructions beyond toric geometry, we have suggested a construction 
that utilises Grassmann bundles


Questions: 

• For which values of  do smooth Calabi-Yau threefolds exist? What is the maximal value? Genus zero 
property of ?


• Global structure of the moduli space?


• Heterotic duals?


• Toric degenerations and extremal transitions?

⟶ h11 = 1
⟶ h11 = 2

Γ0(N)+ N

N

N
Γ0(N)+

Kreuzer, Batyrev ‘08

see also Hajouji, Oehlmann ‘19 

Dierigl, Heckman ’20


